CHAPTER VI.

DIFFICULTIES OF THE THEORY.

Difficulties of the theory of descent with modification — Absence or rarity of transitional varieties — Transitions in habits of life — Diversified habits in the same species — Species with habits widely different from those of their allies — Organs of extreme perfection — Modes of transition — Cases of difficulty — Natura non facit saltum — Organs of small importance — Organs not in all cases absolutely perfect — The law of Unity of Type and of the Conditions of Existence embraced by the theory of Natural Selection.

Long before the reader has arrived at this part of my work, a crowd of difficulties will have occurred to him. Some of them are so serious that to this day I can hardly reflect on them without being in some degree staggered; but, to the best of my judgment, the number are only apparent, and those that are real are greater not, I think, fatal to the theory.

These difficulties and objections may be classed under the following heads:—First, why, if species have descended from other species by fine gradations, do we not everywhere see innumerable transitional forms? Why is not all nature in confusion, instead of the species being, as we see them, well defined?

Secondly, is it possible that an animal having, for instance, the structure and habits of a bat, could have been formed by the modification of some other animal with widely-different habits and structure? Can we believe that natural selection could produce, on the one hand, an organ of trifling importance, such as the tail of a giraffe, which serves as a fly-flapper, and, on the other hand, an organ so wonderful as the eye?

Thirdly, can instincts be acquired and modified through natural selection? What shall we say to the instinct which leads the bee to make cells, and which has practically anticipated the discoveries of profound mathematicians?

Fourthly, how can we account for species, when crossed, being sterile and producing sterile offspring, whereas, when varieties are crossed, their fertility is unimpaired?

The two first heads will here be discussed; some miscellaneous
objections in the following chapter; Instinct and Hybridism in the two succeeding chapters.

On the Absence or Rarity of Transitional Varieties.—As natural selection acts solely by the preservation of profitable modifications, each new form will tend in a fully-stocked country to take the place of, and finally to exterminate, its own less improved parent-form and other less-favoured forms with which it comes into competition. Thus extinction and natural selection go hand in hand. Hence, if we look at each species as descended from some unknown form, both the parent and all the transitional varieties will generally have been exterminated by the very process of the formation and perfection of the new form.

But, as by this theory innumerable transitional forms must have existed, why do we not find them embedded in countless numbers in the crust of the earth? It will be more convenient to discuss this question in the chapter on the Imperfection of the Geological Record; and I will here only state that I believe the answer mainly lies in the record being incomparably less perfect than is generally supposed. The crust of the earth is a vast museum; but the natural collections have been imperfectly made, and only at long intervals of time.

But it may be urged that when several closely-allied species inhabit the same territory, we surely ought to find at the present time many transitional forms. Let us take a simple case: in travelling from north to south over a continent, we generally meet at successive intervals with closely allied or representative species, evidently filling nearly the same place in the natural economy of the land. These representative species often meet and interlock; and as the one becomes rarer and rarer, the other becomes more and more frequent, till the one replaces the other. But if we compare these species where they intermingle, they are generally as absolutely distinct from each other in every detail of structure as are specimens taken from the metropolis inhabited by each. By my theory these allied species are descended from a common parent; and during the process of modification, each has become adapted to the conditions of life of its own region, and has supplanted and exterminated its original parent-form and all the transitional varieties between its past and present states. Hence we ought not to expect at the present time to meet with numerous transitional varieties in each region, though they must have existed there, and may be embedded there in a fossil condition. But in the intermediate region, having intermediate conditions of life, why do we not now find closely-linking intermediate varieties? This difficulty for a long time
quite confounded me. But I think it can be in large part explained.

In the first place we should be extremely cautious in inferring, because an area is now continuous, that it has been continuous during a long period. Geology would lead us to believe that most continents have been broken up into islands even during the later tertiary periods; and in such islands distinct species might have been separately formed without the possibility of intermediate varieties existing in the intermediate zones. By changes in the form of the land and of climate, marine areas now continuous must often have existed within recent times in a far less continuous and uniform condition than at present. But I will pass over this way of escaping from the difficulty; for I believe that many perfectly defined species have been formed on strictly continuous areas; though I do not doubt that the formerly broken condition of areas now continuous, has played an important part in the formation of new species, more especially with freely-crossing and wandering animals.

In looking at species as they are now distributed over a wide area, we generally find them tolerably numerous over a large territory, then becoming somewhat abruptly rarer and rarer on the confines, and finally disappearing. Hence the neutral territory between two representative species is generally narrow in comparison with the territory proper to each. We see the same fact in ascending mountains, and sometimes it is quite remarkable how abruptly, as Alph. de Candolle has observed, a common alpine species disappears. The same fact has been noticed by E. Forbes in sounding the depths of the sea with the dredge. To those who look at climate and the physical conditions of life as the all-important elements of distribution, these facts ought to cause surprise, as climate and height or depth graduate away insensibly. But when we bear in mind that almost every species, even in its metropolis, would increase immensely in numbers, were it not for other competing species; that nearly all either prey on or serve as prey for others; in short, that each organic being is either directly or indirectly related in the most important manner to other organic beings,—we see that the range of the inhabitants of any country by no means exclusively depends on insensibly changing physical conditions, but in a large part on the presence of other species, on which it lives, or by which it is destroyed, or with which it comes into competition; and as these species are already defined objects, not blending one into another by insensible gradations, the range of any one species, depending as it does on the range of others, will tend to be sharply defined. Moreover, each species on the confines
of its range, where it exists in lessened numbers, will, during fluctua-
tions in the number of its enemies or of its prey, or in the nature
of the seasons, be extremely liable to utter extermination; and thus
its geographical range will come to be still more sharply defined.

As allied or representative species, when inhabiting a continuous
area, are generally distributed in such a manner that each has a
wide range, with a comparatively narrow neutral territory between
them, in which they become rather suddenly rarer and rarer; then,
as varieties do not essentially differ from species, the same rule will
probably apply to both; and if we take a varying species inhabiting
a very large area, we shall have to adapt two varieties to two large
areas, and a third variety to a narrow intermediate zone. The
intermediate variety, consequently, will exist in lesser numbers
from inhabiting a narrow and lesser area; and practically, as far as
I can make out, this rule holds good with varieties in a state of
nature. I have met with striking instances of the rule in the case
of varieties intermediate between well-marked varieties in the genus
Balanus. And it would appear from information given me by Mr.
Watson, Dr. Asa Gray, and Mr. Wollaston, that generally, when
varieties intermediate between two other forms occur, they are much
rarer numerically than the forms which they connect. Now, if we
may trust these facts and inferences, and conclude that varieties
linking two other varieties together generally have existed in lesser
numbers than the forms which they connect, then we can understand
why intermediate varieties should not endure for very long periods:
—why, as a general rule, they should be exterminated and disappear,
sooner than the forms which they originally linked together.

For any form existing in lesser numbers would, as already
remarked, run a greater chance of being exterminated than one
existing in large numbers; and in this particular case the inter-
mediate form would be eminently liable to the inroads of closely-
allied forms existing on both sides of it. But it is a far more
important consideration, that during the process of further modifi-
cation, by which two varieties are supposed to be converted and
perfected into two distinct species, the two which exist in larger
numbers, from inhabiting larger areas, will have a great advantage
over the intermediate variety, which exists in smaller numbers
in a narrow and intermediate zone. For forms existing in larger
numbers will have a better chance, within any given period, of
presenting further favourable variations for natural selection to
seize on, than will the rarer forms which exist in lesser numbers.
Hence, the more common forms, in the race for life, will tend to
beat and supplant the less common forms, for these will be more
slowly modified and improved. It is the same principle which, as I believe, accounts for the common species in each country, as shown in the second chapter, presenting on an average a greater number of well-marked varieties than do the rarer species. I may illustrate what I mean by supposing three varieties of sheep to be kept, one adapted to an extensive mountainous region; a second to a comparatively narrow, hilly tract; and a third to the wide plains at the base; and that the inhabitants are all trying with equal steadiness and skill to improve their stocks by selection; the chances in this case will be strongly in favour of the great holders on the mountains or on the plains, improving their breeds more quickly than the small holders on the intermediate narrow, hilly tract; and consequently the improved mountain or plain breed will soon take the place of the less improved hill breed; and thus the two breeds, which originally existed in greater numbers, will come into close contact with each other, without the interposition of the supplanted, intermediate hill-variety.

To sum up, I believe that species come to be tolerably well-defined objects, and do not at any one period present an inextricable chaos of varying and intermediate links: first, because new varieties are very slowly formed, for variation is a slow process, and natural selection can do nothing until favourable individual differences or variations occur, and until a place in the natural polity of the country can be better filled by some modification of some one or more of its inhabitants. And such new places will depend on slow changes of climate, or on the occasional immigration of new inhabitants, and, probably, in a still more important degree, on some of the old inhabitants becoming slowly modified, with the new forms thus produced and the old ones acting and reacting on each other. So that, in any one region and at any one time, we ought to see only a few species presenting slight modifications of structure in some degree permanent; and this assuredly we do see.

Secondly, areas now continuous must often have existed within the recent period as isolated portions, in which many forms, more especially amongst the classes which unite for each birth and wander much, may have separately been rendered sufficiently distinct to rank as representative species. In this case, intermediate varieties between the several representative species and their common parent, must formerly have existed within each isolated portion of the land, but these links during the process of natural selection will have been supplanted and exterminated, so that they will no longer be found in a living state.

Thirdly, when two or more varieties have been formed in different
portions of a strictly continuous area, intermediate varieties will, it is probable, at first have been formed in the intermediate zones, but they will generally have had a short duration. For these intermediate varieties will, from reasons already assigned (namely from what we know of the actual distribution of closely allied or representative species, and likewise of acknowledged varieties), exist in the intermediate zones in lesser numbers than the varieties which they tend to connect. From this cause alone the intermediate varieties will be liable to accidental extermination; and during the process of further modification through natural selection, they will almost certainly be beaten and supplanted by the forms which they connect; for these from existing in greater numbers will, in the aggregate, present more varieties, and thus be further improved through natural selection and gain further advantages.

Lastly, looking not to any one time, but to all time, if my theory be true, numberless intermediate varieties, linking closely together all the species of the same group, must assuredly have existed; but the very process of natural selection constantly tends, as has been so often remarked, to exterminate the parent-forms and the intermediate links. Consequently evidence of their former existence could be found only amongst fossil remains, which are preserved, as we shall attempt to show in a future chapter, in an extremely imperfect and intermittent record.

On the Origin and Transitions of Organic Beings with peculiar Habits and Structure.—It has been asked by the opponents of such views as I hold, how, for instance, could a land carnivorous animal have been converted into one with aquatic habits; for how could the animal in its transitional state have subsisted? It would be easy to show that there now exist carnivorous animals presenting close intermediate grades from strictly terrestrial to aquatic habits; and as each exists by a struggle for life, it is clear that each must be well adapted to its place in nature. Look at the Mustela vison of North America, which has webbed feet, and which resembles an otter in its fur, short legs, and form of tail. During the summer this animal dives for and preys on fish, but during the long winter it leaves the frozen waters, and preys, like other pole-cats, on mice and land animals. If a different case had been taken, and it had been asked how an insectivorous quadruped could possibly have been converted into a flying bat, the question would have been far more difficult to answer. Yet I think such difficulties have little weight.

Here, as on other occasions, I lie under a heavy disadvantage, for, out of the many striking cases which I have collected, I can give only one or two instances of transitional habits and structures in
allied species; and of diversified habits, either constant or occasional, in the same species. And it seems to me that nothing less than a long list of such cases is sufficient to lessen the difficulty in any particular case like that of the bat.

Look at the family of squirrels; here we have the finest gradation from animals with their tails only slightly flattened, and from others, as Sir J. Richardson has remarked, with the posterior part of their bodies rather wide and with the skin on their flanks rather full, to the so-called flying squirrels; and flying squirrels have their limbs and even the base of the tail united by a broad expanse of skin, which serves as a parachute and allows them to glide through the air to an astonishing distance from tree to tree. We cannot doubt that each structure is of use to each kind of squirrel in its own country, by enabling it to escape birds or beasts of prey, to collect food more quickly, or, as there is reason to believe, to lessen the danger from occasional falls. But it does not follow from this fact that the structure of each squirrel is the best that it is possible to conceive under all possible conditions. Let the climate and vegetation change, let other competing rodents or new beasts of prey immigrate, or old ones become modified, and all analogy would lead us to believe that some at least of the squirrels would decrease in numbers or become exterminated, unless they also became modified and improved in structure in a corresponding manner. Therefore, I can see no difficulty, more especially under changing conditions of life, in the continued preservation of individuals with fuller and fuller flank-membranes, each modification being useful, each being propagated, until, by the accumulated effects of this process of natural selection, a perfect so-called flying squirrel was produced.

Now look at the Galeopithecus or so-called flying lemur, which formerly was ranked amongst bats, but is now believed to belong to the Insectivora. An extremely wide flank-membrane stretches from the corners of the jaw to the tail, and includes the limbs with the elongated fingers. This flank-membrane is furnished with an extensor muscle. Although no graduated links of structure, fitted for gliding through the air, now connect the Galeopithecus with the other Insectivora, yet there is no difficulty in supposing that such links formerly existed, and that each was developed in the same manner as with the less perfectly gliding squirrels; each grade of structure having been useful to its possessor. Nor can I see any insuperable difficulty in further believing that the membrane connected fingers and fore-arm of the Galeopithecus might have been greatly lengthened by natural selection; and this, as far as the
organs of flight are concerned, would have converted the animal into a bat. In certain bats in which the wing-membrane extends from the top of the shoulder to the tail and includes the hind-legs, we perhaps see traces of an apparatus originally fitted for gliding through the air rather than for flight.

If about a dozen genera of birds were to become extinct, who would have ventured to surmise that birds might have existed which used their wings solely as flappers, like the logger-headed duck (Micropterus of Eyton); as fins in the water and as front-legs on the land, like the penguin; as sails, like the ostrich; and functionally for no purpose, like the Apteryx? Yet the structure of each of these birds is good for it, under the conditions of life to which it is exposed, for each has to live by a struggle; but it is not necessarily the best possible under all possible conditions. It must not be inferred from these remarks that any of the grades of wing-structure here alluded to, which perhaps may all be the result of disuse, indicate the steps by which birds actually acquired their perfect power of flight; but they serve to show what diversified means of transition are at least possible.

Seeing that a few members of such water-breathing classes as the Crustacea and Mollusca are adapted to live on the land; and seeing that we have flying birds and mammals, flying insects of the most diversified types, and formerly had flying reptiles, it is conceivable that flying-fish, which now glide far through the air, slightly rising and turning by the aid of their fluttering fins, might have been modified into perfectly winged animals. If this had been effected, who would have ever imagined that in an early transitional state they had been the inhabitants of the open ocean, and had used their incipient organs of flight exclusively, as far as we know, to escape being devoured by other fish?

When we see any structure highly perfected for any particular habit, as the wings of a bird for flight, we should bear in mind that animals displaying early transitional grades of the structure will seldom have survived to the present day, for they will have been supplanted by their successors, which were gradually rendered more perfect through natural selection. Furthermore, we may conclude that transitional states between structures fitted for very different habits of life will rarely have been developed at an early period in great numbers and under many subordinate forms. Thus, to return to our imaginary illustration of the flying-fish, it does not seem probable that fishes capable of true flight would have been developed under many subordinate forms, for taking prey of many kinds in many ways, on the land and in the water, until their organs of flight
had come to a high stage of perfection, so as to have given them a
decided advantage over other animals in the battle for life. Hence
the chance of discovering species with transitional grades of struc-
ture in a fossil condition will always be less, from their having
existed in lesser numbers, than in the case of species with fully
developed structures.

I will now give two or three instances both of diversified and of
changed habits in the individuals of the same species. In either
case it would be easy for natural selection to adapt the structure
of the animal to its changed habits, or exclusively to one of its
several habits. It is, however, difficult to decide, and immaterial
for us, whether habits generally change first and structure after-
wards; or whether slight modifications of structure lead to changed
habits; both probably often occurring almost simultaneously. Of
cases of changed habits it will suffice merely to allude to that of the
many British insects which now feed on exotic plants, or exclu-
sively on artificial substances. Of diversified habits innumerable
instances could be given: I have often watched a tyrant flycatcher
(Saurophagus sulphuratus) in South America, hovering over one
spot and then proceeding to another, like a kestrel, and at other
times standing stationary on the margin of water, and then dashing
into it like a kingfisher at a fish. In our own country the larger
titmouse (Parus major) may be seen climbing branches, almost like
a creeper; it sometimes, like a shrike, kills small birds by blows
on the head; and I have many times seen and heard it hammering
the seeds of the yew on a branch, and thus breaking them like a
nuthatch. In North America the black bear was seen by Hearne
swimming for hours with widely open mouth, thus catching, almost
like a whale, insects in the water.

As we sometimes see individuals following habits different from
those proper to their species and to the other species of the same
genus, we might expect that such individuals would occasionally
give rise to new species, having anomalous habits, and with their
structure either slightly or considerably modified from that of
their type. And such instances occur in nature. Can a more
striking instance of adaptation be given than that of a woodpecker
for climbing trees and seizing insects in the chinks of the bark? Yet
in North America there are woodpeckers which feed largely on fruit,
and others with elongated wings which chase insects on the wing.
On the plains of La Plata, where hardly a tree grows, there is a
woodpecker (Colaptes campestris) which has two toes before and
two behind, a long pointed tongue, pointed tail-feathers, sufficiently
stiff to support the bird in a vertical position on a post, but not so
stiff as in the typical woodpeckers, and a straight strong beak. The beak, however, is not so straight or so strong as in the typical woodpeckers, but it is strong enough to bore into wood. Hence this Colaptes in all the essential parts of its structure is a woodpecker. Even in such trifling characters as the colouring, the harsh tone of the voice, and undulatory flight, its close blood-relationship to our common woodpecker is plainly declared; yet, as I can assert, not only from my own observations, but from those of the accurate Azara, in certain large districts it does not climb trees, and it makes its nest in holes in banks! In certain other districts, however, this same woodpecker, as Mr. Hudson states, frequents trees, and bores holes in the trunk for its nest. I may mention as another illustration of the varied habits of this genus, that a Mexican Colaptes has been described by De Saussure as boring holes into hard wood in order to lay up a store of acorns.

Petrels are the most aerial and oceanic of birds, but in the quiet sounds of Tierra del Fuego, the Puffinuria berardi, in its general habits, in its astonishing power of diving, in its manner of swimming and of flying when made to take flight, would be mistaken by any one for an auk or a grebe; nevertheless it is essentially a petrel, but with many parts of its organisation profoundly modified in relation to its new habits of life; whereas the woodpecker of La Plata has had its structure only slightly modified. In the case of the water-ouzel, the acutest observer by examining its dead body would never have suspected its sub-aquatic habits; yet this bird, which is allied to the thrush family, subsists by diving—using its wings under water, and grasping stones with its feet. All the members of the great order of Hymenopterous insects are terrestrial, excepting the genus Proctotrupes, which Sir John Lubbock has discovered to be aquatic in its habits; it often enters the water and dives about by the use not of its legs but of its wings, and remains as long as four hours beneath the surface; yet it exhibits no modification in structure in accordance with its abnormal habits.

He who believes that each being has been created as we now see it, must occasionally have felt surprise when he has met with an animal having habits and structure not in agreement. What can be plainer than that the webbed feet of ducks and geese are formed for swimming? Yet there are upland geese with webbed feet which rarely go near the water; and no one except Audubon has seen the frigate-bird, which has all its four toes webbed, alight on the surface of the ocean. On the other hand, grebes and coots are eminently aquatic, although their toes are only bordered by membrane. What seems plainer than that the long toes, not furnished with membrane
of the Grallatores are formed for walking over swamps and floating plants?—the water-hen and landrail are members of this order, yet the first is nearly as aquatic as the coot, and the second nearly as terrestrial as the quail or partridge. In such cases, and many others could be given, habits have changed without a corresponding change of structure. The webbed feet of the upland goose may be said to have become almost rudimentary in function, though not in structure. In the frigate-bird, the deeply scooped membrane between the toes shows that structure has begun to change.

He who believes in separate and innumerable acts of creation may say, that in these cases it has pleased the Creator to cause a being of one type to take the place of one belonging to another type; but this seems to me only re-stating the fact in dignified language. He who believes in the struggle for existence and in the principle of natural selection, will acknowledge that every organic being is constantly endeavouring to increase in numbers; and that if any one being varies ever so little, either in habits or structure, and thus gains an advantage over some other inhabitant of the same country, it will seize on the place of that inhabitant, however different that may be from its own place. Hence it will cause him no surprise that there should be geese and frigate-birds with webbed feet, living on the dry land and rarely alighting on the water; that there should be long-toed corncrakes, living in meadows instead of in swamps; that there should be woodpeckers where hardly a tree grows; that there should be diving thrushes and diving Hymenoptera, and petrels with the habits of auks.

Organs of extreme Perfection and Complication.

To suppose that the eye with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I freely confess, absurd in the highest degree. When it was first said that the sun stood still and the world turned round, the common sense of mankind declared the doctrine false; but the old saying of *Vox populi, vox Dei*, as every philosopher knows, cannot be trusted in science. Reason tells me, that if numerous gradations from a simple and imperfect eye to one complex and perfect can be shown to exist, each grade being useful to its possessor, as is certainly the case; if further, the eye ever varies and the variations be inherited, as is likewise certainly the case; and if such variations should be useful to any animal under changing conditions of life, then the difficulty of believing that a perfect and complex eye
could be formed by natural selection, though insuperable by our imagination, should not be considered as subversive of the theory. How a nerve comes to be sensitive to light, hardly concerns us more than how life itself originated; but I may remark that, as some of the lowest organisms, in which nerves cannot be detected, are capable of perceiving light, it does not seem impossible that certain sensitive elements in their sarcode should become aggregated and developed into nerves, endowed with this special sensibility.

In searching for the gradations through which an organ in any species has been perfected, we ought to look exclusively to its lineal progenitors; but this is scarcely ever possible, and we are forced to look to other species and genera of the same group, that is to the collateral descendants from the same parent-form, in order to see what gradations are possible, and for the chance of some gradations having been transmitted in an unaltered or little altered condition. But the state of the same organ in distinct classes may incidentally throw light on the steps by which it has been perfected.

The simplest organ which can be called an eye consists of an optic nerve, surrounded by pigment-cells and covered by translucent skin, but without any lens or other refractive body. We may, however, according to M. Jourdain, descend even a step lower and find aggregates of pigment-cells, apparently serving as organs of vision, without any nerves, and resting merely on sarcode tissue. Eyes of the above simple nature are not capable of distinct vision, and serve only to distinguish light from darkness. In certain starfishes, small depressions in the layer of pigment which surrounds the nerve are filled, as described by the author just quoted, with transparent gelatinous matter, projecting with a convex surface, like the cornea in the higher animals. He suggests that this serves not to form an image, but only to concentrate the luminous rays and render their perception more easy. In this concentration of the rays we gain the first and by far the most important step towards the formation of a true, picture-forming eye; for we have only to place the naked extremity of the optic nerve, which in some of the lower animals lies deeply buried in the body, and in some near the surface, at the right distance from the concentrating apparatus, and an image will be formed on it.

In the great class of the Articulata, we may start from an optic nerve simply coated with pigment, the latter sometimes forming a sort of pupil, but destitute of a lens or other optical contrivance. With insects it is now known that the numerous facets on the cornea of their great compound eyes form true lenses, and that the cones include curiously modified nervous filaments. But these
organs in the Articulata are so much diversified that Müller formerly made three main classes with seven subdivisions, besides a fourth main class of aggregated simple eyes.

When we reflect on these facts, here given much too briefly, with respect to the wide, diversified, and graduated range of structure in the eyes of the lower animals; and when we bear in mind how small the number of all living forms must be in comparison with those which have become extinct, the difficulty ceases to be very great in believing that natural selection may have converted the simple apparatus of an optic nerve, coated with pigment and invested by transparent membrane, into an optical instrument as perfect as is possessed by any member of the Articulate Class.

He who will go thus far, ought not to hesitate to go one step further, if he finds on finishing this volume that large bodies of facts, otherwise inexplicable, can be explained by the theory of modification through natural selection; he ought to admit that a structure even as perfect as an eagle's eye might thus be formed, although in this case he does not know the transitional states. It has been objected that in order to modify the eye and still preserve it as a perfect instrument, many changes would have to be effected simultaneously, which, it is assumed, could not be done through natural selection; but as I have attempted to show in my work on the variation of domestic animals, it is not necessary to suppose that the modifications were all simultaneous, if they were extremely slight and gradual. Different kinds of modification would, also, serve for the same general purpose: as Mr. Wallace has remarked, "if a lens has too short or too long a focus, it may be amended either by an alteration of curvature, or an alteration of density; if the curvature be irregular, and the rays do not converge to a point, then any increased regularity of curvature will be an improvement. So the contraction of the iris and the muscular movements of the eye are neither of them essential to vision, but only improvements which might have been added and perfected at any stage of the construction of the instrument." Within the highest division of the animal kingdom, namely, the Vertebrata, we can start from an eye so simple, that it consists, as in the lancelet, of a little sack of transparent skin, furnished with a nerve and lined with pigment, but destitute of any other apparatus. In fishes and reptiles, as Owen has remarked, "the range of gradations of dioptric structures is very great." It is a significant fact that even in man, according to the high authority of Virchow, the beautiful crystalline lens is formed in the embryo by an accumulation of epidermic cells, lying in a sack-like fold of the skin; and the vitreous body is formed
from embryonic sub-cutaneous tissue. To arrive, however, at a just conclusion regarding the formation of the eye, with all its marvellous yet not absolutely perfect characters, it is indispensable that the reason should conquer the imagination; but I have felt the difficulty far too keenly to be surprised at others hesitating to extend the principle of natural selection to so startling a length.

It is scarcely possible to avoid comparing the eye with a telescope. We know that this instrument has been perfected by the long-continued efforts of the highest human intellects; and we naturally infer that the eye has been formed by a somewhat analogous process. But may not this inference be presumptuous? Have we any right to assume that the Creator works by intellectual powers like those of man? If we must compare the eye to an optical instrument, we ought in imagination to take a thick layer of transparent tissue, with spaces filled with fluid, and with a nerve sensitive to light beneath, and then suppose every part of this layer to be continually changing slowly in density, so as to separate into layers of different densities and thicknesses, placed at different distances from each other, and with the surfaces of each layer slowly changing in form. Further we must suppose that there is a power, represented by natural selection or the survival of the fittest, always intently watching each slight alteration in the transparent layers; and carefully preserving each which, under varied circumstances, in any way or in any degree, tends to produce a distincter image. We must suppose each new state of the instrument to be multiplied by the million; each to be preserved until a better one is produced, and then the old ones to be all destroyed. In living bodies, variation will cause the slight alterations, generation will multiply them almost infinitely, and natural selection will pick out with unerring skill each improvement. Let this process go on for millions of years; and during each year on millions of individuals of many kinds; and may we not believe that a living optical instrument might thus be formed as superior to one of glass, as the works of the Creator are to those of man?

Modes of Transition.

If it could be demonstrated that any complex organ existed, which could not possibly have been formed by numerous, successive, slight modifications, my theory would absolutely break down. But I can find out no such case. No doubt many organs exist of which we do not know the transitional grades, more especially if we look to much-isolated species, round which, according to the theory, there has been much extinction. Or again, if we take
an organ common to all the members of a class, for in this latter case the organ must have been originally formed at a remote period, since which all the many members of the class have been developed; and in order to discover the early transitional grades through which the organ has passed, we should have to look to very ancient ancestral forms, long since become extinct.

We should be extremely cautious in concluding that an organ could not have been formed by transitional gradations of some kind. Numerous cases could be given amongst the lower animals of the same organ performing at the same time wholly distinct functions; thus in the larva of the dragon-fly and in the fish Cobites the alimentary canal respires, digests, and excretes. In the Hydra, the animal may be turned inside out, and the exterior surface will then digest and the stomach respire. In such cases natural selection might specialise, if any advantage were thus gained, the whole or part of an organ, which had previously performed two functions, for one function alone, and thus by insensible steps greatly change its nature. Many plants are known which regularly produce at the same time differently constructed flowers; and if such plants were to produce one kind alone, a great change would be effected with comparative suddenness in the character of the species. It is, however, probable that the two sorts of flowers borne by the same plant were originally differentiated by finely graduated steps, which may still be followed in some few cases.

Again, two distinct organs, or the same organ under two very different forms, may simultaneously perform in the same individual the same function, and this is an extremely important means of transition: to give one instance,—there are fish with gills or branchiae that breathe the air dissolved in the water, at the same time that they breathe free air in their swimbladders, this latter organ being divided by highly vascular partitions, and having a ductus pneumaticus for the supply of air. To give another instance from the vegetable kingdom: plants climb by three distinct means, by spirally twining, by clasping a support with their sensitive tendrils, and by the emission of aerial rootlets; these three means are usually found in distinct groups, but some few species exhibit two of the means, or even all three, combined in the same individual. In all such cases one of the two organs might readily be modified and perfected so as to perform all the work, being aided during the progress of modification by the other organ; and then this other organ might be modified for some other and quite distinct purpose, or be wholly obliterated.

The illustration of the swimbladder in fishes is a good one.
because it shows us clearly the highly important fact that an organ originally constructed for one purpose, namely, flotation, may be converted into one for a widely different purpose, namely, respiration. The swimbladder has, also, been worked in as an accessory to the auditory organs of certain fishes. All physiologists admit that the swimbladder is homologous, or "ideally similar" in position and structure with the lungs of the higher vertebrate animals; hence there is no reason to doubt that the swimbladder has actually been converted into lungs, or an organ used exclusively for respiration.

According to this view it may be inferred that all vertebrate animals with true lungs are descended by ordinary generation from an ancient and unknown prototype, which was furnished with a floating apparatus or swimbladder. We can thus, as I infer from Owen's interesting description of these parts, understand the strange fact that every particle of food and drink which we swallow has to pass over the orifice of the trachea, with some risk of falling into the lungs, notwithstanding the beautiful contrivance by which the glottis is closed. In the higher Vertebrata the branchiae have wholly disappeared—but in the embryo the slits on the sides of the neck and the loop-like course of the arteries still mark their former position. But it is conceivable that the now utterly lost branchiae might have been gradually worked in by natural selection for some distinct purpose: for instance, Landois has shown that the wings of insects are developed from the tracheae; it is therefore highly probable that in this great class organs which once served for respiration have been actually converted into organs for flight.

In considering transitions of organs, it is so important to bear in mind the probability of conversion from one function to another, that I will give another instance. Pedunculated cirripedes have two minute folds of skin, called by me the ovigerous frena, which serve, through the means of a sticky secretion, to retain the eggs until they are hatched within the sack. These cirripedes have no branchiae, the whole surface of the body and of the sack, together with the small frena, serving for respiration. The Balanidae or sessile cirripedes, on the other hand, have no ovigerous frena, the eggs lying loose at the bottom of the sack, within the well-enclosed shell; but they have, in the same relative position with the frena, large, much-folded membranes, which freely communicate with the circulatory lacunæ of the sack and body, and which have been considered by all naturalists to act as branchiae. Now I think no one will dispute that the ovigerous frena in the one family are strictly homologous with the branchiae of the other family; indeed,
they graduate into each other. Therefore it need not be doubted that the two little folds of skin, which originally served as ovigerous frena, but which, likewise, very slightly aided in the act of respiration, have been gradually converted by natural selection into branchiae, simply through an increase in their size and the obliteration of their adhesive glands. If all pedunculated cirripedes had become extinct, and they have suffered far more extinction than have sessile cirripedes, who would ever have imagined that the branchiae in this latter family had originally existed as organs for preventing the ova from being washed out of the sack?

There is another possible mode of transition, namely, through the acceleration or retardation of the period of reproduction. This has lately been insisted on by Prof. Cope and others in the United States. It is now known that some animals are capable of reproduction at a very early age, before they have acquired their perfect characters; and if this power became thoroughly well developed in a species, it seems probable that the adult stage of development would sooner or later be lost; and in this case, especially if the larva differed much from the mature form, the character of the species would be greatly changed and degraded. Again, not a few animals, after arriving at maturity, go on changing in character during nearly their whole lives. With mammals, for instance, the form of the skull is often much altered with age, of which Dr. Murie has given some striking instances with seals; every one knows how the horns of stags become more and more branched, and the plumes of some birds become more finely developed, as they grow older. Prof. Cope states that the teeth of certain lizards change much in shape with advancing years; with crustaceans not only many trivial, but some important parts assume a new character, as recorded by Fritz Müller, after maturity. In all such cases,—and many could be given,—if the age for reproduction were retarded, the character of the species, at least in its adult state, would be modified; nor is it improbable that the previous and earlier stages of development would in some cases be hurried through and finally lost. Whether species have often or ever been modified through this comparatively sudden mode of transition, I can form no opinion; but if this has occurred, it is probable that the differences between the young and the mature, and between the mature and the old, were primordially acquired by graduated steps.
Difficulties of the Theory

Special Difficulties of the Theory of Natural Selection.

Although we must be extremely cautious in concluding that any organ could not have been produced by successive, small, transitional gradations, yet undoubtedly serious cases of difficulty occur.

One of the most serious is that of neuter insects, which are often differently constructed from either the males or fertile females; but this case will be treated of in the next chapter. The electric organs of fishes offer another case of special difficulty; for it is impossible to conceive by what steps these wondrous organs have been produced. But this is not surprising, for we do not even know of what use they are. In the Gymnotus and Torpedo they no doubt serve as powerful means of defence, and perhaps for securing prey; yet in the Ray, as observed by Matteucci, an analogous organ in the tail manifests but little electricity, even when the animal is greatly irritated; so little, that it can hardly be of any use for the above purposes. Moreover, in the Ray, besides the organ just referred to, there is, as Dr. R. M'Donnell has shown, another organ near the head, not known to be electrical, but which appears to be the real homologue of the electric battery in the Torpedo. It is generally admitted that there exists between these organs and ordinary muscle a close analogy, in intimate structure, in the distribution of the nerves, and in the manner in which they are acted on by various reagents. It should, also, be especially observed that muscular contraction is accompanied by an electrical discharge; and, as Dr. Radcliffe insists, "in the electrical apparatus of the torpedo during rest, there would seem to be a charge in every respect like that which is met with in muscle and nerve during rest, and the discharge of the torpedo, instead of being peculiar, may be only another form of the discharge which attends upon the action of muscle and motor nerve." Beyond this we cannot at present go in the way of explanation; but as we know so little about the uses of these organs, and as we know nothing about the habits and structure of the progenitors of the existing electric fishes, it would be extremely bold to maintain that no serviceable transitions are possible by which these organs might have been gradually developed.

These organs appear at first to offer another and far more serious difficulty; for they occur in about a dozen kinds of fish, of which several are widely remote in their affinities. When the same organ is found in several members of the same class, especially if in members having very different habits of life, we may generally attribute its presence to inheritance from a common ancestor; and
its absence in some of the members to loss through disuse or natural selection. So that, if the electric organs had been inherited from some one ancient progenitor, we might have expected that all electric fishes would have been specially related to each other; but this is far from the case. Nor does geology at all lead to the belief that most fishes formerly possessed electric organs, which their modified descendants have now lost. But when we look at the subject more closely, we find in the several fishes provided with electric organs, that these are situated in different parts of the body,—that they differ in construction, as in the arrangement of the plates, and, according to Pacini, in the process or means by which the electricity is excited—and lastly, in being supplied with nerves proceeding from different sources, and this is perhaps the most important of all the differences. Hence in the several fishes furnished with electric organs, these cannot be considered as homologous, but only as analogous in function. Consequently there is no reason to suppose that they have been inherited from a common progenitor; for had this been the case they would have closely resembled each other in all respects. Thus the difficulty of an organ, apparently the same, arising in several remotely allied species, disappears, leaving only the lesser yet still great difficulty; namely, by what graduated steps these organs have been developed in each separate group of fishes.

The luminous organs which occur in a few insects, belonging to widely different families, and which are situated in different parts of the body, offer, under our present state of ignorance, a difficulty almost exactly parallel with that of the electric organs. Other similar cases could be given; for instance in plants, the very curious contrivance of a mass of pollen-grains, borne on a foot-stalk with an adhesive gland, is apparently the same in Orchis and Asclepias,—genera almost as remote as is possible amongst flowering plants; but here again the parts are not homologous. In all cases of beings, far removed from each other in the scale of organisation, which are furnished with similar and peculiar organs, it will be found that although the general appearance and function of the organs may be the same, yet fundamental differences between them can always be detected. For instance, the eyes of cephalopods or cuttle-fish and of vertebrate animals appear wonderfully alike; and in such widely sundered groups no part of this resemblance can be due to inheritance from a common progenitor. Mr. Mivart has advanced this case as one of special difficulty, but I am unable to see the force of his argument. An organ for vision must be formed of transparent tissue, and must include some sort of lens for
throwing an image at the back of a darkened chamber. Beyond this superficial resemblance, there is hardly any real similarity between the eyes of cuttle-fish and vertebrates, as may be seen by consulting Hensen's admirable memoir on these organs in the Cephalopoda. It is impossible for me here to enter on details, but I may specify a few of the points of difference. The crystalline lens in the higher cuttle-fish consists of two parts, placed one behind the other like two lenses, both having a very different structure and disposition to what occurs in the vertebrata. The retina is wholly different, with an actual inversion of the elemental parts, and with a large nervous ganglion included within the membranes of the eye. The relations of the muscles are as different as it is possible to conceive, and so in other points. Hence it is not a little difficult to decide how far even the same terms ought to be employed in describing the eyes of the Cephalopoda and Vertebrata. It is, of course, open to any one to deny that the eye in either case could have been developed through the natural selection of successive, slight variations; but if this be admitted in the one case, it is clearly possible in the other; and fundamental differences of structure in the visual organs of two groups might have been anticipated, in accordance with this view of their manner of formation. As two men have sometimes independently hit on the same invention, so in the several foregoing cases it appears that natural selection, working for the good of each being, and taking advantage of all favourable variations, has produced similar organs, as far as function is concerned, in distinct organic beings, which owe none of their structure in common to inheritance from a common progenitor.

Fritz Müller, in order to test the conclusions arrived at in this volume, has followed out with much care a nearly similar line of argument. Several families of crustaceans include a few species, possessing an air-breathing apparatus and fitted to live out of the water. In two of these families, which were more especially examined by Müller, and which are nearly related to each other, the species agree most closely in all important characters; namely in their sense-organs, circulating system, in the position of the tufts of hair within their complex stomachs, and lastly in the whole structure of the water-breathing branchiae, even to the microscopical hooks by which they are cleansed. Hence it might have been expected that in the few species belonging to both families which live on the land, the equally-important air-breathing apparatus would have been the same; for why should this one apparatus, given for the same purpose, have been made to differ,
whilst all the other important organs were closely similar or rather identical.

Fritz Müller argues that this close similarity in so many points of structure must, in accordance with the views advanced by me, be accounted for by inheritance from a common progenitor. But as the vast majority of the species in the above two families, as well as most other crustaceans, are aquatic in their habits, it is improbable in the highest degree, that their common progenitor should have been adapted for breathing air. Müller was thus led carefully to examine the apparatus in the air-breathing species; and he found it to differ in each in several important points, as in the position of the orifices, in the manner in which they are opened and closed, and in some accessory details. Now such differences are intelligible, and might even have been expected, on the supposition that species belonging to distinct families had slowly become adapted to live more and more out of water, and to breathe the air. For these species, from belonging to distinct families, would have differed to a certain extent, and in accordance with the principle that the nature of each variation depends on two factors, viz. the nature of the organism and that of the surrounding conditions, their variability assuredly would not have been exactly the same. Consequently natural selection would have had different materials or variations to work on, in order to arrive at the same functional result; and the structures thus acquired would almost necessarily have differed. On the hypothesis of separate acts of creation the whole case remains unintelligible. This line of argument seems to have had great weight in leading Fritz Müller to accept the views maintained by me in this volume.

Another distinguished zoologist, the late Professor Claparède, has argued in the same manner, and has arrived at the same result. He shows that there are parasitic mites (Acaridae), belonging to distinct sub-families and families, which are furnished with hair-claspers. These organs must have been independently developed, as they could not have been inherited from a common progenitor; and in the several groups they are formed by the modification of the fore-legs,—of the hind-legs,—of the maxillae or lips,—and of appendages on the under side of the hind part of the body.

In the foregoing cases, we see the same end gained and the same function performed, in beings not at all or only remotely allied, by organs in appearance, though not in development, closely similar. On the other hand, it is a common rule throughout nature that the same end should be gained, even sometimes in the case of closely-related beings, by the most diversified means. How differently
constructed is the feathered wing of a bird and the membrane-covered wing of a bat; and still more so the four wings of a butterfly, the two wings of a fly, and the two wings with the elytra of a beetle. Bivalve shells are made to open and shut, but on what a number of patterns is the hinge constructed,—from the long row of neatly interlocking teeth in a Nucula to the simple ligament of a Mussel! Seeds are disseminated by their minuteness,—by their capsule being converted into a light balloon-like envelope,—by being embedded in pulp or flesh, formed of the most diverse parts, and rendered nutritious, as well as conspicuously coloured, so as to attract and be devoured by birds,—by having hooks and grapples of many kinds and serrated awns, so as to adhere to the fur of quadrupeds,—and by being furnished with wings and plumes, as different in shape as they are elegant in structure, so as to be wafted by every breeze. I will give one other instance; for this subject of the same end being gained by the most diversified means well deserves attention. Some authors maintain that organic beings have been formed in many ways for the sake of mere variety, almost like toys in a shop, but such a view of nature is incredible. With plants having separated sexes, and with those in which, though hermaphrodites, the pollen does not spontaneously fall on the stigma, some aid is necessary for their fertilisation. With several kinds this is effected by the pollen-grains, which are light and incoherent, being blown by the wind through mere chance on to the stigma; and this is the simplest plan which can well be conceived. An almost equally simple, though very different, plan occurs in many plants in which a symmetrical flower secretes a few drops of nectar, and is consequently visited by insects; and these carry the pollen from the anthers to the stigma.

From this simple stage we may pass through an inexhaustible number of contrivances, all for the same purpose and effected in essentially the same manner, but entailing changes in every part of the flower. The nectar may be stored in variously shaped receptacles, with the stamens and pistils modified in many ways, sometimes forming trap-like contrivances, and sometimes capable of neatly adapted movements through irritability or elasticity. From such structures we may advance till we come to such a case of extraordinary adaptation as that lately described by Dr. Grüger in the Coryanthes. This orchid has part of its labellum or lower lip hollowed out into a great bucket, into which drops of almost pure water continually fall from two secreting horns which stand above it; and when the bucket is half full, the water overflows by a spout on one side. The basal part of the labellum stands over the bucket, and is itself hollowed out into a sort of chamber with two
lateral entrances; within this chamber there are curious fleshy ridges. The most ingenious man, if he had not witnessed what takes place, could never have imagined what purpose all these parts serve. But Dr. Crüger saw crowds of large humble-bees visiting the gigantic flowers of this orchid, not in order to suck nectar, but to gnaw off the ridges within the chamber above the bucket; in doing this they frequently pushed each other into the bucket, and their wings being thus wetted they could not fly away, but were compelled to crawl out through the passage formed by the spout or overflow. Dr. Crüger saw a “continual procession” of bees thus crawling out of their involuntary bath. The passage is narrow, and is roofed over by the column, so that a bee, in forcing its way out, first rubs its back against the viscid stigma and then against the viscid glands of the pollen-masses. The pollen-masses are thus glued to the back of the bee which first happens to crawl out through the passage of a lately expanded flower, and are thus carried away. Dr. Crüger sent me a flower in spirits of wine, with a bee which he had killed before it had quite crawled out with a pollen-mass still fastened to its back. When the bee, thus provided, flies to another flower, or to the same flower a second time, and is pushed by its comrades into the bucket and then crawls out by the passage, the pollen-mass necessarily comes first into contact with the viscid stigma, and adheres to it, and the flower is fertilised. Now at last we see the full use of every part of the flower, of the water-secreting horns, of the bucket half full of water, which prevents the bees from flying away, and forces them to crawl out through the spout, and rub against the properly placed viscid pollen-masses and the viscid stigma.

The construction of the flower in another closely allied orchid, namely the Catasetum, is widely different, though serving the same end; and is equally curious. Bees visit these flowers, like those of the Coryanthes, in order to gnaw the labellum; in doing this they inevitably touch a long, tapering, sensitive projection, or, as I have called it, the antenna. This antenna, when touched, transmits a sensation or vibration to a certain membrane which is instantly ruptured; this sets free a spring by which the pollen-mass is shot forth, like an arrow, in the right direction, and adheres by its viscid extremity to the back of the bee. The pollen-mass of the male plant (for the sexes are separate in this orchid) is thus carried to the flower of the female plant, where it is brought into contact with the stigma, which is viscid enough to break certain elastic threads, and retaining the pollen, fertilisation is effected.

How, it may be asked, in the foregoing and in innumerable other
instances, can we understand the graduated scale of complexity and
the multifarious means for gaining the same end. The answer no
doubt is, as already remarked, that when two forms vary, which
already differ from each other in some slight degree, the variability
will not be of the same exact nature, and consequently the results
obtained through natural selection for the same general purpose will
not be the same. We should also bear in mind that every highly
developed organism has passed through many changes; and that
each modified structure tends to be inherited, so that each modifi-
cation will not readily be quite lost, but may be again and again
further altered. Hence the structure of each part of each species,
for whatever purpose it may serve, is the sum of many inherited
changes, through which the species has passed during its successive
adaptations to changed habits and conditions of life.

Finally then, although in many cases it is most difficult even to
conjecture by what transitions organs have arrived at their present
state; yet, considering how small the proportion of living and known
forms is to the extinct and unknown, I have been astonished how
rarely an organ can be named, towards which no transitional grade
is known to lead. It certainly is true, that new organs appearing
as if created for some special purpose, rarely or never appear in any
being;—as indeed is shown by that old, but somewhat exaggerated,
canon in natural history of "Natura non facit saltum." We meet
with this admission in the writings of almost every experienced
naturalist; or as Milne Edwards has well expressed it, Nature is
prodigal in variety, but niggard in innovation. Why, on the
theory of Creation, should there be so much variety and so little
real novelty? Why should all the parts and organs of many
independent beings, each supposed to have been separately created
for its proper place in nature, be so commonly linked together by
graduated steps? Why should not Nature take a sudden leap
from structure to structure? On the theory of natural selection,
we can clearly understand why she should not; for natural
selection acts only by taking advantage of slight successive vari-
ations; she can never take a great and sudden leap, but must
advance by short and sure, though slow steps.

Organs of little apparent Importance, as affected by Natural
Selection.

As natural selection acts by life and death,—by the survival of
the fittest, and by the destruction of the less well-fitted indi-
viduals,—I have sometimes felt great difficulty in understanding
the origin or formation of parts of little importance; almost as
great, though of a very different kind, as in the case of the most perfect and complex organs.

In the first place, we are much too ignorant in regard to the whole economy of any one organic being, to say what slight modifications would be of importance or not. In a former chapter I have given instances of very trifling characters, such as the down on fruit and the colour of its flesh, the colour of the skin and hair of quadrupeds, which, from being correlated with constitutional differences or from determining the attacks of insects, might assuredly be acted on by natural selection. The tail of the giraffe looks like an artificially constructed fly-flapper; and it seems at first incredible that this could have been adapted for its present purpose by successive slight modifications, each better and better fitted, for so trifling an object as to drive away flies; yet we should pause before being too positive even in this case, for we know that the distribution and existence of cattle and other animals in South America absolutely depend on their power of resisting the attacks of insects: so that individuals which could by any means defend themselves from these small enemies, would be able to range into new pastures and thus gain a great advantage. It is not that the larger quadrupeds are actually destroyed (except in some rare cases) by flies, but they are incessantly harassed and their strength reduced, so that they are more subject to disease, or not so well enabled in a coming dearth to search for food, or to escape from beasts of prey.

Organs now of trifling importance have probably in some cases been of high importance to an early progenitor, and, after having been slowly perfected at a former period, have been transmitted to existing species in nearly the same state, although now of very slight use; but any actually injurious deviations in their structure would of course have been checked by natural selection. Seeing how important an organ of locomotion the tail is in most aquatic animals, its general presence and use for many purposes in so many land animals, which in their lungs or modified swimbladders betray their aquatic origin, may perhaps be thus accounted for. A well-developed tail having been formed in an aquatic animal, it might subsequently come to be worked in for all sorts of purposes,—as a fly-flapper, an organ of prehension, or as an aid in turning, as in the case of the dog, though the aid in this latter respect must be slight, for the hare, with hardly any tail, can double still more quickly.

In the second place, we may easily err in attributing importance to characters, and in believing that they have been developed
through natural selection. We must by no means overlook the effects of the definite action of changed conditions of life,—of so-called spontaneous variations, which seem to depend in a quite subordinate degree on the nature of the conditions,—of the tendency to reversion to long-lost characters,—of the complex laws of growth, such as of correlation, compensation, of the pressure of one part on another, &c.,—and finally of sexual selection, by which characters of use to one sex are often gained and then transmitted more or less perfectly to the other sex, though of no use to this sex. But structures thus indirectly gained, although at first of no advantage to a species, may subsequently have been taken advantage of by its modified descendants, under new conditions of life and newly acquired habits.

If green woodpeckers alone had existed, and we did not know that there were many black and pied kinds, I dare say that we should have thought that the green colour was a beautiful adaptation to conceal this tree-frequenting bird from its enemies; and consequently that it was a character of importance, and had been acquired through natural selection; as it is, the colour is probably in chief part due to sexual selection. A trailing palm in the Malay Archipelago climbs the loftiest trees by the aid of exquisitely constructed hooks clustered around the ends of the branches, and this contrivance, no doubt, is of the highest service to the plant; but as we see nearly similar hooks on many trees which are not climbers, and which, as there is reason to believe from the distribution of the thorn-bearing species in Africa and South America, serve as a defence against browsing quadrupeds, so the spikes on the palm may at first have been developed for this object, and subsequently have been improved and taken advantage of by the plant, as it underwent further modification and became a climber. The naked skin on the head of a vulture is generally considered as a direct adaptation for wallowing in putridity; and so it may be, or it may possibly be due to the direct action of putrid matter; but we should be very cautious in drawing any such inference, when we see that the skin on the head of the clean-feeding male Turkey is likewise naked. The sutures in the skulls of young mammals have been advanced as a beautiful adaptation for aiding parturition, and no doubt they facilitate, or may be indispensable for this act; but as sutures occur in the skulls of young birds and reptiles, which have only to escape from a broken egg, we may infer that this structure has arisen from the laws of growth, and has been taken advantage of in the parturition of the higher animals.

We are profoundly ignorant of the cause of each slight variation.
affected by Natural Selection.

or individual difference; and we are immediately made conscious of this by reflecting on the differences between the breeds of our domesticated animals in different countries,—more especially in the less civilised countries where there has been but little methodical selection. Animals kept by savages in different countries often have to struggle for their own subsistence, and are exposed to a certain extent to natural selection, and individuals with slightly different constitutions would succeed best under different climates. With cattle susceptibility to the attacks of flies is correlated with colour, as is the liability to be poisoned by certain plants; so that even colour would be thus subjected to the action of natural selection. Some observers are convinced that a damp climate affects the growth of the hair, and that with the hair the horns are correlated. Mountain breeds always differ from lowland breeds; and a mountainous country would probably affect the hind limbs from exercising them more, and possibly even the form of the pelvis; and then by the law of homologous variation, the front limbs and the head would probably be affected. The shape, also, of the pelvis might affect by pressure the shape of certain parts of the young in the womb. The laborious breathing necessary in high regions tends, as we have good reason to believe, to increase the size of the chest; and again correlation would come into play. The effects of lessened exercise together with abundant food on the whole organisation is probably still more important; and this, as H. von Nathusius has lately shown in his excellent Treatise, is apparently one chief cause of the great modification which the breeds of swine have undergone. But we are far too ignorant to speculate on the relative importance of the several known and unknown causes of variation; and I have made these remarks only to show that, if we are unable to account for the characteristic differences of our several domestic breeds, which nevertheless are generally admitted to have arisen through ordinary generation from one or a few parent-stocks, we ought not to lay too much stress on our ignorance of the precise cause of the slight analogous differences between true species.

Utilitarian Doctrine, how far true: Beauty, how acquired.

The foregoing remarks lead me to say a few words on the protest lately made by some naturalists, against the utilitarian doctrine that every detail of structure has been produced for the good of its possessor. They believe that many structures have been created for the sake of beauty, to delight man or the Creator (but this latter point is beyond the scope of scientific discussion), or for the
sake of mere variety, a view already discussed. Such doctrines, if true, would be absolutely fatal to my theory. I fully admit that many structures are now of no direct use to their possessors, and may never have been of any use to their progenitors; but this does not prove that they were formed solely for beauty or variety. No doubt the definite action of changed conditions, and the various causes of modifications, lately specified, have all produced an effect, probably a great effect, independently of any advantage thus gained. But a still more important consideration is that the chief part of the organisation of every living creature is due to inheritance; and consequently, though each being assuredly is well fitted for its place in nature, many structures have now no very close and direct relation to present habits of life. Thus, we can hardly believe that the webbed feet of the upland goose or of the frigate-bird are of special use to these birds; we cannot believe that the similar bones in the arm of the monkey, in the fore-leg of the horse, in the wing of the bat, and in the flipper of the seal, are of special use to these animals. We may safely attribute these structures to inheritance. But webbed feet no doubt were as useful to the progenitor of the upland goose and of the frigate-bird, as they now are to the most aquatic of living birds. So we may believe that the progenitor of the seal did not possess a flipper, but a foot with five toes fitted for walking or grasping; and we may further venture to believe that the several bones in the limbs of the monkey, horse, and bat, were originally developed, on the principle of utility, probably through the reduction of more numerous bones in the fin of some ancient fish-like progenitor of the whole class. It is scarcely possible to decide how much allowance ought to be made for such causes of change, as the definite action of external conditions, so-called spontaneous variations, and the complex laws of growth; but with these important exceptions, we may conclude that the structure of every living creature either now is, or was formerly, of some direct or indirect use to its possessor.

With respect to the belief that organic beings have been created beautiful for the delight of man,—a belief which it has been pronounced is subversive of my whole theory,—I may first remark that the sense of beauty obviously depends on the nature of the mind, irrespective of any real quality in the admired object; and that the idea of what is beautiful, is not innate or unalterable. We see this, for instance, in the men of different races admiring an entirely different standard of beauty in their women. If beautiful objects had been created solely for man's gratification, it ought to
be shown that before man appeared, there was less beauty on the face of the earth than since he came on the stage. Were the beautiful volute and cone shells of the Eocene epoch, and the gracefully sculptured ammonites of the Secondary period, created that man might ages afterwards admire them in his cabinet? Few objects are more beautiful than the minute siliceous cases of the diatomææ: were these created that they might be examined and admired under the higher powers of the microscope? The beauty in this latter case, and in many others, is apparently wholly due to symmetry of growth. Flowers rank amongst the most beautiful productions of nature; but they have been rendered conspicuous in contrast with the green leaves, and in consequence at the same time beautiful, so that they may be easily observed by insects. I have come to this conclusion from finding it an invariable rule that when a flower is fertilised by the wind it never has a gaily-coloured corolla. Several plants habitually produce two kinds of flowers; one kind open and coloured so as to attract insects; the other closed, not coloured, destitute of nectar, and never visited by insects. Hence we may conclude that, if insects had not been developed on the face of the earth, our plants would not have been decked with beautiful flowers, but would have produced only such poor flowers as we see on our fir, oak, nut and ash trees, on grasses, spinach, docks, and nettles, which are all fertilised through the agency of the wind. A similar line of argument holds good with fruits; that a ripe strawberry or cherry is as pleasing to the eye as to the palate,—that the gaily-coloured fruit of the spindle-wood tree and the scarlet berries of the holly are beautiful objects,—will be admitted by every one. But this beauty serves merely as a guide to birds and beasts, in order that the fruit may be devoured and the manured seeds disseminated: I infer that this is the case from having as yet found no exception to the rule that seeds are always thus disseminated when embedded within a fruit of any kind (that is within a fleshy or pulpy envelope), if it be coloured of any brilliant tint, or rendered conspicuous by being white or black.

On the other hand, I willingly admit that a great number of male animals, as all our most gorgeous birds, some fishes, reptiles, and mammals, and a host of magnificently coloured butterflies, have been rendered beautiful for beauty’s sake; but this has been effected through sexual selection, that is, by the more beautiful males having been continually preferred by the females, and not for the delight of man. So it is with the music of birds. We may infer from all this that a nearly similar taste for beautiful colours and for musical sounds runs through a large part of the animal
kingdom. When the female is as beautifully coloured as the male, which is not rarely the case with birds and butterflies, the cause apparently lies in the colours acquired through sexual selection having been transmitted to both sexes, instead of to the males alone. How the sense of beauty in its simplest form—that is, the reception of a peculiar kind of pleasure from certain colours, forms, and sounds—was first developed in the mind of man and of the lower animals, is a very obscure subject. The same sort of difficulty is presented, if we enquire how it is that certain flavours and odours give pleasure, and others displeasure. Habit in all these cases appears to have come to a certain extent into play; but there must be some fundamental cause in the constitution of the nervous system in each species.

Natural selection cannot possibly produce any modification in a species exclusively for the good of another species; though throughout nature one species incessantly takes advantage of, and profits by, the structures of others. But natural selection can and does often produce structures for the direct injury of other animals, as we see in the fang of the adder, and in the ovipositor of the ichneumon, by which its eggs are deposited in the living bodies of other insects. If it could be proved that any part of the structure of any one species had been formed for the exclusive good of another species, it would annihilate my theory, for such could not have been produced through natural selection. Although many statements may be found in works on natural history to this effect, I cannot find even one which seems to me of any weight. It is admitted that the rattlesnake has a poison-fang for its own defence, and for the destruction of its prey; but some authors suppose that at the same time it is furnished with a rattle for its own injury, namely, to warn its prey. I would almost as soon believe that the cat curls the end of its tail when preparing to spring, in order to warn the doomed mouse. It is a much more probable view that the rattlesnake uses its rattle, the cobra expands its frill, and the puff-adder swells whilst hissing so loudly and harshly, in order to alarm the many birds and beasts which are known to attack even the most venomous species. Snakes act on the same principle which makes the hen ruffle her feathers and expand her wings when a dog approaches her chickens; but I have not space here to enlarge on the many ways by which animals endeavour to frighten away their enemies.

Natural selection will never produce in a being any structure more injurious than beneficial to that being, for natural selection
acts solely by and for the good of each. No organ will be formed, as Paley has remarked, for the purpose of causing pain or for doing an injury to its possessor. If a fair balance be struck between the good and evil caused by each part, each will be found on the whole advantageous. After the lapse of time, under changing conditions of life, if any part comes to be injurious, it will be modified; or if it be not so, the being will become extinct as myriads have become extinct.

Natural selection tends only to make each organic being as perfect as, or slightly more perfect than, the other inhabitants of the same country with which it comes into competition. And we see that this is the standard of perfection attained under nature. The endemic productions of New Zealand, for instance, are perfect one compared with another; but they are now rapidly yielding before the advancing legions of plants and animals introduced from Europe. Natural selection will not produce absolute perfection, nor do we always meet, as far as we can judge, with this high standard under nature. The correction for the aberration of light is said by Müller not to be perfect even in that most perfect organ, the human eye. Helmholtz, whose judgment no one will dispute, after describing in the strongest terms the wonderful powers of the human eye, adds these remarkable words: "That which we have discovered in the way of inexactness and imperfection in the optical machine and in the image on the retina, is as nothing in comparison with the incongruities which we have just come across in the domain of the sensations. One might say that nature has taken delight in accumulating contradictions in order to remove all foundation from the theory of a pre-existing harmony between the external and internal worlds." If our reason leads us to admire with enthusiasm a multitude of inimitable contrivances in nature, this same reason tells us, though we may easily err on both sides, that some other contrivances are less perfect. Can we consider the sting of the bee as perfect, which, when used against many kinds of enemies, cannot be withdrawn, owing to the backward serratures, and thus inevitably causes the death of the insect by tearing out its viscera?

If we look at the sting of the bee, as having existed in a remote progenitor as a boring and serrated instrument, like that in so many members of the same great order, and that it has since been modified but not perfected for its present purpose, with the poison originally adapted for some other object, such as to produce galls, since intensified, we can perhaps understand how it is that the use of the sting should so often cause the insect's own death: for if on the whole the power of stinging be useful to the social community,
Summary.

it will fulfil all the requirements of natural selection, though it may cause the death of some few members. If we admire the truly wonderful power of scent by which the males of many insects find their females, can we admire the production for this single purpose of thousands of drones, which are utterly useless to the community for any other purpose, and which are ultimately slaughtered by their industrious and sterile sisters? It may be difficult, but we ought to admire the savage instinctive hatred of the queen-bee, which urges her to destroy the young queens, her daughters, as soon as they are born, or to perish herself in the combat; for undoubtedly this is for the good of the community; and maternal love or maternal hatred, though the latter fortunately is most rare, is all the same to the inexorable principle of natural selection. If we admire the several ingenious contrivances, by which orchids and many other plants are fertilised through insect agency, can we consider as equally perfect the elaboration of dense clouds of pollen by our fir-trees, so that a few granules may be wafted by chance on to the ovules?

Summary: the Law of Unity of Type and of the Conditions of Existence embraced by the Theory of Natural Selection.

We have in this chapter discussed some of the difficulties and objections which may be urged against the theory. Many of them are serious; but I think that in the discussion light has been thrown on several facts, which on the belief of independent acts of creation are utterly obscure. We have seen that species at any one period are not indefinitely variable, and are not linked together by a multitude of intermediate gradations, partly because the process of natural selection is always very slow, and at any one time acts only on a few forms; and partly because the very process of natural selection implies the continual supplanting and extinction of preceding and intermediate gradations. Closely allied species, now living on a continuous area, must often have been formed when the area was not continuous, and when the conditions of life did not insensibly graduate away from one part to another. When two varieties are formed in two districts of a continuous area, an intermediate variety will often be formed, fitted for an intermediate zone; but from reasons assigned, the intermediate variety will usually exist in lesser numbers than the two forms which it connects; consequently the two latter, during the course of further modification, from existing in greater numbers, will have a great advantage over the less numerous intermediate variety, and will thus generally succeed in supplanting and exterminating it.
We have seen in this chapter how cautious we should be in concluding that the most different habits of life could not graduate into each other; that a bat, for instance, could not have been formed by natural selection from an animal which at first only glided through the air.

We have seen that a species under new conditions of life may change its habits; or it may have diversified habits, with some very unlike those of its nearest congener. Hence we can understand, bearing in mind that each organic being is trying to live wherever it can live, how it has arisen that there are upland geese with webbed feet, ground woodpeckers, diving thrushes, and petrels with the habits of auks.

Although the belief that an organ so perfect as the eye could have been formed by natural selection, is enough to stagger any one; yet in the case of any organ, if we know of a long series of gradations in complexity, each good for its possessor, then, under changing conditions of life, there is no logical impossibility in the acquirement of any conceivable degree of perfection through natural selection. In the cases in which we know of no intermediate or transitional states, we should be extremely cautious in concluding that none can have existed, for the metamorphoses of many organs show what wonderful changes in function are at least possible. For instance, a swimbladder has apparently been converted into an air-breathing lung. The same organ having performed simultaneously very different functions, and then having been in part or in whole specialised for one function; and two distinct organs having performed at the same time the same function, the one having been perfected whilst aided by the other, must often have largely facilitated transitions.

We have seen that in two beings widely remote from each other in the natural scale, organs serving for the same purpose and in external appearance closely similar may have been separately and independently formed; but when such organs are closely examined, essential differences in their structure can almost always be detected; and this naturally follows from the principle of natural selection. On the other hand, the common rule throughout nature is infinite diversity of structure for gaining the same end; and this again naturally follows from the same great principle.

In many cases we are far too ignorant to be enabled to assert that a part or organ is so unimportant for the welfare of a species, that modifications in its structure could not have been slowly accumulated by means of natural selection. In many other cases, modifi-
cations are probably the direct result of the laws of variation or of growth, independently of any good having been thus gained. But even such structures have often, as we may feel assured, been subsequently taken advantage of, and still further modified, for the good of species under new conditions of life. We may, also, believe that a part formerly of high importance has frequently been retained (as the tail of an aquatic animal by its terrestrial descendants), though it has become of such small importance that it could not, in its present state, have been acquired by means of natural selection.

Natural selection can produce nothing in one species for the exclusive good or injury of another; though it may well produce parts, organs, and excretions highly useful or even indispensable, or again highly injurious to another species, but in all cases at the same time useful to the possessor. In each well-stocked country natural selection acts through the competition of the inhabitants, and consequently leads to success in the battle for life, only in accordance with the standard of that particular country. Hence the inhabitants of one country, generally the smaller one, often yield to the inhabitants of another and generally the larger country. For in the larger country there will have existed more individuals and more diversified forms, and the competition will have been severer, and thus the standard of perfection will have been rendered higher. Natural selection will not necessarily lead to absolute perfection; nor, as far as we can judge by our limited faculties, can absolute perfection be everywhere predicated.

On the theory of natural selection we can clearly understand the full meaning of that old canon in natural history, “Natura non facit saltum.” This canon, if we look to the present inhabitants alone of the world, is not strictly correct; but if we include all those of past times, whether known or unknown, it must on this theory be strictly true.

It is generally acknowledged that all organic beings have been formed on two great laws—Unity of Type, and the Conditions of Existence. By unity of type is meant that fundamental agreement in structure which we see in organic beings of the same class, and which is quite independent of their habits of life. On my theory, unity of type is explained by unity of descent. The expression of conditions of existence, so often insisted on by the illustrious Cuvier, is fully embraced by the principle of natural selection. For natural selection acts by either now adapting the varying parts of each being to its organic and inorganic conditions of life; or by
having adapted them during past periods of time: the adaptations
being aided in many cases by the increased use or disuse of parts,
being affected by the direct action of the external conditions of
life, and subjected in all cases to the several laws of growth and
variation. Hence, in fact, the law of the Conditions of Existence is
the higher law; as it includes, through the inheritance of former
variations and adaptations, that of Unity of Type.