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THE WIENER CRITERION OF REGULAR POINTS
FOR THE PARABOLIC OPERATOR OF ORDER «a

MASAHARU NISHIO

§1. Introduction

Let R**' = R® X R denote the (n + 1)-dimensional Euclidian space
(n>=1). For XeR"*! we write X = (x,t) with xe€ R"” and te R. For an
a with 0 < a <1, we write

a = 0
l(d)-—. _+. __A“ d Z(“)—.__ + _-A“’
at ( )" an ot ( )

where 4 is the Laplacian on R" and (— 4)* is the a-fractional power of
— 4 on R*.

The purpose of this paper is to establish the Wiener criterion of
regular points for L, where the division of the complement of a given
open set is naturally determined by the form of the elementary solution
W@ of L@

W — (@] exo(—tep +ix-0de t>0
0 t<o0,

where x-& denotes the inner product on R* and |&| = (§-§)"% Put ¢,(x|)
= W®(x,1). Then ¢, is decreasing on [0, c0), W(x, t) = ¢~ "**¢,(t~"**|x|)
and ¢,(r) is of order r"-** as r— co. Let X, = (x,, %) € R"**. For fixed
2>1, p > 1 and non-negative integers k, m, we write

Alc,m(XO) = {(xo +x, b — ) b S, T S t—malxi = rm+1} ,

where ¢, = 27 r, = p™"** for m>1and r, = 0. The Wiener criterion
of regular points for L is given by the following

THEOREM. Let 2 be an open set in R"*! and X, a boundary point of
Q. Then X, is regular for the Dirichlet problem of L on Q if and only
if the following condition (w) is satisfied:
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(W) 3 Ao~ cap® (A, (X)) N C2) = oo,

k,m=0
where cap®(-) denotes the a-parabolic capacity of (-).
From our theorem it follows immediately that a Poincaré type con-
dition given in [6] is sufficient for regular points.
Furthermore our theorem gives another characterization of regular
points; that is, a boundary point X, of 2 is regular if and only if

) 33 0 cap®(4u(X) N €2) = oo,

where p > 1 and A (X)) = {XeR""; o £ WX, — X) < p**'}. For the
heat equation, L.C. Evans and R.F. Gariepy obtained an analogous Wiener
criterion of regular points (see [4], p. 295).

Finally we emphasize that the condition (w) is more convenient than
w).

The author would like to thank Professor M. Ité for his encourage-
ment and helpful suggestions.

§2. W' -superharmonic functions and reduced functions

Put W“”(x, t) = W (x, — t). Then W@ is the elementary solution of
L@. For any s> 0, we define a positive measure P (resp. P) on
Rn+1 by

I fdP©® = Lw f(x, YW (x, 5)dx
(resp. f fdPw — jmf(x, §W®(a, s)dx)

for every fe Cx(R**Y), and we put P® = P{® = ¢ (the Dirac measure at
the origin). Here C.(R*) denotes the usual topological vector space of all
finite continuous functions on R* with compact support. Then JdPs("’ =1

for every s = 0 and (P{),., (resp. (13,5.“’)3;0) is the convolution semi-group
whose infinitesimal generator is — L@ (resp. — L®).

DerFINITION 2.1. A non-negative function z on R"*!'is said to be
W@.guperharmonic (resp. W @-superharmonic) if the following two con-
ditions are satisfied:

(1) u is lower semi-continuous and u < o a.e..

(2) For any s >0, u = P®@xu (resp. u= P®xu) on R**!.
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We denote by S, (resp. S,) the set of all W-superharmonic (resp.
W @-superharmonic) functions and by M, (resp. M,) the set of all positive
Borel measures 4 on R**' such that W@y < co a.e. (resp. W@y < oo a.e.),
where W@y = W@®xyu (resp. W“"y = W(“)*p). Evidently W@pe S, (resp.
W‘“’/x e 8, for every pe M, (vesp. pe M)

Since lim,_, P{” = ¢ (vaguely), we have the following

Remark 2.2. Let ueS,. Then for any (x, f) ¢ R**},

umﬁzhmlfH%M&Ms
r Jo

=0

:hmlfj w(x — y, t — )W (y, s)dyds .
0J R?

=0 T

PropositioN 2.3 ([6], Proposition 2.10). Let ueS, (resp. S,). Then
there exists uniquely determined (p, ¢)e M, X [0, o) (resp. M, % [0, o))
such that

u=W®u+c (resp. u = W“”y +0).

The measure g in the above proposition is called the associated

measure of u.

CoROLLARY 2.4. Let ue S, and let p be the associated measure of u.
If u< W@y for some ve M,, then u = W®pu.

Let ueS, (resp. ueS,). We say that u is a W@®-potential (resp.
W@-potential) if w = W@y (resp. u = W“”y), where p is the associated

measure of w.
For a finite continuous u €S, and a compact set K in R"*!, we put

RPu(Y) = inf{(Y); veS,, v=u on K}
and
RPuw(X) = liminf Q@ u(Y).
Y-X
Furthermore for any u e S, and any set A in R"*', we write

R u(X)
= sup {RPu(X); ve S,, v<u, v: finite continuous, K: compact C A}.

For the justification of the above definition, we need to remark that
for any u e S,, there exists (u,)5_, of finite continuous W®-superharmonic
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functions which converges increasingly to u with m 1 o (see [6], Lemma
2.4, (2)). We have RPue S, and call R{u the W®-reduced function of u
to A. Similarly we define the W®@-reduced function R®ue S, of u (ue §,)
to A.

ProposiTION 2.5. Let ue S, and let A be a set in B**'. Then we have:
1) If AC R" X (a, o0) with some a € R, then RPu is a W-potential.
(2) u = R%u on A%, where A' denotes the interior of A.

(8) The associated measure of R{’u is supported by A.

In fact, since fW“”(x —y, t—a)dy=1 on R" X (a, ), Proposition
2.3 shows that u < Wy on A for some ve M,, and hence Corollary 2.4
gives (1). The statements (2) and (3) are already known in [6] (see Remark
3.1, (2) and Proposition 3.7).

The analogous result to W @.reduced functions also holds.

ProposiTioN 2.6 ([6], Lemmas 2.7 and 3.5). Let ue S, and let K be a
compact set in R**! and (0.)s., @ sequence of relatively compact open sets
in R"*' with w,,, C 0, and NZ_ 0, = K. If u is finite continuous on a
certain neighborhood of K, then

lim RPu = RPu a.e. and limp, = py (vaguely),

m— o0 m-~sco

where p, and p, are the associated measures of R®u and of R¥u, re-
spectively.

Let u = W@y (resp. u = W(“)p) with e M, (resp. peM,) and let A
be a set in R**.. Then R{u (resp. R¥u) is a W@-potential (resp. W®-
potential) and the associated measure uf (resp. y7) of R{u (resp. R&u)
is called the W®-swept-out (resp. W“‘)-swept-out) measure of px to A.

PropositioN 2.7. Let p,veM, If WOu< Wy on a certain open
set containing supp [p], then W@y < Wy on R"*!' and Id;z < fdu. Here
supp [¢] denotes the suppcert of p.

Procf. The first required inequality follows from Proposition 3.11 in
[6]. To show our second required inequality, we may assume that supp [¢]
is compact. Let w be a relatively compact open set in R"*! with w D
supp [¢] and 2 the associated measure of R®1. Then Corollary 2.4 and
Proposition 2.5, (2) give W®2 =1 on o, so that
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fdpz - f Wordy = f W®uda < f W@y dg = f W ady §fdy.
The analogous statement to W®-potentials also holds. In particular,
we have the following

COROLLARY 2.8. Let pe M, and let A be a set in R**'. Then de; <
fdy, and if supp [p] C A, then p)y = p.

ProposiTION 2.9 ([6], Proposition 3.8). Let xe M, and ve M, Then
for a set A in R"*', we have

f W uydy = J Woudy, and W u(X) = J W@, (X)du(Y),
where we denote by ¢, and by ¢y , the Dirac measure at Y and the W®-
swept-out measure of e, to A, respectively.

Proposition 2.9 gives the following

CoroLLARY 2.10. Let A be a set in R"*! and let u, ve S,. Then

RP(u + v) = R{’u + R{v.

Proof. We may assume that A is compact (see the definition of R{u).
Let o be a relatively compact open set with w D A. Since R®u and R”v
are W®@-potentials, Proposition 2.9 gives

RY(R¥u + R®v) = RPR™u + R{PRMv .
This and Proposition 2.5, (2) imply our required equality.

DerFintTioN 2.11. Let 2 be an open set in R**!' and X, a boundary
point of 2. Then X is said to be regular (for the Dirichlet problem of
L®) on Q if

im & oo = ey, (vaguely) .
XeN,X-Xo

ProposiTioN 2.12 ([6], Propositions 4.1, 4.2). Let 2 be an open set,
X, a boundary point of 2 and K a compact neighborhood of X,. Then X,
is regular on 2 if and only if R ,1(X,) = 1.

For irregular points, the following remarkable statement holds.

ProposiTioN 2.13. Let E be a closed set in R"*' and X,e R**'. If
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R¥1(X,) <1, then
inf {R$, 1(X,); U: neighborhood of X} = 0.
For the proof, we shall use the following

LEMMA 2.14. Let uec S, and let K be a compact set and A a set in
R"*' with K C A. Denote by px and p, the associated measures of R{u
and of R{u, respectively. If u is finite continuous on a certain neighbor-
hood of K and RPu = W™y, on R**', then

Hrk = ,uAlK + (ﬂAICK);('l)

Proof. By Proposition 2.5, (1), RPu = W@yu,. Take a sequence
(0,),=, of relatively compact open sets in R**' such that w,,, Co, and
Ny o, = K. Since supp [px] C K C @,, we have (ug), = px (see Corol-
lary 2.8). Since u = W®pu, = W@y, on R**,

R@u > ROW@p, = W@y,  on R,

and by Proposition 2.6, we have lim,_.ROW®u, = Wy, a.e. By Pro-
position 2.9 and Corollary 2.8, we have

W), (X) = WO al oK) + WO (] ), (X)
= WOrlX) + [Weh L (Xdplox(Y)

= WOlX) + 5 Wb, (X)

where o, = R™*'. Since W (i lmncw,,) 1s finite continuous on w,,,, Pro-
position 2.6 gives

hm W(a)(ﬂfl Iwknka+1):’m = W(a)(uA lwkﬂcwk+l);< a.e.

M= o0

for every k = 0, which implies
WOne = Wu,lx + };0 W (p, I“’kncwk+l)-,K
= W(a),uA]K + W(a)(/—tAICK);{ a.e.,
so that

W(a)/lx = W(u)(,aAIK + (ﬂA]CK);{) on R**!

1) For a Borel measure p and a Borel set 4 in R»*1, we denote by |4 the Borel
measure defined by pl4(E) = p(ENA) for every Borel set E in R»*1,
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(see Remark 2.2). Hence by Proposition 2.3, our required equality holds.

Proof of Proposition 2.13. We may assume that E is compact, X; = 0
(the origin) and that R{1(0) > 0. Let p be the associated measure of
R{1. Then R¥Y1 = W®u For any = > 0, we write g, = planx(ce,wy and
Yoz = flpnx(-w,-r3» Put

7 = RY1(0) and B = inf{R{),1(0); U: neighborhood of 0}.

Assume > 0. Then there exists a compact neighborhood U of 0 such
that

R ,1(0) < §<1 n %) .

Putting § = p(1 — 7)/4, we choose 7 > 0 such that W@y, ,(0) <4. Set F
= Rn X (-— oo, —T],

— inf (W@e,(0); Y= (3,8) e E, s< — <} >0 and & = <L =7
¢ = inf { ey (0) (v, 8) s — 1} an 5117

Then there exists a compact neighborhood V of 0 such that V. U N CF
and for any Xe V and Ye EN F,

7
Wwe, (X) < (1 + 5_) W@e,(0).
c
Denoting by ¢ ;,» the associated measure of R{),W@e,, we have

W s < (1 + L)W ORE10

<21+ D1+ Dweao
2 T c
for every Ye E N F, so that by Proposition 2.9, we have

W yor ©) = CEDE Weop, ().

Let v be the associated measure of R, m1. Since (v.)enr = (Le)znr =
0,2 Lemma 2.14 shows that v., and p., are equal to the associated meas-
ure of R§).r1, that is, v,, = p.,, which implies W@y , < W@y , on R**'.
Hence Lemma 2.14 gives

2) The notation v, ; is the same as g, ; (i=1,2).
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Ry 10) = Wr,,(0) + W (v,,0)500(0)
= WOu(0) + WO (ue,n)z00(0)

< 5 + (3 + T)ﬁ W(a)ﬂ(()) — B’
4r
which is a contradiction. Thus Proposition 2.13 is shown.
§ 3. The «-parabolic capacity
Let K be a compact set in R**' and put

O ={ueM,; supp[p] C K, W9u <1 on R*'}.

Lemma 3.1. For a compact set K in R"*', we denote by p, and by
vx the associated measures of Rl and of R, respectively. Then we

have
(1) W u(X) = sup {(WOu(X); pedp}
and
(2) [aue = [ = sup{[dgs; peop}.

Proof. Let pe®g. Then for any relatively compact open set v D K,
Proposition 2.7 shows that W@y < R®1 on R"*' (see also Proposition
2.5, (1), (2)). By Proposition 2.6, we have W@y < W@y, a.e., and hence
Wwu < W9, on R**' (see Remark 2.2). On the other hand, by Propo-
sition 2.5, (3), px € @¥’. These imply the equality (1), and by Proposition

2.7, we have fdpx = sup Udy; ,ue@};’)}. Let o be a relatively compact

open set in R**', and denote by g, and by v, the associated measures of
R®1 and of R@1, respectively. By Proposition 2.5, (1), (2),

W@u, = ROW@y, and Wy, = REW®y, on R*'.
Since W@p, = W@y, =1 on w, Proposition 2.9 shows the equality Jdﬂx

= fdyK. Thus Lemma 3.1 is shown.
We shall define the a-parabolic capacity in the usual manner.

DerintTiON 3.2. For a compact set K in R"*', we put

cap “(K) = sup {Idy; nE @}?} .

Then we have the following
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ProprositioN 3.3. Denote by ¢ the totality of compact sets in R™*!.
Then cap“(K) defined on A is a Choquet capacity.

Proof. Evidently cap®(¢) = 0 and cap“®(K) is increasing. Let Ke .
Then Proposition 2.6 shows that for any § > 0, there exists a relatively
compact open set w; with w, D K satisfying IdyK > fd/xw — §, where g
and p,, are the associated measures of Rl and of R{1, respectively.
By Lemma 3.1, we obtain that cap“(K) is right continuous. We shall
show that cap®(K) is strongly subadditive. Let K,, K, € # and let v, and
o, be relatively compact open sets in R**' with o, D K, and w, D K,. By
Proposition 2.5, (2), we have

Rkl + Rkl < RW1 + R®1 on w, U w,.
By Proposition 2.7, Lemma 3.1 and the right continuity of cap®(K), we have
cap® (K, U K,) 4 cap® (K, N K,) < cap® (K,) + cap® (K,),

which shows the strong subadditivity of cap® (K). Thus cap®(K) is a
Choquet capacity.

Recalling the definition of W@-reduced functions and the above proof,
we see the following

Remark 3.4. Let F, and F, be two closed sets in R"*'. Then
R®rl + R®\pl < RP1 4+ RP1 on R,
DeriniTiON 3.5. For a set A in R"*!, we put
cap{” (A) = sup {cap® (K); A D K ¢ X7}
and
cap{® (A) = inf{cap{”(w): A C w: open set}.
We say that A is capacitable if cap{” (4) = cap{® (A). In the case that A

is capacitable, we write cap® (A) = cap{® (4) and call cap“ (A4) the a-
parabolic capacity of A.

By Proposition 3.3 and the Choquet theory (cf. [2], p. 158), every an-
alytic set in R™*! is capacitable.

Noticing the form of W and Proposition 2.3, we see that for any
1> 0, S, is stable for the a-parabolic dilation z,: (x, £)-—(4x, 2*t) on R**!,
that is, for any ue S,, uor; € S,. Furthermore for any compact set K in
R"*!, we have
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W(a),llKl(Tz(X)) = W(a)ﬂK(X) ’

where K, = {r(X); Xe K} and px and g, denote the associated measures
of RP1 and of R{1, respectively. Therefore we have the following

ProproSITION 3.6. For any compact set K in R"*! and 2> 0, we have
cap (K,) = 1" cap® (K) .

Remark 3.7. Let B be a Borel set of R* X {a}, where ae R. Then
the thermal capacity of B¥ is equal to the n-dimensional Lebesgue
measure of B (see [7], p. 355). Similarly the a-parabolic capacity of B is
also equal to the n-dimensional Lebesgue measure of B.

§4. The Wiener criterion of regular points

First we shall show the following

Lemma 4.1. Put ¢,(x)) = W*(x,1). For any r,> 0, there exists a
constant C(r,) > 1 such that for ry < r < oo,

Clry~'r=* < ¢(r) < Clrr=—-*.
Proof. Put (1) =f W@(x, t)dv(x), where v is the uniform measure
R™

on {xe R"; |x| = 1} with jdv = 1. Then +, is positive and finite contin-

uous on (0, o). Hence it suffices to show that 0 <lim,,(d/dV () < oo,
because ¢,(r) = r "y (r~*). In the proof of Lemma 2.1 in [6], we already
obtained the equality

Ly = — @[] Jef exn (= sle Pue)dedor(s)

where (¢%),5, is the one sided stable semi-group of order « on R (see [1],
p. 74) and where ¢ denotes the Fourier transform of v. Since ¢ converges
vaguely to ¢ as ¢t} 0, it suffices to show that

0 <lim(— @0 [ exp (— s|¢)5(@)de) < oo

If « = 1/2, then

W (x, t) = F(n -; 1)t{ﬂ.‘(|x|2 + )} @ror

3) This means the capacity of B with respect to (9/9t)—4 defined in the same
manner as the a-parabolic capacity of B.
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(see [1], p. 74), and hence we may assume « x 1/2. Let (g,),», be the
Gaussian semi-group on R" and choose a function f on R"™ of class C~
satisfying 0 < f< 1, supp[f]l C {xeR"; |x| <1} and f=1 on a certain
neighborhood of the origin 0. In the proof of Lemma 2.1 in [6], we al-
ready obtained

@) | (e exp(— sleMi@)ds

= Cooes(f®)]x] 7" )5(dg,)*v(0)
+ Crai( A1 — f(x))] 2] ) g 40/(0),

where
C = — goigenn (0 4 20— 2)]2)
' ra—o
Having
AL — f@) x| ") = 2a(n + 2a — 2)  on {xeR"; |x| =1}
and

(f(@)|x|=" ") xp =0

on a certain neighborhood of 0 in R", we conclude

lim (= @0 [ lei exp (— slePstede) = asrmrn L0 220D

Thus Lemma 4.1 is shown.
Our main theorem is the following

THEOREM. Let 2 be an open set in R**', X, a boundary point of £,
2> 1 and p> 1. Then X, is regular for the Dirichlet problem of L on
Q if and only if the following condition (w) holds:

(W) Wy, = >, e cap® (Aun(X) N CQ) = oo,
k,m=0
where
Ak,m(XO) = {Xo + (x1 - t); tk+1 é t é tka rm é t—l/?alx] é rm+1} ’
with t, = 27" r, = p™®*2 for m>1 and r, = 0.

Since W(x, t) = t="/*¢,(t-*|x|), we have the following

Remark 4.2. For any Ye A, .(X;), we have
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C,,“Z"p"’"l é W(a)ey(XO) § Cozkﬂp—m ,
where C, is a constant depending only on n and «.

Proof of Theorem. By using a suitable translation if necessary, we
may assume that X; is the origin 0. Put A, , = A, .(0) and E, , = A, .
N CQ. By the strong subadditivity of cap® (K) on &, it suffices to prove
the following

(%) 0 is regular for the Dirichlet problem of L® on 2 if and only
if the condition (w) holds for 2 = p and p (that is, w,,, = o).

In fact, if 4, and 2, satisfiy 1 < 1, < 2, < 2 for some integer I, then
we have

(221)‘11012’,, = wll,p g 22(l + l)wlg,p

for every p > 1.

Assume that the condition (w) for 2 = p and p > 1 does not hold.
Namely > 7,00 ™ cap® (£, ,) < . For a compact neighborhood U of
0, ¢ and g, , denote the associated measures of R{},,1 and of Rf) .,1.
respectively. Then by Lemma 3.1, (1), we have

W(a)f"IEk.an = W(a)/“k,m on R"*! ’

so that

Ri5jool(0) = WOp0) < 55 Wpn(0)

k 0

l

> | Woe (0)dp, oY)

k,m=0

< Cp 3 o™ cap® (B, N U),
k,m=0

where C, is the constant in Remark 4.2. Hence R{},,1(0) <1 for a suf-
ficiently small U. This and Proposition 2.12 imply that 0 is not regular.

Assume that 0 is not regular. Denote by Z and Z* the totality of
integers and that of non-negative integers, respectively. For any ke Z*
and meZ* with m = 1, we put

Fk,m — {(x, — t) € Rn+1; O < t g p-Zak/n’ %_pm/(n+2a)-(k+l)/n

- 1
< le < p(m+l)/(n+2a) k/n + _2_ pm/(n+2a)-(k+l)/n

and
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Fk,l) — {(x, . t) e Rn+1; p—Za(k+1)/n é t é p—Zak/n} .
Choose a fixed j, € Z* with j, = 2 and j, > ((n + 2&)*/2a) log, (d,/d,), where
dl — pl/(n+2a)+1/n + _;_ and d2 — %p—(l/(n+2a)+1/n). Put
Ay = {(R + jop, m +Ju@) € Z*XZ*; D, q€Z, Arijpimsse N T G}
If (kR + jop, jo@) € 4i0, then p=0and ¢=0. If m=1 and (k + jop, m + juq)
€ 4., then p = 0 and
(n + 2a)log, d, + 2ajip/n <j(q —p) < (n + 2a)log, d; + 2aji.p/n,

so that ¢ — p = 0 and for any j e Z*, there exists at most one pair (p, g)
€ Z X Z such that ¢ — p =j and (k + j,p, m + jQ) € 4, ., because

(n + 2a) log, (%) < 220 .

s n
Put

A, = max (Cp*(1 — p~*m)="g (0), 2"***C,C(§ p~")0* /") ,
where C, and C(}p~"") are the constants in Remark 4.2 and in Lemma

4.1 for r,=%p V" Then for any (k, m) e Z* X Z*, Ye A,,, and Xe
Uw.pezxz OA,H].O,,,,,H,O,,) N Cl'y ., we have

k+70p20,m+joq=
W@e (X) < A, W®e,(0) .

In fact, for any Y= (y, —s)e A, and X = (x, — )€ Axsj pmsse )
Cl'y oy WWep(X) =0 if s < t. Assume s > ¢ If m =0, then t < p-2®*+/o/n
< prm < g 50 that s — ¢ = p7** /(1 — p~*/"), and hence

W@ep(X) = (s — )", ((s — )~"*|x — ¥|)
= (L — p7r) g, (0) = AW ey (0)

If m =1, then pv/@+o-Gksb/n L |y L gmeb/rin-k/n" gnd hence |x — y| =
Lor/nrta-tkanin g0 that (s — t)~"*|x — y| = 2p~"". Therefore Lemma 4.1
and Remark 4.2 give

Wy (X) = (s — 7"g,((s — 97| — y)
= (S0 =l =y
é 2n+2aC(_;_p—l/n)pHZa/n‘ok—m

< A,W®e,(0) .
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Thus our required inequality holds.

By Propositions 2.12 and 2.13, we choose a compact neighborhood U
of 0 such that A,R$.,1(0) < 1/2. For any r > 0, p, denotes a positive
measure on R"*! defined by

[fdu =] _fe —2d
lzlzr
for every fe Cy(R"*"). Then for |x| = r and t > — 2, we have

W, (x, f) = j Welx — y, t + 2)dy > 1/2,

lylzr

because
WO -y, ¢+ 2)dy = j PR, =1.
Since lim,_., W@®y,(0) = 0, we can choose r > 0 such that A,R{1(0). <4,
where T, = {(x,?) e R**'; {x| = r,t = — 1}. Hence
1 — ARG wuryU0) = 1 — A(RE3q,10) + Ri1(0) > 0
(see Remark 3.4). We take a fixed (i,j)e Z* X Z* with i,j <j,. For

(p,q)eZ* X Z*, we set k, = j,p + i and m, = j,g + j. Put

F=\J(E,, N(UUT) and F,,=E
0,¢=0

kpymg

NWur,.

Then for any (p, @), (¢’, ¢')e Z* X Z*, we have
Fro=Aiw-pipmer -0, 1 CQN U UT,).
For (p,q)e Z* X Z*, we write
L.={0,q)eZ X Z*; (ky, m) & Ay s}
and
L, ={p,q)eZ X Z*; (kyym) € A ymg» (0, 0) # (P, O}

For (p,q) e Z* X Z*, we denote by p,, the associated measure of Rj 1
and by p the associated measure of R{1. By Proposition 2.5, (1), we have
R{P1 = W™y For any (p,q)eZ* X Z*, (p/,q)el,, and any Ye F, ,, we
have

W®@e (X) < A, W®ey(0) on F'

p.q >
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and hence
W, p,, = AAW@e, (W s, , on R**'.
This and Proposition 2.9 give
Wtley Jiya < AW ey, JOWp,,  on B

Hence, by Proposition 2.9 and Lemma 2.14, we obtain that for any (p, q)

ezt X Z+s
W(a) . W("‘)‘ul,—.“, . W(a)(/l - /"le q)Fp ]
= W®uls, , + Z;;I W(d)(ﬂlzﬂp’,q‘)ﬁ.q
pa1€lp,q

+ 2, W‘“’(/xlpp»,q»)pp_q

(0',q") €1} 4

é W(a)ﬂle,q _I- ‘Al , :Z W(ﬂ),’tle',q'(O)W(a)lup q

(p,q")€Ip,q

-+ Z W(a)(/“]Fp',q');'y.q

@q)VEIY 4
< W(a)[“ll’y q + A1 W(“)/x(O)W(“)yp’q
+ 2 W(a)(#{rv,, q)Fp e on R"*!.

(0,9"Y€1},,

Putting 4; = 1 — A, R§qwur, 1(0) > 0, we have

AW, 0) < WDl (0) + C, Jp"" "]y, )

9NE I;,q
(see Remark 4.2), because supp [(¢|r, JF, ) C F,, and Id(mF"""');"'“ <

I:d(p]Fp/,q,) (see Proposition 2.5, (3) and Corollary 2.8). Therefore

A 33 Wy, (0)

bq=

< WOu0) + C > [ orrmedtutr,

Dg=0 (»’>q )eI,, q

= W®u0) + Cyp Z 2 (Pk" ’m")fd(#lm',q’)

254" =0 (kp,mg) Edicp’smd’
(0,0)#(0'59")

< W"")/J(O) + Copp qZ:_ }; (pk,, —mg’ - jut) Id(ﬂlz',',q')

)

< W@u(0) + (Cop)p” — 1)“‘p,;ﬂw(“’(#lp,,gq')(@)
= A3W(")‘a(0) s
where A; = 1 + (Cyp)*(0’* — 1)-'. Thus Lemma 3.1, (2) and Remark 4.2 give

https://doi.org/10.1017/50027763000001756 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001756

178 MASAHARU NISHIO

o0

20 00 cap®@ (B, 4ui 005 N (U UT)) < CpAT" AW p(0) < oo .

p.q=0
Since i, j are arbitrary, we have

©

Z pk-m Cap(d) (Ek,m N (U U Tr)) < .

ky,m=0

On the other hand, {(k, m) e Z* X Z*; E; ., N C(U U T,) + ¢} being finite,
we obtain that

o

2. ot meap® (B, N C(UUT)) <oo.
0

k,m=

Thus the strong subadditivity of cap® (K) shows that w,, < co. This
completes the proof of our main theorem.

COROLLARY 4.3. Let 2 be an open set in R**', p > 1 and X, a bound-
ary point of 2. Then X, is regular if and only if the following condition
(w") holds:

) 5% o cap® (4,(X) N €O) = oo,

where A(X,) = {XeR™'; p* < WX, — X) < p**1).

Proof. By the subadditivity of cap®(K), we have w,, = co provided
that (w’) holds, and hence by our theorem, the “if” part holds. The
“only if” part is proved in the same manner as in the proof of the “ only
if” part of our theorem.

By generalizing a Poincaré type condition for regular points given in
[6], we have the following

COROLLARY 4.4. Let Q2 be an open set in R"' and X, = (x, ) a
boundary point of 2. If there exists a Borel set B in R™ with positive
Lebesgue measure whose a-tusk T{(B) at X, is contained in CQ2, then X,
is regular for the Dirichlet problem of L on 2.

The a-tusk TE(B) of B at X, = (x,, t,) is the set {(x, + px, t, — p*);
xeB, 0 <p < p,} for some p, > 0.

Proof. We may assume X, =0 and p, = 1. Choose p>1 and an
integer m, = 1 such that the Lebesgue measure of B N {xe R"; (x, — 1) e
Ay} is positive, where A, , is the set in R"*' defined in our theorem for
A2=p and p (k,me Z*). For the simplicity of the notation, we put B’ =
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BN{xeR"; (x, —1)e Ay} and A}, =T B) N Ay n, (ke Z*). By Re-
mark 3.7, we have

cap(,,) (Ao,mu) z cap(a) ({(x’ — 1); X € B’}) > 0.

Since t,-1(Abn,) = Af,n, for every k =1, Proposition 3.6 gives cap®(Az,,)
= p~* cap® (A}, ,,), which implies that w,, = co. Thus our theorem shows
Corollary 4.4.

In [6], we proved an analogous assertion for a nonempty open set in
place of B.

Remark 4.5. It is an open question if the Wiener criterion of type
(w) for (3/at) — 4 holds.
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