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IRREDUCIBILITY OF SOME UNITARY REPRESENTATIONS
OF THE POINCARE GROUP WITH RESPECT
TO THE POINCARE SUBSEMIGROUP, 11

HITOSHI KANETA

Let P(3) and P,(3) be the 3-dimensional space-time Poincaré group
and the Poincaré subsemigroup, that is, P(3) = R*x,SU(1,1) and P,(3) =
V.3)x,SUQ, 1) where V (3) = {x; — x} — x; > 0, x, > 0}. The multiplica-
tion is defined by the formula (x, g)(x/, g') = (x + g* - 'x'g™?, gg’) for x, ¥’ € R®
and g, g’ eSU(l, 1). Here x = (x, x,, x,) is identified with the matrix
(x0 X — zx,>.

X, + 1X, X

The purpose of this paper is to give an affirmative answer to the
problem if there is any irreducible unitary representation of P(3) such
that its restriction to the semigroup P.(3) is reducible. To be more pre-
cise, we shall determine all P,(8)-invariant, closed proper subspaces for
the irreducible unitary representations (U”*, §°)(ye R, ¢ = 0, 1/2), which
are associated with the one-sheeted hyperboloid V,,(3) = {y; — ¥ — ¥: =
— M? (M > 0). As for the other irreducible unitary representations of
P(3) it is easy to show that they are irreducible even when they are
restricted to P,(38) (see [5], Theorem 5). Recall that all the irreducible
unitary representatibns of the 2-dimensional space-time Poincaré group
are irreducible even when they are restricted to the Poincaré subsemi-
group ([5], Theorem 1). Using, among other things, the results in §1, we
shall show in the forthcoming Part III that the irreducible unitary repre-
sentations of the 4-dimensional space-time Poincaré group whose irredu-
cibility relative to the Poincaré subsemigroup remains unsettled in [5] are
reducible as the representations of the semigroup.

The basic tools of our approach are i) the eigenfunction expansions
for second order ordinary differential operators .#,, , (see (1.1)), which are
connected with the Laplacian of SU(1, 1), and ii) rephrased versions of
the Hilbert transform and the Frobenius method for ordinary differential
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equations with a regular singularity.

This paper consists of two sections and an appendix. In §1 we
enumerate closed proper subspaces of L*(R) left invariant under the self-
adjoint operator %, , and a semigroup T, = exp(it shz) (¢ > 0) of multipli-
cation operators (Theorems 1.1-1.3). Toward the end of §1 we shall
determine nontrivial sequences {D,},cz..(¢ = 0, 1/2) of subspaces such that
i) Dy is a closed, proper subspace of LXR) left invariant under %,,, and
T(t>0), i) F., D,C D, where F, ,, = —d/dr + (+ k+ 1/2tht +
p/chz with domain H,(R), the Sobolev space of order 2 (Theorem 1.4). In
§2 we firstly define the representation (U, ) (pe R,e = 0, 1/2) of the
group P(3), and then describe all the P,(3)-invariant, closed proper sub-
spaces 27° in 7 and 2% in ™. Namely, there are four such subspaces
in §™° in the special case (3, &) = (0,0). It should be noted that Corollary
2.3 plays an important role in verifying that SU(Q, 1) leaves 27* in §*
as well as 2% in §*°. The appendix is devoted to a quick review of
Frobenius method in our context. “

The author thanks Professor Nomoto, whose comments on the first
draft are highly appreciated.

Notation and terminology

Z is the set of integers and Z, = {neZ;n > 0}.

R is the set of real numbers, R, = {1€ R; 2 > 0 and R* = R\{0}.

C is the set of complex numbers, C* = C\{0} and T = {ze C, |2| = 1}.
More subsets of C is to be defined. D, = {ze C;|Imz| < #/2}, D, = {ze C;
|Im 2| < #/2} and D, = D\{+iz/2}. An element of these three sets will be
denoted by z. Throughout the paper ¢ = z — iz/2. A polynomial in loge
with holomorphic coefficients will be denoted by A(s, logo), that is, A(s,
log o) = >™,(log o)" h,(a), where h,(s) are holomorphic around ¢ = 0. For
a function f(s) we denote by Rf(s) the function f(— ¢). An integral
f f(z) dr will be abbreviated to f fdzr or {f>. The relation a o< b for two
efements a and b in a linear space means a¢ = c¢b for some ¢ in C*,

M, ., m neZ, + 1, is the set of complex m X n-matrices and M, =
M, .. M; (resp. M;*) stands for the set of non-negative (resp. positive)
definite n X n-matrices. I, means the unit matrix in M,. For a matrix
A = (a;) in M, ,, we set A = (@), ‘A = the transpose of A, A* = ‘A and
A = max, > \",|al

CS)(r=0,1,---,0;neZ, + 1) for a C~-manifold S is the totality
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of C"-valued C"-functions on S. Cy(S)* = {f e C"(S)"; f is compactly sup-
ported}. CyS)" = CY(S)". H/R), reZ,, is the Sobolev space of order r
on R. H(R)" means the direct sum > 7.,®@H,(R). Of course HyR) =
L*(R), the Hilbert space consisting of C-valued square integrable functions
on R. Let (B,2) be a measurable space, where B is a Borel set of R
and X is the set of all Borel sets in B. LB,y is the usual L’space
defined in terms of a measure p on (B,2). Let p(x) be a M; *-valued
measurable functions on a Borel set B of R". Then L*B, p) denotes the
Hilbert space consisting of C™-valued measurable functions f on B such
thatj F*(x) p(x) f(x) dx is finite. Here dx is the Lebesgue measure.

Lgt L be a linear operator from H, to H,., When both H,, 1 <j < 2,
are Hilbert spaces, L* means the (formal) adjoint of L. In this paper a
Hilbert space is assumed to be separable. LH, is the range of L, namely,
LH, = {Lh; h in H, belongs to the domain of L}. For a subspace H, of
H,, L|H, denotes the restriction of L to the subspace H, Let D be a
subset of a Hilbert space. Then D! is the set of all elements which are
orthogonal to D. | || and {,)> denote the norm and the inner product in
a Hilbert space (Cm, L*(B, p), etc.) respectively. However, {x,y> = x5, —
XY, — %Y, for x = (x, x;, %,), ¥ = (¥o, 1, ) in R®. Recall that {f) is an
abbreviation to the integral I f(2)dz. A closed subspace D of a Hilbert
space 1s said to be invariant Snder a selfadjoint operator L if P,L = LP,,
where P, denotes the orthogonal projection H — D. As is well-known,
D is invariant under L iff the one-parameter unitary group exp(itL) leaves
D invariant.

T, = exp(itsh7) (£ > 0) is a continuous semigroup in L*R) such that
T.f(z) = exp(itsho)f (7). G, = (¢« — isht)"'(Re « > 0) are resolvent operators
for the semigroup. By abuse of notation G, also means the function
(¢ — ish7)™* of z. Finally, f/ means the derivative for either an absolutely
continuous function f on R or a holomorphic function f.

§1. Invariant subspaces common to %, , and T,(zr > 0)

The purpose of this section is to determine all closed proper subspaces
in LR) which stay invariant under the selfadjoint operator %, , with
domain H,(R) and the semigroup T,(t > 0) on L*(R);

(1.1) Py, = — d*}de® + (1/4 — B + 7* + 2Ry sh 7)/ch’z
(ke Z[2,7¢R),
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(1.2) T, = ettshr

To this end, first the case £ = 0 or 1/2 will be discussed. Then the general
case can be dealt with by the aid of the following differential operator

1.3) F.,,=—dldc+(+k+1/2)tht +gp/chr.

Throughout the rest of this section the suffix » will frequently be omitted.
In case (k, ) = (0,7 or (1/2,0) clearly %, reduces to an operator of
the following form.

(1.4 Ny = — d*/dt* + k/ch’c, £>0.

We shall search for closed proper invariant subspaces common to ./, and
T, (t > 0). To begin with, denote by @ = (¢,, ¢,) the solution of an ordinary
differential equation (A", — )@ = 0 with initial value ‘@, '?’)._, = I,, the
unit matrix. Since «/ch’s is integrable and ./, is positive definite, there
exists a so-called spectral density p on R, satisfying the following con-
ditions i) ~iii) [4].

i) p is an M;*-valued continuous function on R,.

ii) The operator & : L(R) — LR,, p) (refer to the Notation) defined

by
(15) F() = lim f 0, D)

is an onto isometry, whose inverse & ! is given by
(1.6) Fig() = 1imf Dz, 2) o(2) g d2 .
N—ooo JOKALKN

i) FAN F'g(d) = 2g(2) if 2g(2) lies in LX(R,, p).
On the other hand the equation (4, — )¢ = 0 has a regular singularity
at ¢ = in/2, that is, ¢ = 0. The Frobenius method yields linearly inde-
pendent solutions &,(z, 2) which, being holomorphic in D,X C, admit the
following expansions around t = ix/2;

g = o"i(i z:,m") if £ £1/4,
n=0
(17) .= allz(i 2. nan)
n=0

{.=¢,logo + a‘“(i z_,na"> if x =1/4,
n=1

where a. = (1 + /1 — 4r)/2 and 2, , = 1. Set ¢ = (¢_,Z,), and define X(2)
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e M, and s.(2), r.(2) € M, as follows.

- — Y _( 0 1
(1.8) t=0X, s,=X'., ri—(_1 O)s*’

where v, =1+ 1,1F 1) or %0, 2) according as « == 1/4 or not. Now we
are in a position to introduce invariant subspaces

(1.9 D, = FH{geLX R, p); 's.()g2) = 0 ae.}.
Notice that FD: = {r.heL*(R,, p); he L*(R,,r*pr)}. This is because
ts,r, = 0.

THEOREM 1.1. Let D be a closed proper subspace of L(R). Then D is
invariant under the selfadjoint operator A", and the semigroup T, = e!*s"*
(¢ > 0) iff it coincides with one of D-.

For the proof we prepare two lemmas and two propositions.

Lemma 1.1. (i) The domain D, = {|{Im | < z/2} is holomorphically iso-
morphic to a domain {Imz = 0 or ze (0, 1)} via the map z = (1 + ishz)/2.

(i) Let f(z) be holomorphic in D.. Then f(z)/vz(1 — 2) is holomorphic
in {Rez < 1} iff f(zr) can be expanded as > ;_,c, o™ near t = ix/2, where
g =1 — ir/2.

Proof. It is easy to see that z is a univalent function sending D, onto
{Imz =+ 0 or ze(0,1)}. Since the derivative 2’ does not vanish on D,, (i)
follows. To verify (ii), assume that f(z)/+2(1 — 2) is holomorphic in a
neighborhood of z = 0. Then f(z)/¥/z is holomorphic too. Since vz is
a holomorphic odd function of ¢ in a vicinity of ¢ = 0, f(z) has the desired
expansion. Conversely, assume that f satisfies the condition. Then F(2)
f()/¥2(1 — 2) is holomorphic in {Re z < 1}\{z < 0}. Notice that F admits
an analytic continuation across the line {z < 0}, for 2 = (1 4 ishr)/2 is a
local isomorphism of C\{izn/2; ne Z}. By the condition on f we see that
F(x + i0) = F(x — i0) for any negative x > — ¢ (¢ > 0). Therefore F(2)
is holomorphic in {Re z < 1}\{0}. Since F(z) is bounded in a punctured
disc {0 < |z| <¢}, 2= 0 is a removable singularity. This completes the
proof of (ii). Q.E.D.

The next proposition is concerned with the Hilbert transform.

ProposiTioN 1.2. (i) Assume that F(2) is holomorphic in {Re z < 1}.
If the integral IlF(x +iy)rdy (p > 1) is bounded on x < 1 — ¢, ¢ > 0, then
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r”m i(i)_dz =0  for a <min{Rea, 1 — ¢}.

a-ie Z —
(ii) Assume that F(2) is holomorphic in a strip 1/2 — 2¢ < Rez < 1/2
+ 2¢, ¢ > 0. If the integral j]F(x + iy)|*dy is bounded on [1/2 — &, 1/2 + €],
then F(z) has the following integral representation in 1/2 — ¢ < Rez < 1/2

+ e.
F() = i( B Jx/z—snm N Jl/m”w)&dc.

i 1/2-6=1c0 1246=i0) § — 2

Proof. To prove (i), we apply a lemma [9, p. 125] to F' to show that
the integral in question is independent of a. On the other hand Holder’s
inequality implies that the integral tends to zero as ¢ — — . Now (i)
follows. The statement (ii) is well-known [9, p. 130]. Q.E.D.

As to an estimate of the solution @(z, 2) we have the following

Lemma 1.3. Let ¥(r,2) e M, , be a solution of the following equation
with initial value ‘(U, W"),_., = L;

{— dde* + (a + bsho)jchs — YW (e, ) =0, abeC.

Fix 4,e R.. Then for any ¢ > 0 there exist positive K and & such that
) (e, )| + |¥(z,2)] < K on D.N{Rez|>1},
i) |¥(z, | + |¥'(z, )| < Ke*'! on R X {2 — 2] <éa}.

Proof. We shall prove the existence of K satisfying only i), for we

can argue similarly to show the existence of K and ¢ satisfying the

condition ii). Put S = ( x/_l_—,2 _ ;7>, and define y by the relation (‘¥ ‘¥")

=8 {exp(‘/f)—ﬁ'2 . 0_—Z>r}x. Then we note that y(r, ) is bounded on
D.N{|Rez| = 1} and that y’ = V(z)y, where | V()| is bounded by a function
v(Re ) on D,N{|Rez| >1}. Here v is integrable on I = (— oo, — 1]U[1, oo).
Consequently the integral J | V(z + ie)|dr is bounded on |¢| < z/2. Hence
x(z, ;) is bounded on 5,\{|Ré 7| < 1} (see Problem 1 [1, p. 97]), from which

follows that |¥(z, 4)| + |¥7(z, A)] is bounded there. Q.E.D.

Let 6 be an atomic measure on a finite subset 4 of R such that
6({2}) = 1 for each 1€ 4, p, be an M;*-valued Borel measurable function
on a Borel set B of R. Set H, = L*4,9), H,. = L*B, p,) and H = H,® H,,.
We denote by e', te R, the one-parameter unitary group acting on H as
multiplication.
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Then we have

ProprosiTioN 1.4. A closed subspace D of H is invariant under the
one-parameter group e’ iff there exist a subset A, of A, disjoint Borel subsets
B,, B, of B (4, and B; may be a null set) and a Borel measurable function
s on B, with values in M, \{0} almost everywhere such that D coincides with

L4, 5)D{(g1, 8) € H,.; (81, 8)s = 0 a.e. on By, (g,8) =0

1.10
(1.10) a.e. outside B}D{(g, g) e H,.; (g, 8) = 0 a.e. outside B,}.

Proof. It suffices to show that the conditions are necessary. We re-
gard e'* as a representation of R in H, and apply Theorem 8.6.6 [2] to
this representation. Then there exist a subset 4, of 4 and disjoint Borel
sets of B such that the representation in D is unitarily equivalent to the
following representation

D D X
j el“da(x)@)j et dI® [2] j@ eid]
Ao By Bg

in H= L¥(4,,6) @ LX(B) @ [2]L*(B,). Let U: H-— D be an onto isometry
ensuring the equivalence. By Proposition 8.4.6 [2] U sends L*(4,, d) in H
onto L*(4,, d) in H, while L*(B,) ® [2]L(B,) in H into H,,. Choose f, e LYB,),
i =1, 2, such that f; # 0 a.e. on B,, and denote by D,, D, and D,, the
closed subspaces of H,. cyclically generated by the vectors h,, h,) =
UQ©,f,0,0), ‘(hy, hy) = U0, 0, f,, 0) and ‘(h,, hy) = U(O, 0, 0, f,) respectively.
For the sake of simplicity assume that both B, and B, are non-null sets.
In case either B, or B, is a null set, we can argue similarly. Note that
(h, h,) and (h,,, h,) do not vanish a.e. on B, and B, respectively. Moreover,
det(h;;) + 0 a.e. on B,, for if it happened to vanish on a set of positive
measure, the representation in D, @ D,, contains a subrepresentation
of the multiplicity one, which contradicts Theorem 8.6.6 [2]. Since the
Fourier transform for L'(R) is injective, it is not hard to see that D, ® D,
constitutes the third component of (1.10). Finally D, = {rhe H,.; h e L*(B,,
r*p,r)} coincides with the second component of (1.10) with s:(_(l) (l))t(hl, h,).

Q.E.D.

We are ready for the

Proof of Theorem 1.1. 1) We shall prove the sufficiency of the con-
dition. To begin with, we note that D2 are closed proper subspaces
variant under .. Indeed F exp(itA/ )F !, tc R, is the multiplication
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operator e in L¥(R,, p). In order to see that T, (¢ > 0) leaves D~ invariant,
it suffices to show that the resolvent G, (Re @ > 0) of the semigroup sends
a dense subspace & “{r.h; he C(R.,)'} in D% into D-, that is,

(1.11) . D[FGF'r.h](Q) =0, heC(R,).
To verify (1.11) we shall show that

(112) j 5. (2) Dz, ) G.0(x, &) p(&)r.(&)de = 0.

Note that (1.11) follows from (1.12) immediately by integrating the both
sides of (1.12) with respect to a signed measure h(§)d&é (we can safely
change the order of integration on account of Lemma 1.3). To show (1.12),
put, for positives 2 and &,

Lie = [ 2@ DG8E 9dr, 5= X0 X = (),
Ja,z,e = a,l,fﬁ(‘s) .

0
1

Then, using the relation (1)) Y( ! (1)) — — *Y-'det Y, the left side of

(1.12) can be written as
(1.13) viJ,,,M( ‘1’ (1))vi_det X(©).

See (1.8) for the definition of v,,{ and X. We shall show that

(1.14) L. = (* 0) if ko 14, (* *) i k= 1/4,
0 =« * 0

(1.15) b= (* 0) if £ 14, (? ﬁm) i k= 1/4,
0 = 012 O

to the effect that J,,. is diagonal or of the form (3 I according as
£ # 1/4 or not, which proves (1.12) since (1.13) turns out to vanish. To
see (1.14), let R be an operator assigning a function f(s) to f(— ¢) and
A (o) be the differential operator 4", expressed in terms of ¢ = v — ix/2.
Then RA (¢)R = A (¢). This relation gives rise to a symmetry of coeffici-
ents z,. , in (1.7). That is,

1168) =z, (—D'==z,,ifc+1/4 =z (D" =2,,Iifc=1/4.

In particular ‘¢.C. (resp. ‘€.L.) can be expanded as > 7 ,c,0*"*! near ¢ = 0
in the case & # 1/4 (resp. ¥ = 1/4). Since I, ;. is equal to
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.17 ‘r/z”m (7, Dz, H{2(Q1 — 2)) dz, z=1+ish?)2,
1/2-te0 zZ—a

(1.14) follows from Proposition 1.2 (i) in view of Lemmas 1.1 and 1.3.
Finally, to see (1.15), let g belong to Cy(R,)’.. Since aG, converges to the
identity operator as a — oo, there is a sequence «, tending to oo such
that «,# G, % ~'g converge to g a.e. In other words

18 @[ L@ XOe@di— XDgl) ae asn—co.

Set ‘Xg = (a, b). Then, if & + 1/4, the first (resp. second) component of
the left side of (1.18) does not depend on b (resp. a), while the right side
of (1.18) is equal to “(pna — fb, — Gue + pub). Thus g, = gy = 0 if £ +~
1/4. Similar argument, together with the fact that p is diagonal, yields
o = 0 if £ = 1/4. This completes the proof of (1.15). 2) We shall show
that the condition is necessary. Applying Proposition 1.4 to the one-
parameter group e** on LXR,, p), we define Borel sets B,, B, of R, and a
Borel measurable function s with values in M, ,\{0} a.e. on B,. Since the
image G,D is dense in D, det(FG.f, #G.f,) + 0 a.e. on B, for some f,
f,eD. If B, is not a null set, the determinant does not vanish a.e. on
R., for it is holomorphic in a neighborhood of R,. Therefore, if B, is
not a null set, D = L*R), which is a contradiction. Thus we may assume
that B, = ¢ and B, = R, on account of the analyticity of #G,.f(R), fe D.
Set r = (_(1} (1))3 Then #D = {rheLl*(R,, p); he }*(R,, r*pr)}. Conse-
quently we can replace r and s by real analytic functions #G,,f, f € D\{0}
and _2 (1))r respectively. Since rh, h e C(R,)', belongs to # D, we have
s [F G.F'rh]()) = 0 on R,. Letting A converge to the Dirac measure
supported at &e R,, we obtain {(*s(2)®0(z, ) G.D(z, &) p(§)r(§)y = 0. Namely,

01

@19 X9 _]

)X 9@ =0, Rea>0.
Put X-'s = (a, b). Then (1.19) implies, by Proposition 1.2 (ii), that the
following function of z = (1 + ish 7)/2

(aC-C—Pub - bC+C+P22a)/‘/z(1 - Z) ’ K i 1/4 ’
aC C_pi + £ L pm)a/Vz(1 — 2), £ =1/4,

is holomorphic at z = 0, from which it is immediate that

a()b(@) = b()a(e) = 0 for r = 1/4, while a()a(g) = 0 for r = 1/4.
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Since a as well as b is real analytic, either a or b must vanish identically
if k£1/4, and @ =0 if £ = 1/4. Thus there exists a Borel measurable
function ¢, with values in C* such that s = c.s, a.e. Q.E.D.

We return to the study of invariant closed subspaces common to .%,
and T, (¢ > 0). In case o, = 1/2 + iz, denote by &, ., &, Xo, S,. and r, .,
respectively, {., {, X, s. and r, in (1.8). Then we define subspaces Dj .
of LXR) by

(1.20) Di. = Fi{ge L(R,; po); ', () 8(2) = 0 ae.},

where p, is the spectral density for &, with respect to @, and &, stands
for the isometry associated with the eigenfunction expansion. Here, @,,
ke Z2, is the solution of the following ordinary differential equation;

(1~21) (gk - ;i)@k(ry 2) =0, 'Z(t¢ks ¢ I,c)r=0 = Iz .

Thanks to Theorem 1.1 I, are invariant, closed proper subspaces for %,
and T, (¢ > 0), and there are no other closed proper subspaces with the
invariant property.

We proceed to the study of invariant closed subspaces common to
P, and T, (£ > 0).

Lemma 1.5. The selfadjoint operator %, ,, 7€ R, has no eigenvalues.

Proof. Consider a selfadjoint operator M,, , = i<~ (1) (1)>d / dr +

in(~? (1)) / ch ¢ with domain H(R) [6, p. 287]. We note that (UM, ,U*y
=Py, , D Lip, -, for a unitary matrix U = G _%>/«/—2~ This relation
implies that an eigenvalue of %, .,, if any, is equal to zero, because
#1n,+, has no positive eigenvalues in virtue of Theorem 4 [4]. Now assume
that f is an eigenvector corresponding to the eigenvalue zero, say, of &, ,.
Then (UM,,,,U*)*(f,0) = 0. This contradicts the fact that M,, , has no

eigenvalues by Theorem 2 [4] Q.E.D.

Since the function (1/4 — k* + #* + 2kpsh zr)/ch’z is integrable, the
spectral matrix for Z, relative to @, has an M; *-valued continuous density
or on R, due to Theorem 4 [4]. On account of Lemma 1.5 we can define
an onto isometry &, ,: L(R) — LX(R,, p,») and its inverse F; in a similar
way as (1.5) and (1.6) respectively. To define invariant subspaces Dj, .
we first note that the equation (1.21) has a regular singularity at r = iz/2,
the indicial roots at which are 1/2 4+ (ip — k). Therefore, the equation (1.21)
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for k = 1/2 has linearly independent solutions {,,, .(z, ) which, being holo-
morphic in D, X C, admit the following expansion near ¢ = 0.

(1'22) Ck,t = 0‘1/21(”_,‘)(2 zk,t,no-n) ) Zlc,t,o = 1 ’

n=0

where k = 1/2. It should be noted that ({,, -, L, +) = @i if p=0. Let
us define X,(D) e M,, s, .(A), 1, (D) eM,, in terms of &, and {, . as in (1.8),
and set, for & = 1/2,

(1.23) D; . = FiMgeXR., p); 'st,.(NgR) = 0 ae.}.

Then, repeating the argument in the proof of Theorem 1.1, we get the
next theorem.

THEOREM 1.2. Let D be a closed proper subspace of L*(R). Then the
selfadjoint operator %, , and the semigroup T, (t > 0) leave D invariant
iff D coincides with one of Dy, ..

From now on we shall be concerned with a general #,. The following
lemma shows close relations among the operators ., and F. , (see (1.3)).

LEmMmA 1.6. Let F. , and &, be the differential operators on C>(R).

(1) FiyaF. = — &L — (k£ 1/2)"

(11) gkilF:t,k = :t,kgk’

(111) Fi,k: ““Fq:,kxn FIkFik:$k+(ki1/2)2

(iv) If f satisfies (£, — Df = 0, then (%, — N F. .f = 0. Inparticular
F, 0, =0,,,X. ;, where

(ool )

RN GRS )

Proof. Simple calculation is enough to verify (i)~ (iii). The statement
(iv) follows from (ii). Q.E.D.

As to eigenfunctions for %, we assert

LemmMa 1.7. Let f., .., B > 1/2, be an absolute continuous function on
R SUCh that F:F,ikfﬂ:k,j:k = 0. Set fj:k:tm,ik = F::,d:kimxl' : 'F:t,ikf:tk,ik’ m€Z+'
(1) firem«x lies in HR), satisfies the equation

(124) {gikim + (k -+ 1/2)2}f1kim,¢k =0 s

and takes the following form near ¢ = 0.
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(1.25) o"“"'”"“'"(}:_;o z,,a">, 2#0, (=12, =z,.

(11) firem,+x(7), as a function of z= (1 + ish)/2, is bounded on
{121 > 2).

Proof. The function f.,, ., is clearly a constant multiple of the function
(ch z)¥**12 exp| £+ 7 ’ l/ch t dt) which lies in L*(R) as well as its derivative.
By Lemma 1.6 (i) vgze note that f., ., is an eigenfunction of %,, corre-
sponding to the eigenvalue — (k & 1/2)°. Since 1/2 &+ (ip — ¥’) and 1/2 +
(ip — ) are indicial roots at ¢ = 0 for the equations F., f=0 and
(& — 2) =0 respectively, f.; .. can be expanded as (1.25) for m = 0.
From now on only f, , will be discussed. By Frobenius method, together
with what we have proved, it can be easily seen that the equation (1.24)
for m = 0 has linearly independent solutions ¢, such that

o0

(1.26) L. = al/“”v-“( zr,na"), 2.0 %0,
0

n=

where {, <f; . Let #,(0) stand for .#, represented in terms of the vari-
able ¢. Using the relation R%.(0)R = %,(c), we can show that (—1)"z, ,
= 2,,, It is now immediate that (—1)"z, = 2, when m = 0. This proves
(i) for m = 0. To show (i) for any m, we can proceed by induction on m,
keeping in mind that F, ,,,._,---F, ., takes the form ¢'/**1-%-m(3 = 2 o"),
2, #+ 0. To prove the statement (ii) we note that the equation (1.21) can
be written as

d: 2z—1 d | 1/4A—Rk+9—i(22—1) A }
12 | KL ) ro-o,
(1.27) dz + 2(z*—1) dz+ 4(z*—1) + 4(z* - 1)

where z= (1 + ish?)/2 and ¥, (z, 2) = ®,(r, ). The indicial equation at
2z = oo for the above equation is & + 2 = 0. Since f.,.n, ., satisfies (1.24),
it assumes the form 2z **'*(3 = (y,27"), ¥, #+ 0, near z = co. This is because
[erem,«x(z) in Hy(R) tends to zero as r — +oo (i.e. 2—1/2 + i0). Q.E.D.

DEerFINITION. Let notation be as in Lemma 1.7. We denote by €. ;. .1
me Z,, the normalized eigenvector f. ;.m, s1/l|fersm, sl Of L srsm corresponding
to the eigenvalue — (& F 1/2)%. Let 4, be the set of eigenvalues of .%Z,
and Ek be the Hilbert space L*(4,, ), where §, is an atomic measure on
A, such that 6,({2})) = 1 for each 1€ 4,.

We already know that 4, = ¢ if |k| < 1/2. It will be proved in the
following proposition that
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Li={—G+12%j=kEk+1,---<—1/2}if k< —1/2,
={-0G-=12%j=kk—1,.--<1/2} if > 1/2.

According to the eigenfunction expansion theorem for %, (see [1, p. 251])
we can define an onto isometry &, : L(R) — LX(R,, p,) @ E, and its inverse
F it as follows.

Ff@ =lm| O f@dc  in LR, 00,

(1.28)
FofD) = Cew. [ for 1=~ {j — (sign W1[2Y e 4,
(1.29) Frg@ =lim| 05D pdDe() d2

® 2, 8(— {j — (signk)1/2})e,, ;.

Here p, is the spectral density for %, relative to @,. The next Propo-
sition is concerned with the spsctral property of #,.

ProrosiTioN 1.8.
(1) The set of eigenvalues A,, |k| > 1/2, is given as above.
(i) (@ = — X, (Do ‘X%, 2e R,

where X, , stands for the same as in Lemma 1.6.

Proof. We shall prove the assertion (i) only for k2 > 1/2. Assume
that an f in H,(R)\{0} satisfies (¥, — A)f =0 for k=1 or 3/2. Then
(& — HF_ .f = 0 by Lemma 1.6 (ii). Particularly F_ .f belongs to H,(R).
Since #,_, has no eigenvalues, we conclude that F_ ,f = 0. Consequently
a possible eigenvalue for Z, is — (k¢ — 1/2)* by Lemma 1.7. Conversely,
the same lemma implies that — (k — 1/2)? is really an eigenvalue. Recalling
the well-known fact that the multiplicity of an eigenvalue for %, is one,
(i) has been proved in this case. Working by induction on %, we can
complete the proof of (i). If g belongs to CyR.)’, f = F:'g lies in the
domain of .Z, and tends to zero as |z| — . Integration by parts, together
with Lemma 1.6 (iv), yields &%, F, .f= X*3;'g. Therefore we can re-
present F, ,f in two ways;

IR @k+1X+,kpkgd2 = J; @knpani(,—legdZ;

which results in (i), for X_ , is a real matrix. Q.E.D.

We are in a position to define invariant closed subspaces D} . in
L*R). Since s;,. and r,,. for k= 0, 1/2 are defined in connection with
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D; ., k=0, 1/2, the following definition makes sense.

(1.30) Spe = X ko1S6-1,4 Tie = 'X_ oThog,s s
(131) Dj.= FigeLX(R., p); 5, -Ng) = 0 2} ® F'E, .,

where E, . = E, if + k>0, while {0} if + k< 0. The following is one
of the main theorems in this section.

THEOREM 1.3. Let D be a closed proper subspace of L(R). Then the
selfadjoint operator %,,, and the semigroup T, (t > 0) leave D invariant iff
D coincides with one of D} ..

To prove the theorem we need a lemma.

LEMMA 1.9. Let 2 be positive.

(1) ‘s, 1, (1) = 0.
(ii) If either e R* or ke Z + 1/2, then

@k(z.y Z)Sk’ 1(2) = O(o-l/zt(—iq-fk)) ,
@k(r, '2)‘0k('2) rk,t(Z) = O(o-l/“:(ir)—k)) .

If =0 and ke Z, then
Di(z, D)8, (2), Dz, D (DT, (2) = O(@**'*).

In the above O(¢%) denotes a holomorphic function on D, which assumes
the form o°(C o C, %), ¢, # 0, near g = 0.

Proof. The relation (i) holds for £ = 0, 1/2. Since X_ (DX, ._,(D) =
— 2 —(k —1/2)%, (@) follows from the definition of s,,. and r,.. As to
the statement (ii) only the functions @,s, . will be examined. We recall
that

D8, = 2, if (B, 7)) = (0,0) while 2¢, ., if k=1/2 or k=0, € R*.
Therefore (ii) is valid for 2= 0, 1/2. Assume that (ii) holds down to
k < 0. To proceed by induction on %, we note that

Feo(S e ) = (12 % (= i + B) — aleo ™ + 51d, a0,
n=0 n=1
F—,k@k(T, z)sk,:t(z) = — {2+ (k — 1/2))0;_i(z, D5(-1,.(2) .

Let @,s,,. take the form > > ,c,0°**, ¢, = 0. Then it can be easily seen
that if 1/2 — (— ip + k) — «a vanishes, d, is equal to zero unless Re (o 4+
2n — 1) > Re{1/2 — (¢ — 1) + iy}. This is due to the fact that F_ &s;,.
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is a nonzero solution of the equation (#Z,_, — 1) f = 0 whose indicial roots
at ¢ = 0 are 1/2 & (R — 1 — in). This proves (ii) for £ < 0. In case £ >0,
we can argue similarly, using the equality F, ,0.S; . = @, 1Sc.1,.- Q.E.D.

Proof of Theorem 1.3. The proof is much like that of Theorem 1.1.
We may assume that 2 = 0, 1/2, and shall prove the theorem in the case
k > 0. On account of Lemmas 1.1, 1.3, 1.7 and 1.9, Proposition 1.2 (i) yields
the following equalities.

[ 5005, DG.0uGe, Houom, (O de = 0,
[ 5. 0.5, DG, (e = 0,

[50-@ 0.5, 960, 900 @ = 0,
[ e 6.0 9 0@ n, - @de =0,

where 1 and § are positive. We can show, as in the proof of Theorem 1.1,
that the first two and last two equalities imply the invariance of D} , and
Dy _ under the semigroup 7, (¢t > 0) respectively. Here we used the fact
that &, ; = ce,, ; for some constant ¢, |c| = 1. On the other hand, %, clearly
leaves D7 . invariant. Conversely, let D be a proper closed subspace with
the desired invariant property. Arguing as in the proof of Theorem 1.1,
we see that

D=5 @} Fge LR, 0); s(D@ = 0 ae}

for some subset I of {k,k — 1,---,1 or 3/2} and a real analytic function
s on R, with values in M, \{0} a.e. Denote by ¢, .(z, 2) linearly independent
solutions of the equation (¥, — 1) = 0 such that they are holomorphic
in D, X C and have the following expansion near ¢ = 0.

Ln = o‘/“("”""’(l +3 zk,t,%oz"), it peR* or ke Z + 1)2,
n=1
Ly, = gtrtie (1 3 e a“), if 7= 0 and ke Z.
n=1
Ck,— = (F+,lc—1' * ‘F+’QCO,+)log0' + 0'1/2_”“(20 Zk,__nO'") P} Zk’o’_ ¢ O.

Set &, = (€., i), and define X, by &, = &.X,. Then, it can be shown,
as in the proof of Theorem 1.1, that the symmetric matrix X;'p, ‘X' is
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diagonal in the case either € R* or ke Z + 1/2 while the matrix assumes
the form (2 in the case 7 =0 and ke Z. It is not hard to see that
in the former case one of the components of X;'s must vanish identically
while in the latter case the first component of X~!'s must vanish (see the
proof of Theorem 1.1). This means that there are, at most, two possibilities
for s. Therefore, since D} . possess the invariant property, there exists a
C*-valued measurable function ¢, or c¢_ such that s = c,s, , or c_s,, . a.e.
on R,. Suppose s = c,S;,.. We must show that I=1{kk—1,..--,1 or
3/2}, provided 5 € R* or k + 1/2e Z (recall that s,,, = s;,_ in the case when
=0 and keZ). On account of Lemmas 1.1, 1.3, 1.7 and 1.9, using
Proposition 1.2 (ii), we can show that for any eigenvector e, ;, there exists

an o, Rea’ > 0, satisfying

ey, (7) G Di(z, &) Pk(g) T, A8 #0

so that {e, (t)G.ZF;'r,, .h)y + 0 for some he C(R,)'. This means D = D} .,
that is, I ={k,k — 1, ---,1 or 3/2}, for D is &, -invariant. Next, assume
s = c_8,.. We must show that I = ¢, provided e R* or ke Z + 1/2. To
this end, we note that for any eigenvector e, ; and positive A, there is an
o', Rea’ > 0, such that

'8, (DD (z, DGe,, (7)) # 0

on the same basis as above. This implies that I = ¢, since *s()[F.G.f](2)
= 0 a.e. for any fe D. Finally, we note that for any eigenvectors e, ; and
e, ;, there exists an o/, Re & > 0, such that (e, G.e, ;> #+ 0. This means
I=¢or{kk—1,--.,10r 3/2}. Since s, = s, . in the case » =0 and
ke Z, Theorem 1.3 has been shown for 2> 0. In case 2 <0, we can
argue similarly. Q.E.D.

We set W, = LXR) for ke Z/2 and regard %, as a selfadjoint operator
in W, and F. , as an operator sending W, into W,,,. It is the next
theorem that will be used in § 2.

TueoreM 1.4. Let {D}vez:., ¢ =0, 1/2, be a nontrivial sequence of
closed subspaces of W,. Then the sequence {D.} fulfils the following two
conditions iff it coincides with one of

{D1_}, {D1.}if neR* or 1/2,
{m,sign(—k+1/2)}; {Do,—}, {D?c,-l»} and {D?c,sign(kn/z)} lf n=e&e= 0.
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1) D, is invariant under the selfadjoint operator ¥, , and the semi-
group T, (t > 0).
i) F., ,D. C D,.,, where the domains of F. , 6 are Hy(R).

Proof. We shall first show the sufficiency of the condition. Assume
that an f in H,(R) satisfies & ,f =r..h, he L(R,, r¥.p.1:,.). Then inte-
gration by parts yields

(1.32) FionFof = — ria,.h, FoF_f = {2+ (k — 124,y .k .
Making use of Lemma 1.6, we can verify easily that for %, |k| > 1/2,

(1.33) F, e, ;== (sign k)*/(k + 17_2)2 — {J — (sign k)1/2}2 €rx1,j -

By (1.32) and (1.33) the sequences mentioned in the theorem satisfy the
conditions i) and ii). Conversely, let {D,} be a nontrivial sequence satisfying
i) and ii). In view of Theorem 1.3 and the relations (1.32) and (1.33), {D,}
must coincide with one of the aforementioned sequences, provided some
D, is a proper subspace. Therefore it remains to show that all D, are
proper subspaces. To this end, suppose D, = L*R) for some k. Let us
show that D,., = L*(R). In fact, on account of the equality G.F. , =
F. .G, + G, it is not hard to see that if an f in (D,.,)* is orthogonal to
the image G.F. .C;(R), then f= 0. Assume now that D, , = {0} and
D, + {0} for some k. This contradicts Theorem 1.3 and (1.32). Thus each
D, must be proper for the sequence {D,} to be nontrivial. Q.E.D.

Before concluding this section we shall rewrite the relation (1.32) in
a more convenient manner. For this purpose, introduce Hilbert spaces
13;’.,:, f)z.,i and an onto isometry I2% : D}, — D} ., ke Z + ¢, as follows.

(Ii’fk rk,:h)('z) = <rk,ﬂ:(2)? pk(z) rk,i(2)>l/2h(2) ’ A>0,
I Z’fklﬁk,i = the identity operator.

Furthermore, for F. , with domain H(R), set

A
F, .= I’:’t’,sk+1'g‘k+lF+,k(vay,‘kg‘k)—l ’
A

F—,k,-: = Ii’fk~1=g;k-1F-,k(Ii’flcgz_k)_l .

Then (1.32) yields
(1.35) F., k) = FVi+ (E£12°hQ2), heC(R), s=+or—.
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This is because <rk,:(2)’ pk(z) rk,:t(z)> = {2 + (k - 1/2)2}<rk—1,t(x)’ Pk—l(l)rkd.i(l»
by virtue of the definition of r, . and Proposition 1.8 (ii)..

§ 2 P.(3)-invariant subspaces for the representation (U”*, $)

We begin by defining the representation (U7*, ) of the group P(3)
(see the introduction for the definition of P(3)) associated with the one-
sheeted hyperboloid V,,(3) = {35 — 31 — 53 = — M?*, M > 0, after Mackey
[7]. Let G be SU(1,1), and w,, 1 < j < 3, be one-parameter subgroup of G;

o (f) — chit/2 shitf2 o) = chit/2 isht/2
i (sh 42 ch t/2>’ {0 (—ish {2 ch t/2)’

o= (%7 0.

0 e-it/

G acts on R® as Y-8 = 8*yg, where y = (¥, ¥, ) is identified with a matrix
(yz")_’l"_ iy, Yz ;0 W ‘). It can be easily seen that the orbit of § = M (1) (1)
is V,4(3) and that the isotropy group at § is G, = {% w,(f); tc R}. Let
T, 7€R, e =0, 1/2, be an irreducible unitary representation of G, such
that z, (& 0(9) = (+ D)*expiyt. We can identify the factor space G,\G
~ (B*X ,G)\(R* X ,G) with V,,,(3) via a projection p of G onto V,,(3) defined
by p(g) = g*yg. As is well known, the measure dy = dy,dy./M|y,| on V,,(3)

is G-invariant. Let "¢ be the set of C-valued measurable functions on
P(3) such that

(', g8)(x, &) = e Pr, (g)f(x,8), &eb,

and that |f(x, 2%, which is a function on V,,(3), is integrable relative to
the measure dy. Then 9" equipped with the inner product (f, h) =
ffhdy give rise to a Hilbert space, which we denote by $* again. Let
Ur(x, g), (x,8) € P(3), be a linear operator on 9" defined by

[Um(x, &)f (¢, &) = (¥, &)(x, 8)).

It is well-known that (U7, &) is an irreducible unitary representation
of P(3) associated with V,,(3) and r,,.. We prefer to realize this repre-
sentation in L*V,,(3), dy). For this purpose, note that a map p(w,(z)w(f))
of R X (0,2r) into V,,(3) is a diffeomorphism onto an open dense set of
V,x(8), and fix a Borel measurable section s, of V,,(3) into G such that
8, o pw(2)0y(0)) = 0,(t)w,(f) for (z,0) e R X (0,2z). Then we can define an
equivalent representation (U, L}(V,,(3), dy)) as follows.
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o U(x, )f(3) = ¢, (&)f(r-8)
' ©, s.(M(x, &) = (', 8)(0,5(y-8), 8 eG,.

Clearly (z,6) e R X (0, 27) is a system of coordinates on an open dense set
of V,,(8). Simple calculation yields

(Yo, Y1, ¥2) = M(shz,chrsind, chrcos8), dy=chtdrdd.

Therefore, by identifying L*(V,,(3), dy) with $7* = L*(R X (0, 2r), ch = dzdf)
in a trivial manner, we obtain a representation (U, ) equivalent to
the one (U™, §»*) above. From now on the former realization will be
discussed. By (2.1) it is easy to see that

U”"(t, O, 0, e) — ei}/ltshr .

Let w;, 1 < j < 3, be an infinitesimal operator of the one-parameter unitary
group U”* (0, o,(?)), and put

d= —ovi— o)+ w3, F,=— 0 Fiw,, H =1io;.

To be more precise, 4 stands for the selfadjoint extension of a symmetric
operator — o} — @} + w} whose domain is the Garding space, while the
domains of F, are the intersection of the domains of o, and w, Using
(2.1), we can easily get expressions for the restrictions w,|Cy(R X (0, 2r)).

That is,
@, = cosfd, —thrsindd, + ipsind/chr,
@, = — 8infd, — thrtcosfd, + iypcosf/chr,
0)3 = ap .
In particular,
F,= —e"*0, Fthrd, F y/chr).

Put 7'y = {fe " ; Hif = kf}, ke Z/2. Then " = >, @ # '}, since eigen-
values of H; lie in Z/2 (see Lemma 2.1). Furthermore, it is not hard to
show that #}* = {0}, ke Z + ¢, and

Wt = (f()e-™; fe LR, ch)}, ke Z + .

Now put W, = L¥(R), ke Z/2, and define an onto isometry Ji*: # 7 —W,
by J7(f(c)e ***) = f(r)¥/chz/2z. Then an onto isometry J7:: " —»W: =
S ezee W, arises naturally, namely J7¢ = > ;... @ J7*. It is immediate
that
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(2.2) JeUn(t[M, 0, 0, e)J -t = ettshe
Using the explicit forms of w;, 1 < j < 3, we obtain, for ke Z + ¢,

Tp Ayt = 2, + 14,

2.3
( ) JIZ;:IF::JIZ,‘_I = +,k,p ¢

See (1.1) and (1.3) for the definition of %, , and F. , , respectively. To
be more precise, we can verify the equality (2.3) only on Cy(R). Since
Jiedd ! is selfadjoint, the first equality in (2.3) follows from Theorem 4.3
[6, p. 287]. On the other hand, the second equality is understood to hold
on H\(R). We regard Dj . (see (1.31)) as a subspace of W, and introduce
closed subspaces 27 CW:, e =0, 1/2, and 2% C W° as follows.

93:’5 = ZkezH (-B JI?;’E_IDI’.]:,:!: ’

2.9
D% = Zkez ® J(I)c’o—l k,sign(£k+1/2) *
Now we are ready to state main theorems of this paper.

TuEOREM 2.1. Let @ be a closed proper subspace of 7. Then 2 is
P (3)-invariant iff it coincides with one of 27° (and 2%, provided (y,¢) =
(0, 0)).

THEOREM 2.2. The representations of SU(1, 1) realized in 27¢, 2°} and
D% decompose into irreducible ones, respectively, as

] -
IR T(-l/2+z‘y.s)d7] @ Z—kez+ +14e D T&,s) ’
.

@D
j T ipiinndy,
Ry
® .
[ Tiiinn®® 3 e ® (T ®iTi)

See the following passage for the definition of the representation T'_,/.;,..
and T% ..

Remark. 1t is known [8] that the representation of SU(1,1) in §7*
decomposes into irreducible ones as

@
2 Temean@® s ® T ® Tho)

The rest of this section will be devoted to the proof of the above
theorems. We begin by reviewing some properties of irreducible unitary
representations of G = SU(1,1). We retain the notation due to Vilenkin
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[10, Chapter VI]. Thus T, with either (¢,¢) = (— 1/2 4 i5,0), >0, or
(€, e) = (— 1/2 + ip, 1/2), 5 > 0, stands for a representation belonging to the
continuous series, while T',, with — 1< ¢ < — 1/2 is a representation
belonging to the supplementary series. In this paper the representation
T, with either (4,¢) = (4,0), — 4eZ, + 1, or (4,¢) =(4,1/2), — LeZ,
+ 1/2, is said to belong to the discrete series, even though Tt is not
a member of the discrete series in the sense that it is not contained in
the regular representation of G as a direct sum component. Recall that
C>(T) (resp. a subspace of C=(T)) is dense in the representation space
H,, (resp. H?,) of T, (resp. T%. ).

LemmA 2.1. For the irreducible unitary representation T, . or T, of
G = SU(1,1), define operators w,, 1<j<3, F,, H, 4 and spaces W ,,
ke ZJ2, as for the representation (U™, ). Then # ", = {exp{— i(k — ¢)6}}
if keZ + ¢ and if exp{— i(k — )6} lies in the representation space, while
W, = {0} otherwise. In addition,

Fewt®=" = (& k= et = — ¢ +1).

Proof. The function exp{— i(k — ¢)0} is known to lie in %", if it
belongs to the representation space. Since such functions form a complete
orthogonal basis of the representation space, dim %", < 1. Thus %", is
obtained. The remaining part of the lemma is well-known [10, p. 299 and
p. 334]. The sign of (¢ + 1) on p. 334, however, is misprinted. Q.E.D.

A corollary of the next proposition plays an important role in our
discussion.

PrOPOSITION 2.2. Let the notation be as in Lemma 2.1. Each iw,,
1 < j <38, restricted to the algebraic sum X;.,,® W is essentially self-
adjoint in the representation space.

Proof. Let H,,, be the algebraic sum 2, @ #",, and denote by &, the
restriction w,;|H,,,. Set, further, C* = C~(T) N H,,, where T stands for
the unit circle and H,, is the representation space. Since a function
T...(@f(’) or T ,(8)f(e’) is smooth on G X T for any fe C=, C* lies in
the domain of w; and invariant under T, or Tf%,. Here we used the
fact that the uniform convergence in C=~ implies the convergence in H, ..
Let @; be the restriction w,|C=. We shall show that i®, is essentially
selfadjoint. Evidently i@, is symmetric, so it remains to show that the
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image (w; — «)C> is dense in H,, for any «, Rea = 0. For this purpose,
assume that an f in H,, is orthogonal to the image. Then, since T, .(g)
or T% ,(g) leaves C> invariant, we have

<T(l,e)(a)j(t))(wj - 0()¢, f> = O ) . ¢ € Cm ’

or a similar relation for 7'¢,. Multiply the both sides by e *, and inte-
grate on B, or — R, according as Re « is positive or negative. Then it
follows that <{¢,f)> = 0, which implies f= 0, as desired. Thus i®; is
essentially selfadjoint. To complete the proof, it suffices to show that the
closure of @; is an extension of @,, for &, C @,. To this end, we note first
that @, is a differential operator with smooth coefficients on 7. Secondly,
the partial sum of the Fourier series for any fe C~ lies in H,, and they
and their derivatives uniformly converge to f and its derivative respectively.
Now clearly the closure of @&, is an extension of @,. Q.E.D.

CoroLLARY 2.3. For the irreducible unitary representations T, be-
longing to the continuous series and T7% , belonging to the discrete series
in our sense, define £*-spaces ¢}, and ¢;% as follows.

ﬁ,s = {(ak)lceZi»a;Zklaklz < °°}9

0= {(ak)kez+s,$k+320; Jplaef < oo}

Put ¢;,.={(a)eb,; a,=0,|k| >n, for some neZ.}, and define 4%,
similarly. Then operators ia;, 1 < j < 2, with domain ¢;,, (resp. ¢;%,) are
essentially selfadjoint in 4;, (resp. f£%), where &; are defined as follows.
Let f, = (a.) be an element of either ¢}, or ¢3% such that a, = 1 and a;. = 0,
K +k, and set F. = — &, F io,. We require

Fifk = 7 ‘/772 + (k =+ 1/2)fo¢1 in 42—1/2”'7,; ’

FVEFTOESL L£ Dfeuw  in £,
+ VEF HET+ L+ Df, in £3.

Proof. Let the notation be as in Lemma 2.1, and set
e, = my,exp{— i(k — ¢)0}/|exp{— i(k — ¢)0}| € H,,., where |m,| = 1.

In case (¢,¢) is a parameter of the continuous series, we can choose m,

so that m,/m,_, = — |k + £|/(k + ¢). In other cases, set m;, = 1. Then it
can be easily seen that the restriction of w,, j = 1, 2, in Proposition 2.2
is unitarily equivalent to &; in the above lemma. Q.E.D.

https://doi.org/10.1017/50027763000020006 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020006

UNITARY REPRESENTATIONS 169

The next lemma is concerned with a pair of one-parameter unitary
groups.

Lemma 2.4. Let H;, j = 1, 2, be Hilbert spaces, and Uy(t) be one-para-
meter continuous unitary groups on H, with the infinitesimal operators
Q,=dU®)[dt,-.. If H, is a closed subspace of H, and there exists an
essentially selfadjoint operator i) such that @ C 2,, j = 1, 2, then U(t) =
U(t) on H,.

Proof. Let 2 be the closure of 2. Then i is selfadjoint and clearly
£ < 92,. Consequently, for any ne Z, + 1 and h e H, we have

Q1 —n Q) k=021 —n'2)h, j=1 2

That is, 21 — n7')*' = 2,1 — n'2,)" on H,. By the representation
theorem for the continuous semigroup [11, p. 248] we get

(exptQ)h = lim{exp t2(1 — n~'Q)"'}h = (exptR,)h, heH,.
Q.E.D.

We return to the representation (U7, $7¢). Recall the definition of
the subspaces ]5,’2,1, D7 . and the isometry I7¢ introduced in (1.34). Let
us define auxilary Hilbert spaces D7+, D%, Dv+, D%, D7t and D% as follows.

_ 0,0 __ 0
D7 = Zkez“ ® DZ,i s D% = Z’kez @ ch,sign(ik+1/2) s
Ynse — 5’ 0,0 __ o
Dy = 2k€Z+s ® D;{?,i 5 £1 = ZkeZ @ Dk,sign(:k+1/2) ’
A ~ ~ A

— 0,0 0
Dy = Skez“ ® D/Z,: , DY = Zkez @ Dk,slgn(ik+l/2) .

In terms of the isometries #, : D}, — Dy, and I7%: D}, — ﬁz,i we can
define onto isometries F7¢: Du¢ — Due, F00: DM — DO e : D1t — ﬁ’g‘
and I%: D% — D% in an obvious manner. Let DA';*; be a dense subspace
{(h) e D7*; hye C(R,) ®E, ., h, = 0 for large |k}, and put
oy, = ([Fpd») Dy, .
Similarly we define 130);2,6 and 2% ..
LEmMA 2.5. Let w;, j = 1, 2, be the infinitesimal operator of U0, w,(2)).

Then the restriction iw;| D7, is essentially selfadjoint in 27*. In case (4, ¢)
= (0, 0), so is the restriction iw;|2%), in D).

Proof. Only the operator iw,| 28, 1 < j < 2, is to be discussed. Denote
it by ia;, and set @; = IP°F LTG0 (I F T, F, = — &, F id,. First,
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suppose k is a negative integer, we recall the definition of ¢, , given after
Lemma 1.7. Evidently {#.e,,.;n =4k k+ 1, .-, — 1} is a basis of E,. On
account of (1.33) a closed subspace E,, —neZ, + 1, of Do spanned by
{Fe,n; B =n,n—1,-..}is invariant under F +. Moreover, Corollary 2.3,
together with (1.33), implies that i, is essentially selfadjoint in E,. As
one can see easily, this assertion is valid even for ne€ Z, + 1. It remains,
therefore, to show the essentially selfadjointness of id; in Y., ® LY(R.,)
- ﬁ‘{"’. To this end, let C, . be the algebraic sum X.., ® C(R,), and we
shall prove that the image (id;, — 2)C,, ., Im 2 & 0, is dense in X, ., @ L}(R.).
If A = (h,) is an element of C, , such that A, = O for ' + &, then we have
by (1.35) the following.

;M2 = (- -+, 0, () hu(2), 0, b, (D) P (D), 0, - - -),

where a,, and b;, are smooth functions on R,. We consider an operator
i) in £ = Y., ®C with domain £ = {(a,) € ¢*; a, = 0 for large |k|}
such that

id)j('z)ek = ( Tty O, ajk(z)’ 0’ bjk(l)y 0’ s )

for e, =(---,0,0,1,0,0, --.). It follows from (1.35) and Corollary 2.3 that
id,(2) is essentially selfadjoint. Suppose an h in 2., ® L*(R,) is orthogonal
to (id; — 2)Cy,., Imz #+ 0. Then we obtain

a () b (2) — 2¥h(2) + b;(D Dy, (2) =0 ae. on R, .

Since id,(2) is essentially selfadjoint in 2, (h(2)) is a zero vector in ¢ a.e.
This means 2 =0 in 3,., ® L*(R,). We have shown that i@, is essentially
selfadjoint in 2., ® LYR,), for it is symmetric. Q.E.D.

We are ready for the proof of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. We shall prove the sufficiency first. Set 27
= NWy, 00, =9% N 7. It is evident that U0, wy(t)) leaves
27 (and 2%, as well, provided (3, ¢) = (0, 0)) invariant. By (2.2) and
Theorem 1.3 U™* (¢, 0,0, e), t > 0, also leaves 27 invariant. We note that
P.(3) is topologically generated by the subsemigroup {(z, 0, 0, €); £ > 0} and
the subgroup {(0, g); g€ G}, and that so is G by one-parameter groups
w (), j =2, 3. To complete the proof of sufficiency, it is enough to show
that U?¢(0, w,(f)) keeps 27¢ (and 2% as well, if (3, ¢) = (0, 0)) invariant.
But this fact is an immediate consequence of Lemmas 2.4 and 2.5. Secondly,
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we shall show the necessity of the condition. Assume that 2 is a P,(3)-
invariant closed proper subspace of . Since (¢, 0, 0, ¢) € P(3) commutes
with (0, w,(s)) € P(3), 27 = 2N # ¢ is invariant under U”*(¢, 0,0, ¢e), t > 0.
Moreover, 2 being G-invariant, we have

49y c 2y,  F.9p° C 975, keZ2.

Thus 2 must coincide with one of 27 (and 2%, provided (3, ¢) = (0, 0))
in virtue of (2.2), (2.3) and Theorem 1.4. Q.E.D.

Proof of Theorem 2.2. Let 27 and 2%°., be the same as in the above
proof. First consider the case ¢ = 1/2. Then 2}% = {0}, k€ Z and

dim (2. © F,. 974, ) =0, keZ, + ¢,
(2.5) dm @y 0 F .95, )=0 or 1
according as — k=1/2 or —keZ, + 3/2.
These relations imply that among the representations belonging to the

discrete series only the representations 7., — k€ Z, + 3/2, are contained
with multiplicity one in 27¢. Since the following unitary equivalences hold

®
(4 — 1)\ Dy = Lo\ Dl =~ L 2dz,
+
the representations T'_,,;,.,, 7 > 0, are contained in 27* as

®
J T<—1/2+z‘n,s)d77 .
R

Consequently the representation (U7, 27¢) of G admits a decomposition
as stated in Theorem 2.1. We can argue similarly for the representation
of G in 27¢. Secondly, assume that ¢ = 0. We shall confine our discus-
sion to the representation (U™, 2!). Since # '} = {0} for ke Z + ¢, 2})
={0}, ke Z + 1/2. Moreover, dim (2% O F.2}%,) = 1 for ke Z\{0}. This
means that among the representations in the discrete series only 7',
— keZ, + 1, are contained with multiplicity one in 2?°. On account of
the following unitary equivalences

D
(4 — 1/4)| 252 ~ 2, .| D5, :j 2da.
Ry

We conclude that the representations T_i;.:,,0, 7 > 0, are contained as

©]
j T(—l/2+iq,0) d7]-
R4
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We have verified Theorem 2.2 for the representation in 2%°, Q.E.D.

Appendix

The first lemma is concerned with an n-th order equation assuming
the following form,

(A1) 2"w™ + 2t ez, HwT Y 4 oo 4 ez, Hw =0,

where ¢;, 1 < j < n, are holomorphic in {|z]| < §,} X {|4] < é,}, ¢,(0, 2) being
constant.

LEmma A.l. (1) If the above equation has a solution of the form
2°(1 + zh(z, log 2)), then « is an indicial root, that is,

A2 @—D--(@a—n+D+c0,D(@—1)---(a—n+2)+---+¢,0,2)=0.

(i) Suppose «;, 1 < j < k, are roots of (A.2) such that a; — a;,, is a
positive integer and that there are no other roots in Z, 4+ a, Assume
further that «;, 1 < j < k&, is a simple root while «, is an m,-ple root. Then
there exists a system of solutions wy(z, 2), 1 <j <k + m, — 1, such that w;,
being holomorphic in {0 < |z2| < e; arg z + =n/2} X {|2] < 8,} for some positive
¢ depending on &, takes the following form.

z(1 + zh(2)), j=1,
z*(1 + zh(z, log 2)), 2<j<k,
z((log 2)’~* + zh(z, log 2)), R<j<k+m,

where h(z2) and h(z, log z) stand for, respectively, a holomorphic function
and a polynomial in log z with holomorphic coefficients.

Proof. To verify (i), it suffices to compare the coefficients of z* on
the both sides of (A.1). The Frobenius method yields (ii) [1, p. 133]. In-
deed, put L = z*d*/dz" + 2z"'c,d[/dz"' + --- + ¢,, and denote by f(a) the
polynomial on the left side of (A.2). As is well known, we can find a
formal series

3,2, 2, @) = 2° §”jo d, (4, @z°,  dy=(a—a),
-

such that L¢; = f(a)z*(e — «;)’~'. Take & so small that there is no roots
of f(a) in {ja — a;| < 8} except for ;. Then it can be shown that d;,(2, @)
is homomorphic and |d;,(2, @)| < K***', K > 0, in {la — a;| < 8} X {|2] < d,}.
Setting a; = «, for j > k, it suffices to put
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wy(z, ) = @foa)zt, ¢z ha),  1<j<k+m,.

By Osgood’s lemma [3] w; is holomorphic in {0 < |z| < 1/K; arg z # n/2}
X {12l <6} QE.D.

Next consider a differential equation
(A.3) dldzw = Az, )w, Az, )= > A,Rz",
m=-1

where A(z, 1) is an M,-valued holomorphic function on {0 <|z| <4} X
{Ia] < 8y}, A_i(0, 2) being constant.

Lemma A.2. (i) If the above equation has a solution of the form
2*(p + zh(z, log 2)), then (A_, — a)p = 0.

(i1) Assume that «;, 1 < j < k, are characteristic roots of A_, such that
a; — a,;,, 1S a positive integer and that there are no other characteristic
roots in Z, + «,. Assume further that a;, 1 < j < k, is a simple root. Then
there exists a system of solutions w(z, 1), 1 <j < k, such that w,, being
holomorphic in {0 < |z| < ¢; arg z + =/2} X {|2] < §,} for some positive ¢ de-
pending on 8, takes the following form.

2(p, + 2h(2)) for j =1, 2(p; + zh(z,log2)) for 1 <j <k,

where (A_, — a;)p, = 0. The functions h(z) and h(z,log 2) stand for the
same as in Lemma A.l.

Proof. Compare the coeflicients of z*-! on the both sides of (A.3).
Then (i) follows. The Frobenius method yields (ii) [1, pp. 136-137]. To be
more precise, let ¥(z, 4, a, s,) be a formal series >, _,s,,2™** such that ' — A+
= (@ — A_)sz*"!, where ' denotes the formal series > ,n_((« + m)z**"""
Then each component of s, (m > 1), is a rational function of @. Let & be
small enough so that only «, is a characteristic root of A_, in {ja — ]
< 8}. When s, = p,, there exists a positive K such that |s,(1, &)| < K*"*!
in {2] <&} X {la — a;] <3d}. We can set wyz, ) = (2, 2, ¢, p;). When
s = (& — a)’"'p; (j > 1), 5,(4 a) is holomorphic and |s,(2, o)] < K*™*' in
{12l <0} X {le — a;] < &} for some positive K depending on 4§, In this
case, set

wj(z, '2) = (a/aa)i;}rj (29 2’ &, 80) ) ] >1.

The desired analyticity follows from Osgood’s lemma [3]. Q.E.D.
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