A GENERATION PROCEDURE FOR THE SIMPLE 3-POLYTOPES WITH GYCLICALLY 5-CONNECTED GRAPHS

JEAN W. BUTLER

In this paper we derive a generation procedure for the simple (3-valent) 3polytopes with cyclically 5-connected graphs. (A graph is called cyclically n-connected if it cannot be broken into two components, each containing a cycle, by the removal of fewer than n edges.) We define three new types of face splitting and we show, in Theorems 16 and 17 , that the simple 3 -polytopes with cyclically 5 -connected graphs are exactly the polytopes obtained from the dodecahedron by these face splittings.

We clarify our terminology with a definition. The polytope G^{\prime} will be said to be obtained from the polytope G by a simple face splitting if G^{\prime} is obtained from G by adding a new vertex on each of two distinct edges of some face of G and a new edge connecting these vertices across the face, as illustrated in Figure 0.

Procedures for the generation of all 3-polytopes from the tetrahedron have been given by Eberhard [3], Brückner [2], Steinitz [13], Steinitz and Rademacher [14]. See Klee [10] and Grünbaum [8;9] for a summary of these results. From one of the several proofs of Steinitz's theorem, given in Steinitz and Rademacher [14], one sees that the simple 3 -polytopes whose graphs are cyclically 3 -connected, that is all simple 3 -polytopes, are exactly the polytopes generated from the tetrahedron by simple face splittings. Kotzig [11], Faulkner [6] and Faulkner and Younger [7] have shown that the simple 3-polytopes with cyclically 4 -connected graphs are exactly those polytopes obtained from the

[^0]cube by successive simple face splittings performed on non-adjacent edges of a face, that is, such that neither of the two new faces is a triangle.

Following the notation of Kotzig [12], a graph will be called a Z-graph if it is cyclically 5 -connected, planar and 3 -valent. A set of edges, X, of a graph G is a cut if removing the edges separates G into two components and no proper subset of X has this property. The components are called the banks of the cut. A cut will be called non-trivial if each bank contains a circuit, trivial otherwise. If the cardinality of the cut is n, it will be called an n-cut. We note that if X is a 3 -cut in a Z-graph, it must be a trivial cut, and therefore one bank must be a vertex. Similarly, if X is a 4 -cut in a Z-graph, it is a trivial cut and one bank must consist exactly of one edge with its two vertices. A set of n distinct faces, s_{1}, \ldots, s_{n} of a graph, G, is called an n-ring if there exist distinct edges a_{1}, \ldots, a_{n} in G such that

$$
s_{i} \operatorname{Adj} s_{i+1} \text { on } a_{i}, 1 \leqq i<n, \text { and } s_{n} \operatorname{Adj} s_{1} \text { on } a_{n}
$$

and $\left\{a_{1}, \ldots, a_{n}\right\}$ is an n-cut in G. It is called a non-trivial n-ring if the cut is a non-trivial n-cut. We will use the notation s Adj $t(s$ adjacent to t), to indicate that the two faces, s and t, have a common edge, and the notation s Adj (e) t or $s \operatorname{Adj} t$ on e, to indicate that s and t have the common edge, e.

We now define three new types of face splitting and the corresponding reductions. Note that these reductions, as all inverse operations, are not always performable in the class of Z-graphs. In fact, whether or not these reductions can be performed plays an essential rule in the proof of our main result, Theorem 16.

Face splittings.

Type 1 is any simple face split, as defined above, which does not create a face with fewer than five sides.

Type 2 is the split of two adjacent pentagonal faces into four pentagonal faces, as illustrated in Figure 1, by introducing four more vertices and six more edges.

Figure 1

Type 3 is the split of a pentagonal face into six pentagonal faces, as illustrated in Figure 2, by the introduction of ten more vertices and fifteen more edges.

Figure 2

Reductions.

Type 1 is the merging of any two adjacent faces by removing the common edge and suppressing the two associated vertices.

Type 2 is the reduction of four pentagons, adjacent as illustrated in Figure 3, to two pentagons by removing the two edges indicated by dark lines, and suppressing the associated vertices.

Figure 3

Type 3 is the reduction of six pentagons, adjacent as in Figure 4, to one pentagon by removing the ten edges indicated by dark lines and suppressing
the associated vertices.

Figure 4
Lemma 1. If G is a Z-graph and G^{\prime} is obtained from G by any face split of Type 1, 2, or 3 then G^{\prime} is a Z-graph.

Proof. Clearly, these three face splits preserve 3 -valency, planarity and cyclically 5 -connectedness.

Lemma 2. If G is cyclically n-connected, $n \geqq 4,3$-valent and planar, and G^{\prime} is obtained from G by any reduction of Type 1, 2 or 3 , then G^{\prime} is 3 -valent, planar and 3-edge connected.

Proof. Assume G is cyclically n-connected, $n \geqq 4,3$-valent and planar. It follows that G is 3 -edge connected and cannot have a non-trivial k-cut, $k<4$. Clearly, by the nature of our reductions, G^{\prime} is 3 -valent and planar. If G^{\prime} is not 3 -edge connected then there is an m-cut, $X, m<3$, in G^{\prime}. Since G^{\prime} is planar and 3 -valent, each bank of the cut contains a cycle. Therefore X is a nontrivial m-cut in G^{\prime}.

If the reduction is of Type 1 on e, as in Figure 5 , with a and b the two edges in G^{\prime} which are joined by e in G, we cannot have a and b in the same bank of X, nor $\{a, b\}=X$, because then there would be a non-trivial m-cut in G. If a and b are in opposite banks of X then $\{e\} \cup X$ is a non-trivial 3-cut in G, which is impossible. If $a \in X$

Figure 5
and $b \notin X$, again, we can construct a non-trivial m-cut in G by including e in the same bank as b.

If the reduction is of Type 2 on the edges e and f, as illustrated in Figure 6, then clearly $X \nsubseteq\{a, b, c\}$, since the third edge would connect the two banks.

Figure 6

If a only, or b only, is in X we could construct a non-trivial m-cut in G. We cannot have c only in X. If a, b and c are all in the same bank, then X is a non-trivial m-cut in G. Finally, if a and c (or b and c) are in different banks we can construct a non-trivial 3 -cut in G.

If the reduction is of Type 3, as illustrated in Figure 7, and $X=\{a, b\}$ then

Figure 7
$\left\{a_{1}, b_{1}\right\}$ is a non-trivial 2 -cut in G. If $X=\{a, c\}$ then $\left\{a_{1}, g, c_{1}\right\}$ is a non-trivial 3 -cut in G. We cannot have exactly one of the edges a, b, c, d or h in X. If none of the edges a, b, c, d, h are in X, they must all be in the same bank and X is a non-trivial m-cut in G. This establishes the lemma.

Lemma 3. If G is a Z-graph and G^{\prime} is obtained from G by one of the three reductions, then either G^{\prime} is a Z-graph or G^{\prime} has a non-trivial n-cut, $n=3$ or 4 .

Proof. By Lemma 2, G^{\prime} is 3 -valent, planar and 3-edge connected, hence cyclically 3 -connected. Therefore, if G^{\prime} is not a Z-graph, G^{\prime} must have a nontrivial n-cut, $3 \leqq n<5$.

The following two lemmas are special cases of [6, Lemma 3.2].
Lemma 4. If G is a Z-graph, e an edge of G such that removing it creates a graph G^{\prime} which is not a Z-graph, then the edge e belongs to a non-trivial 5-cut in G.

Proof. Removing e is a reduction of Type 1. By Lemma 3, G^{\prime} has a nontrivial n-cut, $X, 3 \leqq n<5$. Now e must join the two banks of the cut, otherwise we would have a non-trivial n-cut, $n<5$, in G. Hence $\{e\} \cup X$ is a non-trivial $(n+1)$-cut, in G. Since G is a Z-graph; $n+1=5$, and G has a non-trivial 5 -cut containing the edge e.

Lemma 5. If G is a Z-graph for which no Type 1 reduction is possible then every edge of G belongs to a non-trivial 5 -cut in G.

Proof. Let e be any edge of G. Removing e creates a non- Z graph, since no Type 1 reduction is possible. By Lemma 4, e belongs to a non-trivial 5 -cut in G.

The next lemma is a special case of [6, Lemma 2.7].
Lemma 6. If G is 3 -valent, planar, cyclically n-connected, $n \geqq 4$, and X is a non-trivial n-cut, then no two edges in X are adjacent in G.

Proof. It two edges in X were adjacent in G, since G is 3 -valent there is a third edge at the common vertex. This edge is in the same bank as the common vertex and therefore could replace the two edges in X, giving an ($n-1$)-cut in G. This is impossible since G is cyclically n-connected. This is a generalization of [11, Theorem 8].

Lemma 7. If G is a Z-graph, X a 5 -cut in G, then any face of G contains exactly 0 or 2 members of X.

Proof. By [11], any circuit in G contains an even number of edges from any cut in G. Therefore, the perimeter of any face has 0,2 or 4 members from X. But if the perimeter of a face, s, contained 4 members of X, there would be four faces, each adjacent to s on a member of X, and each of these four faces would have to have another edge belonging to the set X. But this is impossible because X has only five elements and since G is 3 -edge connected no two faces of G can be adjacent on two distinct edges.

Lemma 8. If G is a Z-graph, X a non-trivial 5 -cut in G, and $a \in X$, then there
exist 5 distinct faces, $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$ in G with

$$
s_{0} \operatorname{Adj} s_{1} \operatorname{Adj} s_{2} \operatorname{Adj} s_{3} \operatorname{Adj} s_{4}, s_{4} \operatorname{Adj} s_{0} \text { on } a
$$

and no other adjacencies among these 5 faces.
Proof. Let s_{0} and s_{4} be the two faces adjacent to the edge $a, s_{0} \operatorname{Adj} s_{4}$ on a. By Lemma 7, s_{0} has two edges in X. Let b be the other edge, and let s_{1} be the unique face such that $s_{0} \operatorname{Adj} s_{1}$ on b. Then $s_{1} \neq s_{4}$ or we would have a nontrivial 3 -cut in G. Since G is cyclically 5 -connected we can continue in this manner until we get five distinct faces, $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$ with

$$
s_{4} \operatorname{Adj}(a) s_{0} \operatorname{Adj}(b) s_{1} \operatorname{Adj}(c) s_{2} \operatorname{Adj}(d) s_{3} \operatorname{Adj}(e) s_{4} \text { and } X=\{a, b, c, d, e\} .
$$

Furthermore, there can be no other adjacencies among these five faces.
Lemma 9. If G is a Z-graph containing the configuration of Figure 8 and the edges a, b and c belong to a 5-cut, X, in G, then the face D is a pentagon.

Figure 8

Proof. Assume D has 6 or more sides. The perimeter of D cannot be the only cycle in the bank of X in which it is contained, since that would require at least 6 edges in the cut X. Hence if the cycle uses the edges x, y, u, v they can be replaced by the $\operatorname{arc} z$, and hence the edges a, b, c in the cut can be replaced by the edges x and v. This creates a non-trivial 4 -cut in G. Since G is a Z-graph, this is impossible. Therefore D is a pentagon.

Lemma 10. If G is a Z-graph in which no reductions of Types 1 or 2 are possible and G contains the configuration of Figure 9 then one of the two faces A or B is a pentagon.

Figure 9
Proof. Removing the edges k and j produces a graph G^{\prime} containing the configuration of Figure 10. By Lemma $3, G^{\prime}$ has a non-trivial n-cut, S,

Figure 10
$3 \leqq n<5$. The faces C and D cannot both be included in one bank of S or S would be a non-trivial n-cut, $n<5$, in G. Also,

$$
\{a, b, c\} \nsubseteq S, \quad\{a, b, d\} \nsubseteq S, \quad\{e, b, c\} \nsubseteq S
$$

since each of these three cases would give a non-trivial n-cut, $n=3$ or 4 , in G. Using Lemma 7, and disregarding symmetric cases, either $\{e, f\} \subseteq S$ or $\{e, b, d\} \subseteq S$ or $\{f, g\} \subseteq S$.

Case (a). If $\{e, f\} \subseteq S$ then, by Lemma $9, A$ is a pentagon.
Case (b). Assume $\{e, b, d\} \subseteq S$: If $\{e, b, d\}=S$ then $E=H$ and there is a non-trivial 3 -cut in G which is impossible. Assume $S \neq\{e, b, d\}$. Therefore S
is a non-trivial 4 -cut in G^{\prime}. We have $E \operatorname{Adj} H$ in G^{\prime}; hence $E \operatorname{Adj} H$ in G and $\{u, v, q, p\}$ is a 4 -cut in G, as illustrated in Figure 11. But G is cyclically 5 connected, so this must be a trivial 4 -cut. Therefore one bank consists of a single edge, and either F or B must be a quadrilateral. Hence this case is impossible.

Case (c). $\{f, g\} \subseteq S: S$ cannot be a non-trivial 3 -cut in G^{\prime}, since, if it were, we would have $K \operatorname{Adj} F$ and the ring $K, C^{\prime}, C^{\prime \prime}, F$ would give a non-trivial 4-cut in G.

Assume S is a non-trivial 4 -cut in G^{\prime}. We will show that B must be a pentagon. There must be a face J such that $K \operatorname{Adj} J \operatorname{Adj} F$ in G, as in Figure 12. Note that $B \neq J$ or the ring K, D^{\prime}, B would give a non-trivial 3 -cut in G. Now consider the edge d. By Lemma 4, there is a non-trivial 5 -cut, T, in G, with $d \in T$.

Let us assume that B is not a pentagon. Then by Lemmas 7 and 9 , one of $\{d, j, m\} \subseteq T$, or $\{d, h, k\} \subseteq T$, or $\{d, h, i\} \subseteq T$ must hold. We consider each of these three cases separately, and show that none of them are possible.

Case (c)-1. $\{d, j, m\} \subseteq T: T$ and $S \cup\{k\}$ are non-trivial 5 -cuts in G. As indicated in Figure 13 we rename the faces, C^{\prime}, F, J, K respectively $s_{0}, s_{2}, s_{3}, s_{4}$; and the faces $D^{\prime \prime}, D^{\prime}, H$ respectively $t_{0}, t_{4}, t_{3} . C^{\prime \prime}$ will be labelled both s_{1} and t_{1}. Since T is a 5 -cut, there is a face, t_{2}, such that $t_{1} \operatorname{Adj} t_{2} \operatorname{Adj} t_{3}$. Now t_{2} cannot be s_{0} or s_{2}, since both are Adj t_{0}. Therefore t_{2} and t_{0} are in opposite banks of the 5 -cut $S \cup\{k\}$, with $t_{0} \operatorname{Adj} s_{0}$ and $t_{2} \operatorname{Adj} s_{1}$. Therefore either t_{3} or t_{4} is one of the s_{i}.

Figure 12

Figure 13

But $t_{3}, t_{4} \neq s_{0}, s_{1}, s_{2}$ or s_{4}. Also $t_{3} \neq s_{3}$ or $t_{3}, t_{4}, t_{0}, s_{2}$ would give a non-trivial 4 -cut in G. Similarly, $t_{4} \neq s_{3}$ or t_{4}, t_{0}, s_{2} would give a non-trivial 3 -cut in G. Therefore case (c)-1 is impossible.

Case (c)-2. $\{d, h, k\} \subseteq T$: Rename the s_{i} 's as in Case (c)-1. Rename D^{\prime}, H respectively t_{4}, t_{3}. Rename C^{\prime} both s_{0} and $t_{0}, C^{\prime \prime}$ both s_{1} and t_{1}, as indicated in Figure 14. As before, there is a face, t_{2}, such that $t_{1} \operatorname{Adj} t_{2} \operatorname{Adj} t_{3}$. Now t_{0} and t_{1}

Figure 14
are in the s-ring. Clearly $t_{2} \neq s_{4}$ since $s_{4} \operatorname{Adj} t_{4}$ and $t_{2} \neq D^{\prime \prime}$ since $s_{4} \operatorname{Adj} D^{\prime \prime}$. Also $t_{2} \neq s_{2}$, since if $t_{2}=s_{2}$ the ring $t_{4}, t_{3}, t_{2}, D^{\prime \prime}$ would give a non-trivial 4-cut in G. Therefore t_{2} and t_{4} are in opposite banks of the cut, S, with $t_{2} \operatorname{Adj} s_{1}$ and $t_{4} \operatorname{Adj} s_{0}$. Therefore t_{3} must be a member of the s-ring. Since t_{3} cannot be adjacent to either t_{0} or t_{1} and $s_{0} \operatorname{Adj} t_{1}, s_{1} \operatorname{Adj} t_{0}, s_{4} \operatorname{Adj} t_{0}, s_{2} \operatorname{Adj} t_{1}$ it follows that $t_{3} \neq s_{0}$, s_{1}, s_{4} or s_{2}. Finally $t_{3} \neq s_{3}$, since if $t_{3}=s_{3}$, the ring $t_{3}, t_{4}, D^{\prime \prime}, s_{2}$ would give a non-trivial 4 -cut in G. Therefore t_{3} cannot be in the s-ring and case (c)- 2 is impossible.

Case (c)-3. $\{d, h, i\} \subseteq T$: If $\{d, h, i\} \subseteq T$, by Lemma $9, K$ is a pentagon. We consider the face J which is adjacent to K. Since J Adj F certainly $J \neq C^{\prime}$. Also $J \neq D^{\prime}$ or $D^{\prime}, D^{\prime \prime}, F$ would be a non-trivial 3 -ring in G. Similarly $J \neq H$ or $H, D^{\prime}, D^{\prime \prime}, F$ would be a non-trivial 4 -ring in G, and $J \neq A$ or $A, C^{\prime \prime}, F$ would be a non-trivial 3-ring in G. But J cannot be the fifth face adjacent to K, since if it were then J, A, E, F would be a non-trivial 4 -ring in G. Thus case (c)-3 is also impossible, which establishes the lemma.

Lemma 11. If G is a Z-graph in which no Type 1 reductions are possible and G contains the configuration of Figure 15, then one of the three faces A, B or C is a pentagon.

Figure 15

Proof. By Lemma 5, h belongs to a 5 -cut in G. Let $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$ be the associated 5 -ring, with $s_{0} \operatorname{Adj} s_{1}$ on $h, s_{2}=E$, as indicated in Figure 16. (If $s_{2}=F$ the argument is similar.) Now, either $s_{3}=D$ or $s_{3}=C$. If $s_{3}=D$, by

Figure 16

Lemma $9, A$ is a pentagon, so assume $s_{3}=C$. Consider the edge e. Again, by Lemma $5, e$ belongs toa 5 -cut, T, in G. Let $t_{0}, t_{1}, t_{2}, t_{3}, t_{4}$ be the associated 5 -ring.

If none of the faces A, B or C is a pentagon, then by Lemma 9 either $\{e, b, c\} \subseteq T$ or $\{e, d, f\} \subseteq T$. We treat the two cases separately.

Case (a). $\{e, b, c\} \subseteq T$. We have the configuration of Figure 17, with $t_{3} \operatorname{Adj} t_{4}$. Now, t_{1} and t_{2} are among the s_{i}, t_{0} and t_{3} are in different banks of the cut S, with $t_{0} \operatorname{Adj} s_{1}$ and $t_{3} \operatorname{Adj} s_{2}$. Therefore t_{4} must be one of the s_{i}. But $t_{4} \neq s_{0}, s_{1}, s_{2}$ or s_{3} since all are adjacent to t_{1} or t_{2}. Also $t_{4} \neq s_{4}$ or the ring t_{0}, F, s_{3}, s_{4} would yield a non-trivial 4-cut. So case (a) is impossible.

Figure 17
Case (b). $\{e, d, f\} \subseteq T$: We have the configuration of Figure 18, with $t_{0} \operatorname{Adj} t_{4}$. Again, t_{2} is in the s-ring, and t_{1} and t_{3} are in opposite banks of the cut S, with $t_{1} \operatorname{Adj} s_{2}$ and $t_{3} \operatorname{Adj} s_{2}$. Hence either t_{0} or t_{4} is one of the s_{i}. But $t_{0} \neq s_{1}, s_{2}$ or s_{3} since each is adjacent to t_{3}, and $t_{4} \neq s_{0}, s_{1}, s_{2}$ or s_{3}, since each is adjacent to t_{4} or t_{1}. Also $t_{0} \neq s_{0}$, since then the ring $s_{0}, s_{1}, s_{2}, t_{1}$ would give a non-trivial 4 -cut. Similarly $t_{4} \neq s_{4}$, or the ring t_{4}, t_{3}, s_{3} would give a non-trivial 3 -cut. Finally $t_{0} \neq s_{4}$, or $s_{4}, s_{3}, t_{3}, t_{4}$ would be a 4 -ring, so t_{0} Adj t_{3} which is impossible. This proves the lemma.

Lemma 12. If G is a Z-graph for which none of the three reductions are possible and G contains the configuration of Figure 19, then one of the faces A or B is a pentagon.

Figure 19

Proof. By Lemma 5, h belongs to a 5 -cut, $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$, Assume it is as illustrated in Figure 20. (The case $s_{1}=D$ is similar.) Now either $s_{2}=E$ or $s_{2}=F$.

Figure 20
Case (a). $s_{2}=E$: By Lemma $9, A$ is a pentagon.
Case (b). $s_{2}=F$: Either $s_{3}=H$ or $s_{3}=G$. If $s_{3}=H$, then the ring s_{4}, s_{0}, D, s_{3} gives a non-trivial 4 -cut in G which is impossible. If $s_{3}=G$, then either the ring s_{4}, G, H, B gives a non-trivial 4 -cut in G or B is a quadrilateral, either of which is impossible.

Lemma 13. If G is a Z-graph for which none of the reductions, are possible and G contains the configuration of Figure 21, then one of the faces A, B, C, D or E is a pentagon.

Figure 21
Proof. Form G^{\prime} by a Type 3 reduction, as illustrated in Figure 22. By Lemma $3, G^{\prime}$ has a non-trivial n-cut, $X, 3 \leqq n<5$. The cut X must not contain all of the pentagon, F, in one bank, or X would be an n-cut in G. Therefore X must contain two non-adjacent edges of F, say a and b. But then $X \cup\left\{a_{1}, e, b_{1}\right\} \sim$ $\{a, b\}$ is 5 -cut in G, and by Lemma $9, A$ is a pentagon.

Figure 22

Lemma 14. If G is a Z-graph in which no reductions can be made then G has two adjacent pentagons.

Proof. Since G is a Z-graph, G has no quadrilateral or triangular faces and hence, by Euler's Theorem $[\mathbf{4} ; \mathbf{5}], G$ has at least 12 pentagons. Choose one pentagon, call it s_{0}. Choose an edge, a, of s_{0}. Since no reductions of Type 1 are possible, by Lemma 5 the edge, a, belongs to a non-trivial 5 -cut S in G. Let $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$ be the associated 5 -ring with $s_{0} \operatorname{Adj} s_{4}$ on a. Let b be the edge such that $s_{0} \operatorname{Adj} s_{1}$ on b. Let c be the edge of s_{0} adjacent to both a and b. By Lemma $5, c$ belongs to a non-trivial 5 -cut T in G. Let $t_{0}, t_{1}, t_{2}, t_{3}, t_{4}$ be the associated 5 -ring, as indicated in Figure 23. We have $s_{0}=t_{0}, t_{1}$ Adj s_{0}, t_{4} Adj s_{0}, with t_{1} and t_{4} in opposite banks of the 5 -cut S. Therefore, t_{2} or t_{3} is an s_{i}. But $t_{2} \neq s_{0}, s_{1}, s_{4}$, since they are all adjacent to t_{4}. Also $t_{3} \neq s_{0}, s_{1}, s_{4}$ since they are adjacent to either t_{0} or t_{1}.

If $t_{2}=s_{2}$ then $t_{2}, s_{1}, t_{4}, t_{3}$ is a 4 -ring. Since t_{2} cannot be adjacent to t_{4} we must have t_{3} Adj s_{1} as indicated in Figure 24. But now $t_{2}, s_{1}, s_{0}, t_{1}$ is a non-trivial 4 -ring, which is impossible, so $t_{2} \neq s_{2}$. Again referring to Figure 23, if $t_{2}=s_{3}$ then t_{2}, s_{4}, t_{1} is a 3 -ring and so t_{2}, s_{4} and t_{1} must meet at a common vertex. But then $t_{4}, t_{3}, t_{2}, s_{4}$ is a 4 -ring and since t_{4} cannot be adjacent to t_{2} we must have $t_{3} \operatorname{Adj} t_{4}$ and thus s_{4} is a pentagon.

Similarly if $t_{3}=s_{2}$, then t_{3}, s_{1}, t_{4} is a 3 -ring, and so t_{3}, s_{1} and t_{4} meet at a common vertex. But then $t_{3}, t_{4}, s_{4}, s_{3}$ is a 4 -ring and since we cannot have s_{2} adjacent to s_{4} we must have $s_{3} \operatorname{Adj}_{4}$, and thus t_{4} is a pentagon. If $t_{3}=s_{3}$ by a similar argument t_{4} is again a pentagon. Hence G contains two adjacent pentagons.

Lemma 15. If G is a Z-graph in which no reductions of Type 1 are possible and G has two adjacent pentagonal faces A and B, then there is a third pentagonal face adjacent to both A and B.

Figure 24

Proof. Let c be the edge common to the faces A and B, as indicated in Figure 25 . By Lemma 4, there is a 5 -cut, S, in G, with $c \in S$. Let $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$ be the associated 5 -ring, $s_{1}=A, s_{0}=B$. By Lemmas 6 and 7 either e or $b \in S$, and

Figure 25
either f or $a \in S$. If $\{e, c, f\} \subseteq S$ by Lemma $9, C$ is a pentagon. Similarly, if $\{b, c, a\} \subseteq S, D$ is a pentagon. There are only two other cases to consider, $\{e, c, a\} \subseteq S$ and $\{b, c, f\} \subseteq S$. These are symmetric cases. Therefore, we assume $\{e, c, a\} \subseteq S$. Consider the edge b. By Lemma $4, b$ belongs to a 5 -cut, T, in G. If $\{b, c, a\} \subseteq T, D$ is a pentagon. There are two other possibilities: $\{b, c, f\} \subseteq T$ or $\{b, g\} \subseteq T$. We consider each case separately.

Case (a). Assume $\{b, c, f\} \subseteq T$: Let $t_{0}, t_{1}, t_{2}, t_{3}, t_{4}$ be the associated 5 -ring with $t_{2} \operatorname{Adj} s_{2}$ as indicated in Figure 26. The faces t_{0}, t_{1} are among the s_{i}, and t_{2} and t_{4} are in opposite banks of the cut S, with t_{2} Adj s_{1}, t_{4} Adj s_{0}. Therefore t_{3} must be an s_{i}. But $t_{3} \neq s_{1}, s_{0}, s_{2}, s_{4}$. If $t_{3}=s_{3}$, then t_{4}, t_{3}, s_{4} is a 3 -ring. Therefore t_{4}, s_{3}, s_{4} meet at a common vertex, and s_{2}, s_{3}, t_{4}, C is a 4 -ring. Hence C must be a pentagon.

Case (b). $\{b, g\} \subseteq T:$ Let $t_{0}, t_{1}, t_{2}, t_{3}, t_{4}$ be the associated 5 -ring, with $t_{0} \operatorname{Adj} t_{1}$ on $b, t_{1} \operatorname{Adj} t_{2}$ on g, as indicated in Figure 27, with $s_{2} \operatorname{Adj} s_{3}$ and $t_{4} \operatorname{Adj} t_{3}$. As before $s_{1}=t_{1}$, and t_{0} and t_{2} are in opposite banks of S, with $t_{2} \operatorname{Adj} s_{1}, t_{0} \operatorname{Adj} s_{1}$. Therefore either t_{3} or t_{4} is an s_{i}. Now $t_{3} \neq s_{0}, s_{1}, s_{2}$ since they are adjacent to t_{0} or t_{1}, and $t_{4} \neq s_{0}, s_{1}, s_{2}$ since they are adjacent to t_{2}. Also $t_{3} \neq s_{3}$ since if $t_{3}=s_{3}$ then $s_{3}, t_{2}, s_{0}, s_{4}$ is a trivial 4-ring, and $s_{3} \operatorname{Adj} s_{0}$, which is impossible. And $t_{4} \neq s_{4}$ or $t_{4}, t_{0}, t_{1}, s_{0}$ would give a non-trivial 4 -cut which, again, is impossible. Also $t_{3} \neq s_{4}$, or t_{2}, s_{0}, s_{4} would give a non-trivial 3 -cut in G which is impossible. Finally, if $t_{4}=s_{3}$, then t_{4}, t_{0}, D, s_{4} gives a non-trivial 4 -cut in G, see Figure 28, and hence D must be a pentagon, which establishes the lemma.

Theorem 16. If G is a Z-graph in which no reduction of Type 1, 2 or 3 can be made then G is the dodecahedron.

Proof. By Lemma 14, G has two adjacent pentagons, hence by Lemma 15 three pentagons adjacent at a common vertex, as illustrated in Figure 29.

By Lemma 11, one of the faces A, B, or C is a pentagon, so we have the configuration of Figure 30. By Lemma 10, one of the faces X or Y is a pentagon and we have the configuration of Figure 31. Now by Lemma 10 one of the faces U or V is a pentagon. If U is a pentagon we have the configuration of Figure 32. If V is a pentagon we have the configuration of Figure 33, and by Lemma 12 one of the faces W or T is a pentagon, giving, in any case,

Figure 26

Figure 27

Figure 28

Figure 29
the configuration of Figure 32. By Lemma 13 one of the faces A, B, C, D, or E is a pentagon, giving the configuration of Figure 34, and, by Lemma 12 again, A or B is a pentagon and we have the configuration of Figure 35. But, since G is a Z-graph, G cannot have a non-trivial 4-cut. Therefore G is the dodecahedron.

Theorem 17. The class of 3-valent, convex 3-polytopes whose graphs are cyclically 5-connected is the smallest class which contains the dodecahedron and is closed under splits of Types 1, 2 and 3. Therefore, any such polytope can be

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35
obtained from the dodecahedron by the successive application of finitely many (zero or more) of these operations.

Proof. Let Q be any class of 3-valent, convex 3-polytopes whose graphs are cyclically 5 -connected, which contains the dodecahedron and is closed under the three types of face splitting. Let Z be the class of Z-graphs. Clearly the dodecahedron is in Z, and these splittings all preserve cyclically 5 -connectedness, planarity and 3 -valency. Thus $Q \subseteq Z$. To show that $Z \subseteq Q$, we note that the dodecahedron is in Q, and that if G is in Z and is not the dodecahedron, then, by Theorem 16, a reduction of Type 1, 2 or 3 can be made, producing a Z-graph with fewer vertices. Eventually the dodecahedron will be reached. Hence, by reversing the procedure G can be obtained from the dodecahedron by finitely many of these face splittings and is therefore in Q.

It is also interesting to note that these three face splittings are all essential. Since a face split of Type 1 requires a face with at least six sides, the first split must be of Type 2 or 3 . Since Type 3 introduces ten new vertices we easily see that the 24 vertex polytope obtained by one Type 2 face split cannot be obtained using Types 1 and 3 , and any 26 vertex polytope obtained by a Type 2 followed by a Type 1 cannot be obtained from 2 and 3 alone. By Kotzig [12] we see that a Type 3 face split cannot be produced by any combinations of splits of Types 1 and 2 .

Remark. The referee has informed us that the results presented in the preceding paper have also been obtained by D. Barnette. His article will appear in Discrete Mathematics.

References

1. D. Barnette, On generating planar graphs, Discrete Mathematics 7(1974), 199-214.
2. M. Brückner, Vielecke und Vielfäche: Theorie and Geschichte (Leipzig, Teubner, 1900).
3. V. Eberhard, Zur Morphologie der Polyeder (Leipzig, Teubner, 1891).
4. L. Euler, Elementa doctrinae solidorum, Comment. Acad. Sci. Imp. Petrop. 4 (1752/53), 109-140.
5. Demonstratio nonnullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita, Comment. Acad. Sci. Imp. Petrop. 4 (1752/53), 140-160.
6. G. B. Faulkner, Recursive generation of cyclically k-connected cubic planar graphs, Ph.D. Thesis, University of Waterloo, 1971.
7. G. B. Faulkner and D. H. Younger, The recursive generation of cyclically k-connected cubic planar maps, Proc. Thirteenth Can. Math. Congress (1971), 349-356.
8. B. Grünbaum, Convex polytopes (Interscience, New York, 1967).
9. -_ Polytopes, graphs and complexes, Bull. Amer. Math. Soc. 76 (1970), 1131-1201.
10. V. Klee, Convex polytopes and linear programming, Proceedings of the IBM Scientific Computing Symposium on Combinatorial Problems, March 16-18, 1964. Publ. by IBM Data Processing Division (1966), 123-58.
11. A. Kotzig, Regularly connected trivalent graphs without non-trivial cuts of cardinality 3, Acta. Fac. Rerum. Natur. Univ. Comenian Math. 21 (1968), 1-14.
12. - On a class of irreducible planar 3-valent graphs, Centre de recherches mathématiques, Université de Montréal, Montréal, 1970.
13. E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. 3 (1922), Geometrie part 3AB12, 1-139.
14. E. Steinitz and H. Rademacher, Vorlesungen über die Theorie der Polyeder (Springer, Berlin, 1934).

McGill University,
Montreal, Quebec

[^0]: Received January 2, 1973 and in revised form, May 30, 1973. The results in this paper are contained in the author's doctoral dissertation, accepted at The University of Washington, August 1972. They were presented at the 79th annual meeting of the American Mathematical Society in Dallas, Texas, January 1973 (Notices, 701-05-2, Vol. 20, No. 1, pp. A-35).

