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ABSTRACT

The paper examines a type of insurance contract for which secondary markets
do exist: default risk insurance is implicit in corporate bonds and other risky
debts. It applies risk neutral martingale measure pricing to evaluate the option
for a borrower with default risk, to prepay a fixed rate loan. A simple
"matchbox" example is presented with a spreadsheet treatment.
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1. INTRODUCTION

This paper attempts to illustrate, in a discrete time setting with a spreadsheet
construction, the use of a martingale measure for the pricing of traded
securities subject to both interest rate risk and default risk. We shall encounter
several notions pertaining to the field of insurance, and strong similarities with
classical notions in this field. Notice nevertheless that, when " premiums " and
"reserves" are mentioned, the reader is invited to think in terms of prices
rather than present values.

We shall emphasize the distinction between defining or describing securities
and evaluating them. For this second task, we shall start from the risk-neutral
probability of the financial economics litterature (see HARRISON and KREPS
(1979), DUFFIE (1988) and HUANG and LITZENBERGER (1988)). This probabil-
ity, implied by market considerations such as the absence of arbitrage
opportunities between marketed securities, reflects the market's attitude
towards risk and, in the simple model presented, is supposed to be known: its
determination is left for other research work.

' An earlier version of this work has been presented at the ASTIN Colloquium, Montreux 1990,
and at the Erasmus University Conference on Insurance, Solvency and Finance, Rotterdam 1991,
under the title "Credit Insurance with Prepayment Option".
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Fixed rate default-free loans introduce the notion of financial reserve
(Section 2.3), while risky loans introduce both an insurance process and a
insurance premium payments proces, with the difference of the prices of these
two securities being the proper concept of insurance reserve (Section 3.4).
Prepaying a risky loan is a call on the sum of the negative of the two reserves
(Section 4.2).

Notation: 1 {A} denotes the indicator function of the event A, F, (or F, in the
spreadsheet) denotes the set of events known to occur or not by date t. The
three types of numbers: 11, 7 and 9 refer to columns in respectively each of the
three parts " QusMnfcs imidtopeifiidlert ©ff dtoffaylft rfeik " " Effect of default risk "
and " Value of prepayment option" of the spreadsheet presentation.

2. THE SHORT TERM INTEREST RATE PROCESS

2.1. The discount factor process

There are three trading dates t = 0, 1, 2, for borrowing or lending money on a
default-free or default-prone basis. In columns 11, 1111, and 2S of the first
spreadsheet: Qyartiifes Bmdtepsiradtert ©ff dteffaylffi oi§k, is given the short term
spot rate process r(t), t = 0, 1, 2, where r{t) is the market rate of interest for
borrowing or lending from the date / to te next trading date t +1 on a
default-free basis. The conditional one-period risk-neutral probabilities are all
supposed to be 1/2 (see also ARTZNER and DELBAEN (1990a), ARTZNER and
SHIU (1989), HARRISON and KREPS (1979) and HUANG and LITZENBERGER
(1988)).

The (generalized) discout factor process D is defined in a recurrent way by
the equalities:

£>(0) = 1 and, for t = 0, 1,2: D(t+ 1) = (1 + r(t))~l -D(t).

It is therefore a predictable process (see ARTZNER and DELBAEN (1990a),
DACUNHA-CASTELLE and DUFLO (1986)), that is the actual value of D(t+ 1) is
part of the information available at date t, which shows up in the setting of
D{\), D{2) and D(3) in columns 2, 12 and 2§ which, respectively, relate to
dates / = 0, t = 1 and t = 2. One unit invested at date zero at the short term
rate, and rolled over at each trading date, becomes at date /, \/D(t) units, but
it must be already pointed out that in this model of stochastic interest rates,
capitalisation just described as rolling over, is not the inverse from actualisa-
tion, the second operation being defined tentatively, as " valuing at date s, one
unit available at future date t" (see below). This could be a reason for the
qualifying generalized in definition of D (we omit it in the spreadsheet).

2.2. Description and pricing of the zero-coupon bond price process

It is assumed that, for each "maturity date" t, the zero-coupon bond which
provides, without risk of default, one unit at date t, is traded on the market. In
the absence of arbitrage opportunities between these bonds and the capitalisa-
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tion process of Section 2.1, the zero-coupon bond maturing at date t, has a
("current price") price B(s; t) at date s < t, in date s units, given by:

B(s; t) = E[D(t)/D(s)\Fs], or, for each s' in [s, t]

D(s)B(s;t) = £[/)(*') •-»(*'; OlfJ,
that is, the (discounted) price is a martingale (see GERBER (1979), p. 34 and the
conclusion of TILLEY (1989)) with respect to the information structure and the
assumed risk neutral probability measure (see ARTZNER and DELBAEN (1990b)
3.2, ARTZNER and SHIU (1989), DACUNHA-CASTELLE and DUFLO (1986), 2.2.1,
HARRISON and KREPS (1979) and HUANG and LITZENBERGER (1988), 8.4.8);
this fact appears in the columns 14, 2 and 3 for, respectively, [s = 1, s' = 2,
t = 3] and [s = 0, s' = 1, t = 2 and t = 3]. The name "martingale measure"
is often given to the risk-neutral measure being used, because of this property
of discounted prices under it. Notice that in columns 13 and 2,7, the bond
prices 5(1; 2) and 5(2; 3) are simply the reciprocals of 1 + r(1) and l+r(2),
respectively.

The price B(0; t) could also be considered a candidate for being the
"discount factor" from date t tot date 0, and the choice of terminology is an
open question.

2.3. Financial reserve in a default free, fixed rate, loan
The general principle of mathematically describing a security by what has been
collected out of possession of the security (see ARTZNER and DELBAEN (1990b),
2.1, DUFFIE (1988), 16, p. 148, HUANG and LITZENBERGER (1988), 8.5, p. 229),
leads to consider an adapted stochastic process S (see HUANG and LITZEN-
BERGER (1988), 7.7, p. 189), where S(t) stands for the sum of all payments,
discounted back to date 0, received from date 0 to date t included, out of
possession of the security.

This mathematical description may be contrasted with a legal description as
in SHARPE and ALEXANDER (1990), p. 3, where a security is defined as "the
legal representation of the right to receive prospective future benefits under stated
conditions". It is very important to carefully distinguish between the security
described by the process X, and the pricing process PX, of the security.

The mathematical approach applies of course to the capitalisation process of
Section 2.1 as well as to zero-coupon bonds (see ARTZNER and DELBAEN
(1990a)), where it can be considered as a good modelisation exercise. We shall
start applying it to simple, default-free loans.

A default-free loan of one unit, from date 0 to date 3, which is being paid for
by payment of fixed interest /? at dates 1, 2 and 3, together with repayment of
principal at date 3, is essentially a default-free bond with maturity date 3; it is
the building block of more usual loans which contain an amortization
component. For simplicity we consider only the first type of loan, the exchange
of the two securities:

1 paid at date 0, and
/?, fi and 1 +P paid at dates 1, 2 and 3 respectively.
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The equality of the market prices, at date 0 of these securities, exchanged at
date 0, by the lender and the borrover respectively, is a natural condition in a
frictionless market. It requires that:

1 = 0-B(O; l)+£B(0; 2) + (l+fl) B(0; 3), or, by Section 2.2. with s = 0:

which determines the market rate /? for this loan (see rows 13 to 15, columns
11 to 4).

At a later date s, and depending on the evolution of the short term rate of
interest, the two securities may have different values: the financial reserve
process FR is the difference between the market value of the commitments
(liabilities) of the lender which is 1 in current units (since the lender can recover
the money lent at this current price on the market (see also ARTZNER and
DELBAEN (1990a), 2.2. and ARTZNER and DELBAEN (1990b), 3.3 and Sec-
tion 4.1 below), and the market value of the commitments of the borrower.
This reserve appears in columns 1© and 33.

3. A RISKY, FIXED RATE, LOAN

3.1. Description of the default by a stopping time

An agent with default risk borrows one unit from date 0 to date 3, and may
stop fulfilling his obligations from some random date 3 onwards. The technical
requirement on 8 is to be a stopping time (see ARTZNER and DELBAEN (1990a),
3.1, ARTZNER and DELBAEN (1990b), 2.4, DACUNHA-CASTELLE and DUFLO
(1986), 2.3.1), meaning that, by date t, the event {6 = /} is known to be true or
not. For the interpretation, we notice that, in the worked example, the random
variable 8 is dependent on the spot interest rate process r, but, for ease of the
spreadsheet use, not in the utmost generality: if default has not occured at date
t, the (risk-neutral) conditional probability that it occurs at date / + 1 depends
on the current value r(t) but not on r(t+ 1): see columns 7, 17 and 30 of the
second spreadsheet: Effect of default risk. It is also important to realize that
the model does not make 3 a decision variable, and does not cover moral
hazard phenomena.

As in Section 2.3, the type of loan just considered is the building block for
the study of risky loans with an amortization component. The type we study is
in fact a risky bond which will have level interest rate payments that we analyse
as the sum of the level interest rate P determined in Section 2.3 and a level
default risk insurance premium n to be determined.

3.2. Description and pricing of the loan's insurance viewed as a security

The mathematical approach to defining a security is applied to the one which is
implicit in the risky loan, namely the right granted to the borrower at date of
default: to be dispensed of due interest and principal payments (in this simple
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model the lender has no recourse). This defines a security /, called the
(cumulative, discounted) insurance process or risk process:

1(0) = 0 (see column 5) and, for t = 0, 1, 2 (see columns 15, 28, 38):

/(/+1) = /(0+M9 = t+l}-E[(fi-(D(t+l)+ ... +D(3)) + D(3))\F,].

Notice that we had to price the loan in order to define I. Risky bonds, as well
as risky loans in the case of credit securitization, being traded on the market,
we want to apply to the (discounted) price process PI of the implicit security /,
that is to the insurance prices process, the general rule of financial economics:
"discounted dividends so far collected plus discounted current price form a
martingale" (see ARTZNER and DELBAEN (1990a), 2.1 and 3, ARTZNER and
SHIU (1989), HARRISON and KREPS (1979), HUANG and LITZENBERGER (1988)
8.5 and 8.6). This provides the relations in columns 31, 18 and 8 (in this order),
out of the following equality, used for t = 2, 1 and 0 successively:

PI(t)

3.3. Description and pricing of the insurance premium payments

The level "insurance premium" n asked to the default prone borrower, is of
the " post-numerando " type, since it is paid together with the interest P due for
the past time period. This is a difference with, for example, classical life
insurance, and accounts for the non predictability (see ARTZNER and DELBAEN

(1990a), 3.1, as well as ARTZNER and DELBAEN (1990b), 4.3) of the premium
payments process II, another security, described in columns 6, 16, 29 and 39 by
the relations:

n (0) = 0 and for t = 0, 1 and 2:

n ( f + l ) = Y l ( t ) + n - D ( t + 1 ) - 1 ( 6 > t + l } .

The level premium n has yet to be defined: this has to do with the price of
the security II. Since, at date 0, the security n is given by the borrower, who
will pay the premiums, in exchange for the security /, given by the lender, who
provides the insurance coverage, a frictionless market will require the equality
of the prices at date 0, of II and /, the first price being obtained as the
expectation (at date 0) of all " future benefits " n at date 1, n at date 2 and n at
date 3, under "stated conditions" namely these dates being smaller than
default date 9. This gives the relation:

7Y(0) = n-E[D(\)-\{d> l} + Z)(2)- l{6>2} + / ) (3 ) - l {8> 3}],

as it appears in rows 31 and 32, columns 31 to 39. This reminds us of the
" equivalence principle" of classical life insurance, but we have to notice the
randomness of discounting factors and the risk-neutral character of the
probability measure used.

3.4. The insurance reserve process

After the initial date 0, there is no further reason for the difference of the price
processes of the insurance process / and the premium payments process n , to
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be zero. This difference is called the insurance reserve process and is denoted V
(see columns 19 and 32): from its very definition we see that, as in classical
actuarial mathematics (BOWERS et al. (1986), Ch. 7) it has to do with
conditional expectations of the difference of the cumulative, discounted,
commitments of the "insurer" (the lender, who has no recourse in case of
default) and of the " insured " (the borrower, who has no more debt at date 9).
Notice two differences:

(i) in order to define the reserve as a stochastic process, a function of all dates
and states of nature, we do not restrict ourselves to the stochastic time
interval [[0, 3[[, as actuarial mathematics does (see BOWERS et al. (1986),
p. 192: "for an insured surviving at the end oft years");

(ii) we use a risk-neutral probability, in order to consider market values:
reserves have to do with valuation.

4. THE PREPAYMENT OPTION

4.1. Prepayment of a default-free, fixed rate loan, as swap
from fixed to variable rate

We shall examine in this Section the value of the option which a fixed rate
default-free borrower may ask to the lender: prepaying the loan. We could
have included this value into the net level payments due by the borrower but
chose to separate it, for expository purpose.

If a default-free borrower prepays his loan at date / by paying the fair
interest /? plus the principal, one current unit, he is in fact exchanging the
following securities:

commitment of fixed rate payments of fi at date t + 1, ..., 1 + /? at date 3
commitment of variable rate payments of r (t) at date t + 1, ..., 1 + r (2) at date 3.

The second security is indeed worth A (t) where A fulfills the following
equalities:

A(t) = r(t)-D(t+l) + E[A(t+l)\F,] for t+\<3,

A(t) = (l+r(t))-D(t+l) for t+l = 3, and A(3) = 0,

which allows us to conclude, by backwards induction, that A(t) = D(t) for
t<3 (see also ARTZNER and DELBAEN (1990a), 2.2 and ARTZNER and
DELBAEN (1990b), 3.3). The prepayment of the principal by the borrower at
date t is therefore equal to the current value, namely 1, of the second
security.

This exchange is called an interest rate swap (ARTZNER and DELBAEN
(1990a), ARTZNER and DELBAEN (1990b), 2.3, DUFFIE (1989), p. 269, TURN-
BULL (1987)). The financial reserve at date t, as defined in 2.3, is precisely the
negative of the market value (in date 0 units) of this swap at date t. When the
financial reserve is negative, it is in the borrower's interest to prepay.
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4.2. Prepayment of a risky, fixed rate loan and the two reserves

The case of prepayment at date r by a default-prone borrower is more
complex: it involves paying at date / the amount fi+n+l (i.e. interest,
insurance premium and principal) and, from then on, stopping any interest and
insurance premium payment. This implies that, next to performing the swap
transaction described in Section 4.1, the prepayer also engages in the follow-
ing:

receiving from date t onwards the security II ' consisting of the level
premium payments TT at the various dates t+ 1, ... 9 - 1

and
giving up from date t onwards the security /', the coverage /(8) at date 9.

This second transaction has the (discounted) market value given by a price
difference, namely PU'{t)-PI'{t) which is equal to PYl(t)-PI(t), that is to
the negative of the insurance reserve.

A borrower prepaying at date t receives therefore the negative of the sum of
the financial and insurance reserves, that is the quantity —FR(t)— V(t).

4.3. American prepayment option as an optimal stopping problem

A rational borrower, allowed to prepay at some fixed date t, t = 1 or t = 2,
would do so only if, at this date, the quantity —FR(t)—V(t) is positive,
receiving the (discounted) "exercise gain"

G{t)= 1{8> /}-max{0, -FR(t)-V(t)},

(see columns 21 and 34 of the third spreadsheet: Value of prepayment option).
Notice that we do not speak of " prepayment risk" in this case of rational
exercise; see ARTZNER (1990) for other cases.

We now define a new security S, by S,(s) = 0 if s < t, S,(s) — G(t) if s > t,
for which the (ex dividend) price process would be PS,(s) = E[S,(t)\Fs] if
s < t and 0 otherwise.

If this borrower can prepay at any one of the two dates, he faces the problem
of choosing the stopping time t maximizing the expectation of G(z): this is an
optimal stopping problem arising from the American type of the swap option
he has been granted (see ARTZNER and DELBAEN (1990a), 2.3, DACUNHA-
CASTELLE and DUFLO (1986), 5.1.3).

The solution is described by computing the value PP(t) of the prepayment
option at date /, columns 9, 22 and 34, and by the condition of equality
between exercise gain and option value (no " time value ") for rational exercice,
columns 23 and 35.
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5. CONCLUSION

Stochastic processes are necessary to describe complex contracts, in particular
when payments involved have several sources of randomness, as for example in
credit risk insurance.

For the pricing or evaluation of such contracts, a risk-neutral probability is
the tool allowing averaging discounted payments to be consistent with prices of
related marketed contracts. Research has to done for specifying such a
probability out of some observed market prices.
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