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ON SOLUTIONS OF PARABOLIC EQUATIONS
IN REGIONS WITH EDGES

A. AZZAM AND E. KREYSZIG

In this paper, smoothness properties of solutions of the initial-

Dirichlet problem for parabolic equations in regions with edges

are considered. We obtain bounds for solutions and derivatives,

and prove the Holder continuity of the first derivatives and of

the second derivatives multiplied by a suitable power of the

distance from the edges.

1. Introduction

This investigation is concerned with the behaviour of solutions of

linear parabolic equations in regions with edges, and it may be motivated

as follows. For elliptic equations, the behaviour of solutions near

singularities of the boundary of the domain has been studied under various

assumptions by means of complex analysis, Holder and Sobolev space methods

(of. for example, Dziuk [7], Kondrat'ev [4], Wigley [70], and the review by

Grisvard [3]) and, recently, by methods of geometric measure theory (of.

Simon [S]). The earliest interest in these problems arose from conformal

mapping, in connection with the behaviour of mapping functions near the

boundary (of. Warschawski [9]). Later work also had important applications

in elasticity theory, fluid flow, and numerical analysis ("subtraction of

singularities", estimation of truncation errors in difference methods; of.

Laasonen [5]).

The methods used in the above and related papers do not extend to
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parabolic equations; indeed, in this case, comparatively l i t t l e is known

about general smoothness properties of solutions if the boundary of the

domain has singularities. We shall be concerned with the initial-Dirichlet

problem for parabolic equations

(1) Lu(x, t) = a. .(x)u + a.(x, t)u + a(x, t)u - u = f(x, t) ,
13 xx. ^ xi t

x = (x , xS) , with C (fi)-coefficients, 0 < a < 1 , in a cylindrical

region SI = G x J , where J = {t | 0 < t 5 t } , t > 0 , C c J 2 is a

domain with corners to be specified below, and in (l) we use the summation

convention. We shall introduce a method of obtaining smoothness statements

for solutions of (l) satisfying initial-boundary conditions of Dirichlet

type.

2. Bounds for solutions in a cylindrical sector

The f i rs t step of the method consists of deriving bounds for solutions

of (l) in the special region ft = G x J , where G is a circular sector.

We use the notations

GQ = {(r, 9, 0) | 0 < r < a, 8 € 1} ,

(2) BQ = {(r, 9) | 0 < r < a, 8 = 6 or 6-KO} ,

J2 = {t | 0 < t < *2} , t2 5 t± ,

where I = (6, 3-KD) , the angle u € (0, ir) i s given, 3 > 0 is such that

TT/2 < U + 23 < TT , and r, 8 are defined by x = r cos 8 ,

x = r sin 8 .

THEOREM 1 . Let u be a bounded solution of the problem

(3) Lu = / in f̂  = Ga x J2 ,

W u = 0 on ~GQ and BQ x j _,

where a. .(0) = 6. . , a. . £ C (n ) , and a., a, f are bounded in JT .

Then there exist rQ f (0, a/2) and v € (0, l) such that ih Q , where

Q2 = G2rQ *J2>
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(5) \u{x, t)\ 2

with M > 0 independent of (x, t) .

Proof. We write (l) in the form

Lu = Au + {airSid)uxjc^ * aiux_ + au - K£ = f

and introduce the function

u(x) = 5(r, 9) = -MrV sin X9 (M > 0) ,

assuming that

Then

Lv{x) = (A2-p2)Mru"2 sin X9 + Mh . .{x) [a . .(x)-6 . .)rv~2

VQ t-J VQ

+ Mh (x3 t ) r y " X + Mh2(x

where h. ., ft , fto denote functions which are bounded in Q , say,

Since a. . - 6. . is continuous and vanishes at x = 0 , given e > 0 ,

there is an r £ (0, a/2) such that for r 5 2r ,

Since sin X9 > sin XP if 6 6 I , we thus obtain in ft ,

, , r f , 2 2i -i u-2 u-1 u
Lv(x) > M\\\ -\i J sin Xf3 - ejr1 - MB r - MR r .

For a positive £ < [X -p ) sin X3 the right-hand side tends to infinity

as r •*• 0 . Since / is bounded in ft , by choosing r > 0

sufficiently small, we thus can make

Lv{x) > fix, t) .

Hence, in fl_ ,
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(6) L[u{x, t)-v(x)) 5 0 .

We prove next that u - V is nonnegative on S = 3ftp\G9 for

sufficiently large M ; here

Ga = {{r, 6, t2) | 0 < r < a, 6 € J} ,

ti is zero on G and S x J , so that on this part of 5 ,

(T) u(x, t) - v(x) = -v(x) > 0 .

On the other part of 5 ,

u{x, t) - v(x) 5 -| |M||0 + M[2rQ)V sin XB ,

where II'IL i s the sup norm in fip . This shows that the left-hand side

i s posit ive for suff ic ient ly large M . From t h i s , (6) , (7) , and the

maximum principle (cf. [ 6 ] , pp. lT^-lTS) i t follows that in ft ,

u(x, t) 2 v(x) = -MrV sin X9 > -MrV .

Similarly, for sufficiently large M and small 2* > 0 the maximum

principle also yields

u(x, t) < Mrv

i n fip . S ince 1 < p < 2 , s e t t i n g V = y - 1 , we have ( 5 ) . Theorem 1

i s p r o v e d .

3. Bounds for derivatives of solutions in a cylindrical sector

In the second step of our method, using Theorem 1 and the notations of
Section 2, we estimate the first and second partial derivatives of
solutions in a cylindrical sector.

THEOREM 2 . Let u be a bounded solution of the problem ( 3 ) , (k) in

f2p = Gp x J2 with r as in Theorem \ , and assume the coefficients of

L and the function f to be of class (^(ft ) , 0 < a < 1 . Then in

ft , where ft = G x j
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(8) 0 > ( * . *) = 1 . 2 ,

with v as in Theorem 1; here, D u denotes any kth partial derivative

of u with respect to x , x .

Proof. For n = - 1 , 0, 1, . . . l e t

Hn = { ( r ' 9' t] I 2~n~2r0 ~ r ~
a n d K = V l U Hn U Hn+1 ' » = 0, 1, . . . . Then H^ Hn<z\. The

transformation

(9) x = 2~ny , y = (z^, ^ )

maps ^ n onto H and 5 onto 5 . Also w{y, t) = u[2~ny, t)

satisfies in B the parabolic equation

(1Q) hfy.y. + 2~\Wy. + ^ ^ " ^ = 2 " % '

where 2>. (^) = a..[2~n
y) , and so on, and g(y, t) = f[2~ny, t) ; of. ( l ) . We

now use a Schauder type es t imate ( e / \ [ Z]) i n /7Q and ff :

(ii) IMIg!̂  s

Here the constant r\ does not depend on W , and the norms are defined as

usual, that i s ,

where H*Hn denotes the sup norm and h the Holder coefficient, and so

on. In (11), by Theorem 1,

I M L S M (2 ' J M (u = 1+v) .
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Since \\g\\a < °° , from ( l l ) we thus have

(12)

Mow, by (9) , for corresponding derivatives in the x and y systems,

Jc Jc
D w = 8

k~ki
= 2 D u = 2

where fe = 0, . . . , fe , and k = 1 , 2 . In

, * )

so that (12) yields in H ,

(13)
.,-wfc 0>(x, t)

, k = 1, 2 ,

= i , 2 .

Now 2 rQ 5 r 5 2 rQ in H^ . Hence by (13), in

Z? u(x, t)

Since U = 1 + v , Theorem 2 follows.

- l , 2 .

4. Smoothness of solutions in a cylindrical sector

We now show that a bounded solution of the problem (3) , CO i s of

class C + (5T) in x ; where ft = G x J , as in Theorem 2. Note that
0

w i s of class C (f2 J in t , so that the corner of G does not

affect the t-smoothness of the solution.

THEOREM 3. Let u be a bounded solution of the problem (3 ) j (h) in

£2_ . Assume that the conditions in Theorem 2 are satisfied. Then for u ,

considered as a function of x , we have

u € Cr+V[JT ) ( 0 < v < l )

with r_ and v as in Theorem 1. Furthermore, for any < (. ( l -v , l ) ,
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where \ = min(K+v-l, a) .

Proof. We use the metric defined by

d(P, P)2 = \x-x\2 + \t-i\ ,

where P : (x, t) , P : {x, t) . In cylindrical coordinates we also write

P : (r, 9, t) , and u(x, t) will be written u(P) , for simplicity.

Consider P : [r , 6 t) and 6 : (r , 9 , t) in fi_ , corresponding to

the same t , but otherwise arbitrary; let 0 - r 2 r 2 j* , without

restriction.

Case 1. if r 5 r^l2. , then d(P, §) > rn /2 , so that (8) yields

(r1/2)V S x = const.

K 2
In a similar fashion it follows that r D u satisfies an analogous

inequality.

Case 2. Let r > r /2 . We consider the transformation

(15) x = % , C = 2^0 ,

where y = (#. , J/J . We set p = r/E, . Now P has the image

P* •• [Pv ®r t) , P1 = rQ/2 , and Q has the image Q* : (p2 , Qq, t) ,

P2 = T2^ > r0^ ' T h e r e S i o n

R = {{r, B, t) \ v1/2 £ 2> 5 r x , 6 6 J , 0 2 t S t2}

is mapped onto

R* = {(P, B, t) | r Q A S p < r>Q/2, 9 € J , 0 £ t £ t2} ,

and the region

5 = {(r, 9, £) | rx/k 5 r £ 2v±, 9 € J , 0 5

onto

S* = {(p, 9, *) | r o / 8 £ p £ r Q , 9 € J , 0 £

5 £ <
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We now consider the function w defined by w(y, t) = u(x, t) . This

function is zero on the bottom part ( t = 0) and the two plane la tera l

parts of the boundary of S* , and in S* i t satisfies the parabolic

equation

2 2 2
a. .w + E,c .w + E, au - E, w. = E, g ,

w yiyj i hi *

where a. Ay) = a. .(Ey) , and so on, and g(y, t) = f(E,y, t) . In H* and S*
I'd 1*3

we again apply a Schauder type estimate for parabolic equations:

As in the proof of Theorem 2, from this i t follows that

As before, for corresponding derivatives in the x and y systems we have

DyW ~ xU ' - ! ' 2 >

and, furthermore,

as well as, for any \ (. {0, a] ,

Consequently,

that i s , D u e CV(R) . I t implies that u i Cr+V(B) , considered as a

function of x . Similarly,

Hence by Theorem 2 and formula (I1*),

/d(P, Q)X < K3 .
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This proves the second statement of the theorem in Case 2 and completes the

proof.

5. Smoothness of solutions in general cylindrical regions

In this last step of our method, using Theorem 3 we obtain the main

result, which concerns the smoothness of solutions of the initial-Dirichlet

problem

(16) Lu = / in U = G x J2 ,

(17a) u | ? x { 0 } = 0 ,

in a general region fi = G x J with L as in (l) and J as in (2),

where G has corners. Obviously, it suffices to consider the case of a

single corner, from which the case of finitely many corners (each

satisfying the conditions of Theorem k, below) results in a trivial way.

Accordingly, we assume the following.

(Al) G C R is a simply connected bounded domain. Its boundary 3G

is of class C , except at a point P , at which 9(3 has a corner with

interior angle y > 0 . Let u) denote the angle into which y is

transformed under the transformation of

(18) a. .{P)u = 0
13 xf.

into canonical form.

(A2) The coefficients of I and the function / are of class

Note that u does not depend on the special choice of that

transformation. Furthermore, if G* a G is a compact region having

positive distance from the corner P , then a bounded solution u of (l6),

(17) in fi , considered as a function of x , is of class

C2'Wl(ST*) n C°(Q) , where Q* = G* x j^ ; of. [2], Chapter 3.

THEOREM 4. Let u be a bounded solution of the problem (16), (17)
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in fi with L given in ( l ) , and assume that (Al) and (A2) are satisfied.

If a) < n j then for u , considered as a function of x , we have

u € ^ + V ( ? T )

with a suitable v € (0, l ) .

Proof. Let the corner P be at x = (0, 0) = 0 , without

r e s t r i c t i o n . Let

represent the two arcs of 3G emanating from P , in a neighborhood of

P . Then <p (0) = cp (0) = 0 . Moreover, we assume that

cp'(O) = cot Y and cp̂ (O) = 0 .

We consider the subregion IT = )T x / c (1 , where

/ = ix € G | |a:| 5 X}

with X > 0 suff iciently small. Since in Q\Q the solution u is of
2+Ct ~L

class C in x , i t is sufficient to prove the theorem in Q (instead

of fi ). We first apply a mapping (x , x^\ \—+ (y , y ) such that at the

corner the coefficients of the transformed principal part of L have the

values 6.. and a = ix € G \ \x\ 5 X} is mapped onto a region N in

the j/ j/--plane whose boundary consists of two straight segments in the

direction y. = 0 and #„ = y tan w , respectively, and a simple arc

joining the other endpoints of those segments. Such a mapping is

(19)

where

yi =

= a n ( 0 ) " a p ^ o ^ a ^ 5 + <(>{2(o)a22(o)

= a
2 2 ( 0 ) ( P l ( 0 ) ~ a i 2 { 0 ) '
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5 =

Here tan to = 6/k , 0 < 0) < IT . Note that w depends only on y and

on the values of the coefficients of the principal part of L at the

origin. The function u{y, t) = u(x, t) sa t isf ies in U = N x J^ a

parabolic equation which is obtained from (l6) and (19)- From (17) and

(19) i t follows that u vanishes for t = 0 as well as on the plane

parts of 3£2 , which correspond to those two straight segments. Since

w < TT , we can rotate ft about the t-axis through an angle $ such that

TT/2 < to+2$ < 1t . The composite of the two mappings is a mapping

[x , x) i—• [z , z) such that u (z, t) = u(x, t) sat isf ies the

conditions in Theorems 1 to 3 in the transformed region. This implies that

u € (T"+V(n*) , where SI* = G* x J and G* is a circular sector in the

z z -plane whose radius r is sufficiently small. Since the value of the

Jacobi determinant of (19) at (0, t) i s 1/6 t 0 , i t follows that

u £ C1+V(fi1) . This completes the proof.
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