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Energy dispersion in turbulent jets. Part 1.
Direct simulation of steady and unsteady jets
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We study the physics of unsteady turbulent jets using direct numerical simulation
(DNS) by introducing an instantaneous step change (both up and down) in the source
momentum flux. Our focus is on the propagation speed and rate of spread of the
resulting front. We show that accurate prediction of the propagation speed requires
information about the energy flux in addition to the momentum flux in the jet. Our
observations suggest that the evolution of a front in a jet is a self-similar process
that accords with the classical dispersive scaling z ∼ √t. In the analysis of the
problem we demonstrate that the use of a momentum–energy framework of the kind
used by Priestley & Ball (Q. J. R. Meteorol. Soc., vol. 81, 1955, pp. 144–157) has
several advantages over the classical mass–momentum formulation. In this regard
we generalise the approach of Kaminski et al. (J. Fluid Mech., vol. 526, 2005,
pp. 361–376) to unsteady problems, neglecting only viscous effects and relatively
small boundary terms in the governing equations. Our results show that dispersion
originating from the radial dependence of longitudinal velocity plays a fundamental
role in longitudinal transport. Indeed, one is able to find dispersion in the steady
state, although it has received little attention because its effects can then be absorbed
into the entrainment coefficient. Specifically, we identify two types of dispersion.
Type I dispersion exists in a steady state and determines the rate at which energy is
transported relative to the rate at which momentum is transported. In unsteady jets
type I dispersion is responsible for the separation of characteristic curves and thus the
hyperbolic, rather than parabolic, nature of the governing equations, in the absence of
longitudinal mixing. Type II dispersion is equivalent to Taylor dispersion and results
in the longitudinal mixing of the front. This mixing is achieved by a deformation of
the self-similar profiles that one finds in steady jets. Using a comparison with the local
eddy viscosity, and by examining dimensionless fluxes in the vicinity of the front,
we show that type II dispersion provides a dominant source of longitudinal mixing.

Key words: jets, mixing, turbulence simulation

1. Introduction
The plume theory developed by Morton, Taylor & Turner (1956), hereafter referred

to as the MTT56 model, provides an elegant and simple means of describing the

† Email address for correspondence: john.craske07@imperial.ac.uk
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complex effects of turbulence in jets and plumes. The success of their approach can
be attributed to the fact that such flows have a natural tendency to evolve spatially
in a state of self-similarity (Tollmien 1926; George 1989), such that the evolution
of a single characteristic length, velocity and buoyancy scale suffice for obtaining
predictions of their integral quantities. In the event that such strict similarity is not
attained in higher-order statistics of the flow, predictive models based on the similarity
of lower-order quantities often remain useful, even in stratified environments (Morton
1971). For a review of the wide variety of applications that exist for plume theory the
reader is referred to Woods (2010).

The classical plume theory, describing the behaviour of statistically steady jets
and plumes, has subsequently been extended to unsteady cases. Indeed, such
processes prevail in many natural and man-made situations: the accidental release
of contaminant, the melting of ice sheets, volcanic eruptions and natural ventilation
are inherently ‘unsteady’ problems. The first extension of classical plume theory to
unsteady plumes appears to be that of Turner (1962) with a model of a ‘starting
plume’, which combined the motion of a front with that of a steady plume beneath.
Motivated by the need to predict the response of fire detectors, subsequent work
focused on the buoyant plumes occurring above growing fires (see e.g. Delichatsios
1979; Heskestad 1998). As such, much attention was paid to time similarity solutions
in which all variables are rescaled by the scales appearing at the leading edge
of a front. Delichatsios (1979) showed that such similarity solutions require a
power-law dependence of the source buoyancy flux on time and coincide with
a quasi-steady approximation close to the source. Despite the fact that they are all
based on the same physical conservation laws, namely mass, momentum and buoyancy,
amongst these early unsteady plume models and those developed subsequently by
Yu (1990), Vul’fson & Borodin (2001) and Scase et al. (2006), one finds significant
differences. In particular, each model invokes a particular assumption regarding the
radial dependence of the mean longitudinal velocity profile, which, as Scase &
Hewitt (2012) point out, can lead to difficulties in the derivation of an integral mass
conservation equation.

It was recently discovered that the unsteady plume models of Delichatsios (1979),
Yu (1990) and Scase et al. (2006) are ill-posed (Scase & Hewitt 2012), because they
do not account for longitudinal mixing processes. Indeed, their governing integral
equations are consistent with the view that lateral slices of the jet or plume do not
interact longitudinally (Scase, Aspden & Caulfield 2009). However, possible sources
of longitudinal mixing such as turbulence and lateral gradients of mean velocity
(causing dispersion) are evident in numerous experimental studies of steady jets and
plumes (e.g. Kotsovinos & List 1977; Panchapakesan & Lumley 1993). Moreover,
Landel, Caulfield & Woods (2012) recently found that in the unsteady transport of
a passive tracer in a quasi-two-dimensional steady jet, the role of dispersion arising
from non-uniform velocity profiles was non-negligible, compared to the idealised
‘top-hat’ jet, from which dispersion is absent. For three-dimensional unsteady jets and
plumes the physical processes responsible for longitudinal mixing, and therefore their
faithful representation in models, are not currently understood and necessitate the use
of an ad hoc closure (Scase & Hewitt 2012). Similarly, the effect that turbulence
mixing and radial profiles have on the propagation speed and growth of disturbances
in unsteady jets and plumes is not known.

A contribution to experimental data pertaining to unsteady plumes was made by
Scase, Caulfield & Dalziel (2008), who investigated the effects of a sudden reduction
in buoyancy flux. In particular, Scase et al. (2008) found that source conditions
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502 J. Craske and M. van Reeuwijk

that maintain turbulence in the plume cannot be changed so as to disconnect the
plume into individual thermals, a finding which adds validity to the description of
such flows using plume theory. Nevertheless, experimental data for unsteady plumes
remain limited, which is partly due to the difficulty of obtaining many realisations of
an ‘identical’ experiment (Scase et al. 2006). In the context of flow control, several
experimental studies of unsteady jets have investigated the enhanced entrainment that
is caused by periodic excitation of the flow (see e.g. Bremhorst & Hollis 1990, and
references therein). Similarly, Borée et al. (1997) observed a relatively large radial
inflow in the vicinity of a rapid reduction in the velocity of an unsteady jet.

For the ease with which statistics can be taken over homogeneous dimensions,
numerical simulations offer a significant advantage over experiments. In addition,
numerical simulations allow one to control the source conditions arbitrarily and
therefore investigate a broad range of problems or, alternatively, a canonical case that
is difficult to realise in a laboratory. In Scase et al. (2009) the unsteady plume theory
of Scase et al. (2006) was able to successfully predict the scaling of a ‘pulse’ in
the plume’s radius that was observed in implicit large-eddy simulations of a plume,
whose buoyancy flux was suddenly increased. However, the observed longitudinal
scaling of the pulse and effects relating to longitudinal mixing were not predicted by
the theoretical model and these remain issues warranting further attention.

Our aim is to establish the physical processes responsible for longitudinal mixing so
that their effects can be accurately represented in simple and robust integral models.
We examine pure momentum jets, rather than plumes, in order to focus exclusively
on the behaviour of the volume flux and momentum flux. Central to our approach
is the fact that we derive the governing integral equations for unsteady jets from
first principles, without invoking any assumptions about self-similarity, the form of
radial dependence or the magnitude of turbulent transport terms. This allows us to
examine the behaviour of both steady and unsteady jets from a integral perspective
comprehensively, and therefore address the validity of some of the assumptions that
are used in existing unsteady plume models. We do this by using the formalism of
Priestley & Ball (1955, hereafter referred to as PB55), who obtain a complete system
of equations for plumes by integrating a mean kinetic energy equation, derived from
mass conservation and momentum conservation, rather than integrating the mass
conservation equation directly. This approach was used recently by Kaminski, Tait
& Carazzo (2005, hereafter referred to as KTC05) to investigate a decomposition
of the entrainment coefficient for steady plumes. Subsequently, Carazzo, Kaminski
& Tait (2006) applied the approach in the systematic analysis of self-similarity in
jets and plumes from a wide variety of experimental results. Here we will show that
the energy equation can be used to obtain an unsteady area or mass conservation
equation for unsteady jets at the integral level, which generalises the equations used
in existing models to arbitrary profiles that are not restricted to remain self-similar.

The work is split into two parts. In this part of the work we use our framework in
a diagnostic capacity to analyse results from the direct numerical simulation (DNS)
of steady and unsteady jets. In Part 2 (Craske & van Reeuwijk 2015), we employ our
framework as a prognostic tool and develop a dispersion closure for unsteady jets. In
addition, we demonstrate the role that dispersion plays in determining the behaviour
of the area of the jet and the response of integral fluxes to source perturbations. The
present paper is organised as follows. In § 2 we develop the framework by deriving a
system of governing integral equations for unsteady jets that describe the conservation
of mass, momentum and energy. Simulation details are provided in § 3, and in § 4 we
present results from the simulation of steady and unsteady jets. In particular, in § 4.3
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we determine the propagation velocity of the front appearing in the unsteady jets, and
show that its evolution is a self-similar process. In § 5 we develop theory applicable to
the front, relating the observations of § 4.3 to two types of dispersion, before drawing
conclusions in § 6.

2. The governing equations
In this section we derive the equations governing the motion of an unsteady jet.

In doing so, we move from the Navier–Stokes equations to a much simpler system
of equations that determine the behaviour of integral quantities in the jet. The two
main differences between our approach and the approach adopted by the plume
theory of MTT56 is that (i) we retain higher-order terms that are typically neglected,
and (ii) following PB55 and KTC05 we supplement the classical mass–momentum
formulation with a conservation equation for energy. We then demonstrate that a mass
conservation equation can be derived from the momentum–energy pair, which gives
unknown parameters appearing in the former an alternative and more direct physical
interpretation. The momentum–energy formulation will prove to be an elucidating
framework in the analysis of the unsteady problem undertaken in §§ 4.3 and 5.

2.1. Reynolds equations
Consider a round, turbulent jet orientated in the longitudinal (z) direction whose
flow is statistically axisymmetric and swirl-free. Since the mean motion in the jet is
in the longitudinal direction we only need to consider the continuity equation and
longitudinal momentum equation, which in cylindrical coordinates are

1
r
∂(ru)
∂r
+ 1

r
∂v

∂φ
+ ∂w
∂z
= 0, (2.1)

∂w
∂t
+ u

∂w
∂r
+ v

r
∂w
∂φ
+w

∂w
∂z
=−∂p

∂z
+ ν∇2w. (2.2)

Here, it has been assumed that the fluid is incompressible and of constant density.
The velocity components (u, v, w) correspond to the directions (r, φ, z), respectively;
p denotes kinematic pressure and ν is the kinematic viscosity. The hydrostatic balance
∂z ph = −g has been subtracted, so that p is constant in a quiescent environment.
Hereafter we shall denote by χ the ensemble average of a variable χ , so that χ ≡
χ +χ ′, where χ ′= 0. In the current problem the statistical axisymmetry of jets above
axisymmetric sources ensures that ∂φ = 0. Taking an ensemble average of (2.1) and
(2.2) yields

1
r
∂(ru)
∂r
+ ∂w
∂z
= 0, (2.3)

∂w
∂t
+ 1

r
∂(ru w)
∂r

+ ∂w2

∂z
+ 1

r
∂(ru′w′)
∂r

+ ∂w′2

∂z
=−∂p

∂z
+ ν∇2w. (2.4)

An equation for the mean longitudinal kinetic energy can be obtained by multiplying
(2.4) by 2w and utilising (2.3):

∂w2

∂t
+ 1

r
∂(ru w2)

∂r
+ ∂w3

∂z
+ 2

∂(p w)
∂z
+ 2

r
∂(ru′w′w)

∂r
+ 2

∂(w′2w)
∂z

= 2p
∂w
∂z
+ 2 w′2

∂w
∂z
+ 2 u′w′

∂w
∂r
+ ν∇2w2 − 2ν

(
∂w
∂r

)2

− 2ν
(
∂w
∂z

)2

. (2.5)
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504 J. Craske and M. van Reeuwijk

To assess the magnitude of the viscous terms we consider a longitudinal velocity
scale, wm, a velocity scale for the turbulence, wf , a radial length scale rm and a
longitudinal length scale L. A local Reynolds number can be defined using these
integral scales: Ref ≡ wf rm/ν. In classical plume theory it is assumed that Ref →∞
and rm/L→ 0, which implies that wf /wm ∼ (rm/L)1/2 (see e.g. Tennekes & Lumley
1972, for details). In this limit it is necessary that Ref � (L/rm)

1/2 in order that the
viscous terms are negligible in both the mean momentum and mean kinetic energy
equation. In contrast to steady problems, in unsteady problems there is no guarantee
that rm/L� 1, owing to the possibility of sudden changes in the longitudinal direction.
Thus, we take the limit Ref →∞ independently and retain terms that are O(rm/L)
relative to the leading-order balance:

∂w
∂t
+ 1

r
∂(ru w)
∂r

+ ∂w2

∂z
+ 1

r
∂(ru′w′)
∂r

+ ∂w′2

∂z︸︷︷︸
O(rm/L)

= −∂p
∂z︸︷︷︸

O(rm/L)

, (2.6)

describing the mean longitudinal momentum, and

∂w2

∂t
+ 1

r
∂(ru w2)

∂r
+ ∂w3

∂z
+

O(rm/L)︷ ︸︸ ︷
2
∂( p w)
∂z
+ 2

∂(w′2w)
∂z

+ 2
r
∂(ru′w′w)

∂r

= 2p
∂w
∂z
+ 2 w′2

∂w
∂z︸ ︷︷ ︸

O(rm/L)

+ 2 u′w′
∂w
∂r
, (2.7)

describing the mean longitudinal kinetic energy. Here we note that for steady jets,
their slenderness rm/L∼ 2α≈ 0.2, where α is the classical entrainment coefficient, so
that the assumption rm/L� 1 is questionable even for steady jets. Collectively, the
terms on the right-hand side of (2.7) represent a sink for the kinetic energy carried by
the mean longitudinal flow, acting either to redistribute the energy to the other mean
flow components or to produce turbulence kinetic energy. In §§ 2.4–2.5 we show
that entrainment can be viewed as a consequence of this energy sink. In general
the jet does work on its surrounding fluid, redistributing its momentum flux over
an area that increases, at the expense of a longitudinally diminishing flux of kinetic
energy. It should be noted that in the system (2.3), (2.6) and (2.7), there exist only
two independent equations, because the equation for kinetic energy is a mechanical
equation that was obtained using the continuity and momentum conservation equations.
The aspect of these equations that is most pertinent to the present study is the fact
that w, w′, etc. have an a priori unknown dependence on r, which is manifested as
profile constants when the equations are integrated.

2.2. Integral equations
In an axisymmetric jet the primary variables of interest are the longitudinal volume
flux and the longitudinal specific momentum flux (hereafter referred to as the
momentum flux for brevity), defined as Qm and Mm, respectively, where

Qm ≡ 2
∫ rd(z,t)

0
wrdr, Mm ≡ 2

∫ rd(z,t)

0
w2rdr. (2.8a,b)
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Here we have used the subscript m to denote the fact that these quantities are based
on the integrals of a mean value. In this work the upper limit of integration rd, used
to define all integral quantities, is defined to be the smallest value of r at which
longitudinal velocities are relatively small:

w(rd, z, t)= εw(0, z, t), (2.9)

where the small parameter ε � 1 ensures that longitudinal fluxes of volume and
momentum across the boundary of the jet are relatively insignificant. Indeed, when
the improper integral for rd → ∞ is used the resulting definitions of Qm and Mm
will, in general, depend on the precise way in which the induced ambient flow
is bounded (Kotsovinos 1978). By defining integral quantities in terms of rd (see
also the approach employed by Kotsovinos & List 1977), we focus attention on
the dynamics of the jet. In this study we do not address the dynamics of the flow
that is induced in the ambient. For a resolution of the related issue of how a given
velocity profile, not necessarily possessing compact support, can be reconciled with
the MTT56 framework, the reader is referred to Scase et al. (2007).

From the definitions of Qm and Mm naturally follow characteristic length and
velocity scales:

rm ≡ Qm

M1/2
m
, wm ≡ Mm

Qm
, (2.10a,b)

which are consistent with a top-hat interpretation of the radial profiles such that
Qm ≡ wmr2

m and Mm ≡ w2
mr2

m, although here we make no assumptions regarding radial
dependence. Additionally, we define a characteristic area for the jet, Am≡ r2

m. Although
a transport equation for the area Am can be obtained directly using mass conservation
and applying an appropriate kinematic boundary condition, this procedure is not
straightforward and requires that stringent assumptions are made about the velocity
profile (see e.g. Scase et al. 2006). The difficulty in obtaining a canonical transport
equation for Am is reflected in the variety of slightly different equations that have
been adopted in unsteady plume models (compare, for example, Delichatsios 1979;
Yu 1990). Nevertheless, a generic equation for Am that encompasses these different
approaches is

1
γg

∂Am

∂t
+ ∂Qm

∂z
= 2αM1/2

m , (2.11)

where α is the classical entrainment coefficient used by MTT56 and 1/γg is a free
parameter. By looking at integral transport equations for the volume flux and the
momentum flux, we will reveal the physical meaning of γg and obtain an explicit
expression for α.

Integration of (2.6) and (2.7), over a horizontal disk of radius rd(z, t), and dividing
by π results in integral conservation equations for momentum and energy:

∂Qm

∂t
+ ∂(βgMm)

∂z
= 0, (2.12)

∂Mm

∂t
+ ∂

∂z

(
γg

M2
m

Qm

)
= δg

M5/2
m

Q2
m

. (2.13)

The prognostic equations (2.12) and (2.13) suggest that in unsteady jets it is useful
to regard Qm and Mm as integrals of momentum and energy, respectively, rather
than fluxes. A similar equivalence between volume flux and the integral of (specific)
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506 J. Craske and M. van Reeuwijk

momentum is found in the shallow-water equations. To obtain (2.12) and (2.13), we
neglect momentum and energy transport on the boundary of the jet, where r = rd,
which is justified for a slender jet provided that ε� 1 in (2.9). Indeed, defining the
boundary of the jet in terms of ε means that the effects of non-lateral entrainment can
be quantified as O(ε2) and O(ε3) terms in the momentum (2.12) and energy (2.13)
equations, respectively. In addition, (2.12) and (2.13) do not include a contribution
from temporal changes in rd.

In the system of equations (2.12) and (2.13) βg, γg and δg are dimensionless
parameters, or profile constants, defined as

βg ≡ Mg

Mm
, γg ≡ EgQm

M2
m

, δg ≡ PgQ2
m

M5/2
m
, (2.14a−c)

which represent a dimensionless momentum flux, a dimensionless energy flux and a
dimensionless turbulence production, respectively. In § 2.4 we will demonstrate that
the γg defined above is indeed equal to the γg appearing in the area equation (2.11).
The dimensionless parameters allow all unknown integrals in the system to be related
to Qm and Mm, which are the dependent variables. We will refer to the quantity

Mg ≡ 2
∫ rd(z,t)

0
w2rdr︸ ︷︷ ︸

Mm

+ 2
∫ rd(z,t)

0
w′2rdr︸ ︷︷ ︸

Mf

+ 2
∫ rd(z,t)

0
(p− pd)rdr︸ ︷︷ ︸
Mp

, (2.15)

as the gross momentum flux, comprising integrals of the mean transport of
longitudinal momentum Mm, the turbulent transport of longitudinal momentum Mf
and pressure Mp. Here, pd is the pressure in the ambient: pd = p(rd, z). Similarly, the
gross energy flux

Eg ≡ 2
∫ rd(z,t)

0
w3rdr︸ ︷︷ ︸

Em

+ 4
∫ rd(z,t)

0
ww′2rdr︸ ︷︷ ︸

Ef

+ 4
∫ rd(z,t)

0
(p− pd)wrdr︸ ︷︷ ︸

Ep

, (2.16)

includes contributions from the mean flow, in addition to those from turbulence and
pressure. The gross turbulence production is defined to include pressure redistribution:

Pg ≡ 4
∫ rd(z,t)

0
u′w′

∂w
∂r

rdr︸ ︷︷ ︸
Pm

+ 4
∫ rd(z,t)

0
w′2
∂w
∂z

rdr︸ ︷︷ ︸
Pf

+ 4
∫ rd(z,t)

0
p
∂w
∂z

rdr︸ ︷︷ ︸
Pp

. (2.17)

We will use subscripts in the dimensionless quantities that are consistent with the
definitions above, e.g.

γm ≡ EmQm

M2
m

, γf ≡ Ef Qm

M2
m

(2.18a,b)

represent the dimensionless mean energy flux and dimensionless turbulent energy flux,
respectively. The system (2.11)–(2.13) is a generalisation of the approaches adopted by
PB55 and MTT56 in the absence of buoyancy. Whilst MTT56 focus on volume and
mean momentum conservation using (2.11) and (2.12), PB55 invoke mean momentum
and mean energy conservation using (2.12) and (2.13). Central to the current work is
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(a) (b)

FIGURE 1. Schematic representation of (a) type I dispersion, arising from non-uniform
velocity profiles, and (b) type II dispersion, arising from a departure from self-similarity.

the fact, noted by PB55, that only when a particular radial dependence of quantities
such as w and w′2 is assumed (e.g. Gaussian), can parameters such as γm and γf
be determined. In particular, γm > 1 in general, where equality holds only when
the longitudinal velocity is assumed to be distributed uniformly. In a leading-order
analysis of the steady state, in which the mean energy equation (2.13) reduces to
a balance between two terms, the value of γm has received little attention. This is
because, provided that it remains constant, γm does not affect the steady-state solution
independently. Indeed, in such circumstances γm only enters the problem via the ratio
δm/γm (see e.g. (2.24) below). However, with the addition of temporal derivatives, γm
plays an independent role in the governing equations.

2.3. Dispersion and non-uniform velocity profiles
The fact that the radial distribution of velocity in real jets is non-uniform implies that
there exists a means of spreading regions of the flow over the longitudinal dimension.
Indeed, parcels of fluid located on the jet centreline travel faster than those that are
located on its periphery. In this work we will refer to all effects arising from non-
uniform velocity profiles as dispersive. However, a further distinction is necessary to
account separately for the possibility that the non-uniform profiles deviate from a self-
similar form. Therefore, we define type I dispersion as resulting from non-uniform,
but self-similar, profiles and type II dispersion as resulting from a departure from
self-similarity, as depicted in figure 1. Consequently, type II dispersion corresponds
to the shear-flow dispersion examined by Taylor (1953) in pipe flow. In both pipes
and jets the departure from self-similarity of an advected quantity results in a local
increase or reduction in the integral flux of that quantity, owing to its correlation with
a non-uniform velocity profile. In Part 2 we develop the equivalence between Taylor
dispersion in pipes and type II dispersion in jets in more detail. In this work, we will
see that the classification of type I and type II dispersion provides a useful means of
understanding the processes that determine the effective rate with which quantities are
transported in a jet and the rate at which they are mixed longitudinally, respectively.

The effects of type I dispersion can be readily appreciated if one considers the
transport of a passive scalar. If the radial distribution of the scalar is much narrower
(wider) than that of the velocity field, then the scalar will be concentrated around
regions of relatively high (low) velocity and therefore transported relatively rapidly
(slowly). Indeed, such effects account for the theoretical and observed propagation
speed of a front in an unsteady plume (see e.g. Turner 1962; Delichatsios 1979).
Although such a process can be regarded as advection (Landel et al. 2012), it is
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determined entirely by the radial velocity profile and therefore, in terms of its effect
on the integral behaviour of the jet, fits comfortably with the notion of dispersion.
In this work we will show that the dispersive perspective is made more compelling
by the fact that type I dispersion causes a separation of the system’s characteristic
curves and influences the behaviour of the jet’s area. Indeed, the notion of dispersion
provides a unifying concept for all the processes that are dominant in unsteady jets.

In this regard it is noteworthy that when a smooth, normalised, velocity profile
f ≡ w/wm decreases monotonically in r, its associated energy profile f 2 ≡ w2/w2

m,
will necessarily be narrower than f . On these grounds alone, one can expect the
dimensionless flux of energy to be greater than that of momentum. Only in the
non-physical limit of top-hat profiles will one find that f 2 and f have the same width,
and therefore that the dimensionless energy and momentum fluxes are equal. One
must also bear in mind that, in a jet, momentum is a conserved quantity, whereas
the energy of the mean flow is not. Some of the energy entering a horizontal plane
is removed from the mean flow and converted into turbulence kinetic energy.

Using the observation that the longitudinal velocity profile in a jet is approximately
Gaussian and self-similar, the value of the profile parameter γm can be determined
exactly, which is how PB55 determined their so-called profile constants. In terms of
wm and rm a Gaussian profile is expressed as

w= 2wm exp
(
−2

r2

r2
m

)
, (2.19)

which is consistent with the definitions Qm≡wmr2
m and Mm≡w2

mr2
m. Using (2.19), the

dimensionless mean energy flux is found exactly as

EmQm

M2
m

≡ γm ≡ 1
w3

mr2
m

∫ ∞
0

w3rdr= 4
3
. (2.20)

To focus on the effects of dispersion it is necessary to clearly distinguish between
those effects that can be attributed to the shape of radial profiles, and those that are
caused by the relative magnitude of turbulent transport terms. In fact, the momentum
equation (2.12) contains no information about the shape of the underlying profiles
and can be regarded as comprising zeroth moments, or mean values. In contrast,
having been obtained by multiplying the momentum equation by 2w, the mean
energy equation (2.13) is of higher order, and therefore contains information about
the profile shapes. With this in mind, the turbulent transport parameter βf represents
the magnitude of the turbulent transport, regardless of the shape of the profile of
w′2. However, the energy transport term, γf , depends not only on βf , but also on the
correlation of w′2 with w over the radial dimension. Therefore, shape effects can be
isolated by examining the central moment γf − 2βf , which provides a decomposition
that is analogous to the Reynolds decomposition XY − X Y for fluctuating quantities
X and Y . Here, we must employ 2βf rather than βf , in the light of the fact that
the mean energy equation was obtained by multiplying the momentum equation by
2w, rather than w. In a similar way, shape effects pertaining to the transport of
mean energy and pressure work are obtained as γm − 1 and γp − 2βp, respectively. In
sum, these contributions are equal to γm + γf + γp − (1+ 2βf + 2βp)= γg + 1− 2βg,
which corresponds to the dimensionless energy flux arising from non-uniform radial
dependences.
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2.4. The entrainment coefficient from an energetics perspective
In a steady setting, MTT56 obtain ordinary differential equations in Qm and Mm by
considering volume conservation and momentum conservation, respectively. In an
unsteady setting, volume conservation provides an evolution equation for the area, or
storage, of the jet (Scase et al. 2006). This viewpoint is complicated by the fact that
the area then assumes a precise, physical interpretation (see e.g. Scase et al. 2006,
who assume a top-hat distribution of longitudinal velocities). However, the fact that

∂Am

∂t
≡ ∂

∂t

(
Q2

m

Mm

)
≡ 2

Qm

Mm

∂Qm

∂t
− Q2

m

M2
m

∂Mm

∂t
, (2.21)

suggests that to understand the physics that determine the behaviour of Am, it is
equations describing the temporal change of momentum, ∂tQm, and the temporal
change of the mean kinetic energy, ∂tMm, that should be consulted. Conversely,
particular assumptions made in obtaining a volume conservation equation manifest
themselves in the kinetic energy balance. It is in this way that there exists an
incompatibility between the plume models of PB55 and MTT56 (see Morton 1971,
for details).

An equation describing the evolution of the area of the jet can be obtained by
substituting (2.12) and (2.13) into (2.21), which results in

1
γg

∂Am

∂t
+ ∂Qm

∂z
= 2αM1/2

m , (2.22)

where

α ≡− δg

2γg︸︷︷︸
αprod

+ Qm

2γgM5/2
m

∂

∂z

[(
γg + 1− 2βg

)
M2

m

]
︸ ︷︷ ︸

αdisp

+ Qm

γgM3/2
m

(
βg − 1

) ∂Mm

∂z︸ ︷︷ ︸
αturb

. (2.23)

Equation (2.22) is different to the volume conservation equation obtained by KTC05
because it describes an unsteady state, without buoyancy, and accounts for a possible
dependence of the entrainment coefficient on turbulence transport and pressure. An
additional difference is the choice made by KTC05 to define their top-hat radius (cf.
rm in the present formulation) in terms of profiles of velocity and buoyancy, rather
than velocity alone. In both KTC05 and the present formulation the entrainment
coefficient is affected by the shape of the longitudinal velocity profile. In an unsteady
setting, the use of the mean energy equation has produced the factor γ −1

g in the area
equation, whose physical significance as a dimensionless energy flux γg can now be
understood. In the area equation γg has the effect of modifying the timescale on which
changes in area occur. Alternatively, if γg remains constant, the first term of (2.22)
can be expressed as the temporal derivative of a modified area: ∂t(Am/γg). In either
case, these effects are determined by the profile shapes and turbulent transport terms.
The derivation of the area equation using the equations for the mean momentum
and energy generalises the separate approaches (e.g. top-hat, Gaussian) adopted in
unsteady plume models and makes clear their physical implications. Motivation for
the particular decomposition used in (2.23) comes from the fact that it separates
the influence of the integral intensity of the turbulence and pressure (βg − 1) from
dispersive effects (γg + 1− 2βg).
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The term αprod is the leading-order term responsible for entrainment. It is
proportional to the ratio of the dimensionless integral production and redistribution
of turbulence kinetic energy δg, and the gross dimensionless energy flux γg.
Conventionally, αprod is the only contribution to entrainment that is considered and,
in the steady state, gives rise to the classical entrainment coefficient:

α0 ≡− δg

2γg
, (2.24)

where, unless stated otherwise, the value of a quantity χ in the steady state will be
denoted hereafter by χ0. In the steady-state equations the independent behaviour of
δg and γg is unimportant, as it is only their ratio (2.24) that modifies the governing
equations. In an unsteady setting, on the other hand, one finds several additional terms
(e.g. γ −1

g ∂tAm) that depend on γg independently, which means that the behaviour of
both γg and δg, and not just their ratio, becomes relevant.

Together, the terms αdisp and αturb account for a difference in the dimensionless
flux of momentum compared to the dimensionless flux of energy and, since
Am = Q2

m/Mm, the consequent effect that this has on area. Individually αdisp and
αturb are decomposed components of this process, accounting for non-uniform radial
profiles and the intensity of turbulent fluxes, respectively. In a steady state, the
fact that the dimensionless energy flux is typically greater than the dimensionless
momentum flux is inconsequential, because ∂zMm = 0. In an unsteady setting, on the
other hand, ∂zMm 6= 0 and αdisp and αturb play an active role.

The dispersion term αdisp can be expanded as

αdisp = Qm

γgM3/2
m

(
γg + 1− 2βg

) ∂Mm

∂z︸ ︷︷ ︸
αdisp1

+ Qm

2γgM1/2
m

∂

∂z

(
γg + 1− 2βg

)
︸ ︷︷ ︸

αdisp2

, (2.25)

which makes explicit the individual contributions from dispersion of type I and type II,
respectively. When all profiles are self-similar, the gross momentum and energy fluxes
can be expressed as a constant proportion of Mm and M2

m/Qm, respectively, therefore
the dimensionless fluxes γg and βg are constant. In that case, it is evident from (2.25)
that αdisp2 = 0. In general however, αdisp2 6= 0, which will be the case whenever the
longitudinal scaling of the jet variables differs from the asymptotic power-law scaling
predicted by similarity theory. If the velocity profiles deform and similarity is lost, the
effect of αdisp2 is to ‘mix’ area in the longitudinal direction. Notably, since βg is not
an operand of ∂z in αturb, type II dispersion provides the only source of such mixing.
The similarity drift identified by KTC05 also includes the effects of deformation
that we label as αdisp2. However, as the name implies, the similarity drift in KTC05
is used primarily to quantify the effect that a change in the relative widths of the
velocity and buoyancy profiles has on entrainment. To refer to αdisp2 as accounting for
similarity drift in the present context is therefore slightly misleading, because here
we are concerned with localised deformations in the velocity profile alone, arising
from an unsteady forcing. In the present context it is more useful to regard αdisp2 as
the effective entrainment, or detrainment, that corresponds to a change in the shape
of the velocity profile. For example, in the development of a top-hat velocity profile
into a Gaussian velocity profile the flow on the axis of the jet effectively ‘entrains’
from the rest of the jet and hence αdisp2 > 0.

The contribution αdisp1 is perhaps best regarded as a consequence of the spatial
acceleration of the flow. Even when the flow evolves in a state of self-similarity, αdisp1
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will be non-zero in general. Assuming γg + 1− 2βg > 1, positive spatial acceleration
(∂zMm > 0) will result in a positive contribution to the entrainment coefficient, whilst
negative spatial acceleration (∂zMm < 0) results in a negative contribution to the
entrainment coefficient. The role of αdisp1 can therefore be visualised as resulting from
a relative convergence or divergence of the flow on a horizontal plane depending
on whether ∂zMm is greater than or less than zero, respectively. In general, the
contribution to entrainment from αdisp1 is fundamentally distinct from the Richardson
number dependence that emerges in the presence of buoyancy. However, in the special
case of statistically steady plumes, in which ∂zMm can be replaced with the integral
of buoyancy, αdisp1 contributes to the Richardson number dependence identified by
PB55 and KTC05.

2.5. The relation between the classical view of entrainment and turbulence mixing
The classical view of turbulent entrainment in jets pertains to the engulfment of
quiescent fluid at the turbulence boundary and is based on the continuity equation. It is
therefore useful to consider the relation between the classical view and the energetics
perspective advocated in this paper. Below we will argue that the continuity equation
demonstrates that fluid is entrained, whilst the mean energy equation provides insight
into why the fluid is entrained.

For the purposes of the present discussion we will adopt the classical approach,
integrating (2.3) over a disk of radius rd→∞ and assuming that Qm remains bounded:

∂Qm

∂z
=−2ru|∞, (2.26)

which simply states that longitudinal changes in the volume flux are accompanied
by an induced radial flow in the ambient. Equation (2.26) is an integral continuity
equation and is valid for statistically steady and unsteady flows.

In a steady state the mean energy equation is useful (see e.g. Kaminski et al.
2005) because it reveals that the strength of the induced flow is equal to the ratio of
turbulence production and the energy flux:

2ru|∞ = δg

γg
wmrm. (2.27)

Hence, the mean energy equation provides insight into why fluid is being entrained
into the jet. If turbulence production were equal to zero there would be no induced
flow in the ambient and ∂zQm = 0. In a steady state the induced flow ru|∞ is equal
to the rate at which fluid is entrained into the jet. However, in a statistically unsteady
situation (2.26) is of limited use because it does not necessarily describe the rate
at which ambient fluid is entrained into the jet. Indeed, the radius of the jet rm ≡
Qm/M(1/2)

m might vary with time, which would mean that the rate at which fluid enters
the jet does not correspond to the induced flow in the ambient.

In a statistically unsteady situation the mean energy equation is useful because,
since it pertains to why fluid is entrained, it is able to go further than (2.26) and
predict the rate at which fluid is entrained into the jet. Using (2.26) and the area
equation (2.22), which was obtained from integral equations for the mean momentum
(2.12) and energy (2.13),

2ru|∞ − 2rm

γg

∂rm

∂t
=−2αrmwm, (2.28)

where the entrainment coefficient α≡ αprod + αdisp+ αturb has a known dependence on
the physical properties of the jet. Equation (2.28) states that −2αrmwm is the rate of
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entrainment relative to the inward/outward propagation rate of a characteristic jet
radius at a fixed longitudinal location (for a discussion of several alternative definitions
of an entrainment velocity the reader is referred to Turner 1986). However, in jets
that do not have a top-hat profile the edge of the jet is not always clearly defined.
Evident from the left-hand side of (2.28) is that the appropriate radius from which
to view entrainment is the effective entrainment radius rmγ

−1/2
g , which is determined

by the radial dependence of the jet’s longitudinal velocity profile. As one would
expect, for a top-hat jet with γg = 1, the effective entrainment radius coincides with
the radius rm. For a temporal jet ∂zQm = 0 and therefore, using (2.26), ru|∞ = 0. In
that case, (2.28) indicates that the entrainment flux −2αrmwm is equal in magnitude
and opposite in sign to the time rate of change of the effective area r2

mγ
−1
g .

Note that even though the momentum–energy framework naturally includes
turbulence, it remains an integral-scale description that is not concerned with the
small-scale aspects of turbulence. Consequently, we do not make statements about
the dynamics of the turbulent–non-turbulent interface (see e.g. da Silva et al. 2014,
for details), although large-scale and small-scale entrainment are intimately connected
(see van Reeuwijk & Holzner 2014).

3. Simulation details

The data presented herein were obtained from direct simulation of the full
Navier–Stokes equations. For spatial discretisation we use a formulation that
is equivalent to the fourth-order-accurate discretisation described by Verstappen
& Veldman (2003). The scheme employs central differences throughout and is
conservative in mass, momentum and energy. Time integration is performed using a
third-order Adams–Bashforth scheme with an adaptive step size that is determined
by a local stability criterion. As the code was recently upgraded from second to
fourth order, a brief description of the code and verification results are provided in
appendix A.

In all simulations we use a domain of size approximately 442 × 66 source radii,
r0, in the horizontal and longitudinal directions, respectively. The base of the domain
consists of a free-slip surface surrounding a centralised source of constant momentum
flux M0 and constant volume flux Q0, which provide the definition for the source
radius as

r0 ≡ Q0

M1/2
0

, (3.1)

and the Reynolds number, Re0 ≡ 2M1/2
0 /ν.

We simulate two steady-state cases, L and H, of Reynolds numbers 4815 and 6810,
respectively. Data for these cases are collected over approximately trun/τ0 = 3000
dimensionless time units, where the source turnover time τ0=Q2

0/M
3/2
0 . We eliminate

initial transients from the problem by running the simulations for not less than 3000
dimensionless time units before collecting statistics. Although the sampling time and
our allowance for transient behaviour appears to be excessively large, it should be
noted that the turnover time in a jet scales in the longitudinal direction according
to z2.

The domain is discretised using a uniform computational grid of 7682 × 1152
cells, with source resolution of 48 cells over the physical source diameter, which
corresponds to approximately 34 cells over 2r0. The difference between the physical
source diameter and 2r0 is due to the use of a gauze, which will be described below.
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(Lx × Ly × Lz)/r0 Nx ×Ny ×Nz Re0 Reλ trun/τ0 MA
0 /M

B
0

L 442 × 66 7682 × 1152 4815 100 3323 —
H 442 × 66 7682 × 1152 6810 135 3524 —

LH1–16 442 × 66 7682 × 1152 — — 235 2
HL1–16 442 × 66 7682 × 1152 — — 166 1/2

TABLE 1. Simulation details. Here MB
0 and MA

0 are the source momentum fluxes before
and after the step change, respectively.

Simulation H∗, which is used to check the convergence of the results, employs a
grid of 5122 × 768 cells. Open boundary conditions are used to allow fluid to enter
and leave the computational domain. In particular, the inflow boundary condition on
the vertical faces of the domain accounts for the flow’s axisymmetry and the outflow
boundary condition on the top face of the domain consists of a convective boundary
condition that adjusts dynamically to a non-uniformly distributed wall-normal velocity.
Further details and testing of the boundary conditions we employ can be found in
Craske & van Reeuwijk (2013). To initiate the turbulence we apply perturbations of
1 % to the velocities in the first cell above the source. A disadvantage with simply
connected circular sources of momentum flux is that they result in a potential core
region, of approximately 10r0 in longitudinal extent (Rajaratnam 1976), preceding
the region of fully developed flow, in which we are primarily interested. To reduce
the longitudinal extent of the potential core we employ the numerical equivalent
of a gauze used in experiments (see e.g. Hunt & Linden 2001), by obstructing a
purely circular source with two centralised orthogonal strips, thereby disconnecting
the source into four identical discrete segments. Consequently, the effective source
radius defined in (3.1) is slightly smaller than the physical extent of the source,
whose overall diameter is spanned by 48 cells. It should be noted that simulations
without the gauze yield similar results in the far field to those presented here, albeit
with a smaller far-field region.

For the unsteady simulations we impose a step change in the source momentum
flux, doubling and halving M0 for the cases LH and HL, respectively, while keeping
the source radius constant. To ensure reliable statistics we carry out an ensemble of
simulations. Initial conditions for LH and HL were obtained from the two steady-
state base simulations, L and H, respectively. During the course of one of these base
simulations we write 16 complete three-dimensional field files to disk at dimensionless
time intervals not less than 200 units. The field files from each of the two base cases
provide the initial conditions for an ensemble of 16 independent statistically unsteady
simulations. In the case of the steady simulations we obtain statistics by averaging
over time and the homogeneous azimuthal dimension. In the case of the unsteady
simulations however, the time dimension is no longer statistically homogeneous. We
therefore reduce the time interval over which averages are taken to not more than
2τ0, and average over the ensemble, in addition to the azimuthal direction. From the
unsteady simulations, which are each of approximate duration 200τ0, we obtain a
sequence of 120 files describing the ensemble-averaged behaviour of the variables over
the inhomogeneous spatial dimensions r and z. Details of the simulations performed
can be found in table 1.

Azimuthally averaged data over cylindrical coordinates are obtained by partitioning
the domain into cylindrical shells. The location of the centre of each small square
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FIGURE 2. (Colour online) Dimensionless profiles of longitudinal velocity (a), longitudinal
velocity variance (b) and Reynolds stress (c). The simulation data are compared to the
experimental data of Panchapakesan & Lumley (1993, PL93) and Ezzamel, Salizzoni &
Hunt (2015, ESH15). The displayed simulation data consist of approximately 80 different
radial profiles taken from the interval z/r0 ∈ [28, 55]. The experimental data from ESH15
and PL93 were obtained from the single location z/r0 = 30 and an average over the
interval z/r0 ∈ [120, 240], respectively.

control volume in the domain determines the shell to which it belongs, and the
total number of control volumes belonging to a given shell determines the area
allocated to the shell. In this way integrals over r are equivalent to integrals over all
volumes lying within a given disk. To determine the upper limit of integrals over the
radial dimension, we use ε ≡ 0.01 in (2.9). It is not possible to follow the classical
definitions of Qm and Mm by integrating over the interval [0,∞] on any domain of
finite extent.

4. Results
4.1. Validation

In figure 2 we compare radial profiles of mean longitudinal velocity w, longitudinal
velocity variance w′2, and the Reynolds stress u′w′, to the experimental data of
Panchapakesan & Lumley (1993) and Ezzamel et al. (2015), hereafter referred to as
PL93 and ESH15, respectively. Figure 2 displays approximately 80 radial profiles
from the simulation data, each taken from the interval z/r0 ∈ [28, 55] and normalised
using rm(z) and wm(z). The same normalisation was applied to the experimental data,
although in PL93 the interval from which the data were obtained was z/r0 ∈ [120, 240]
and in ESH15 the data correspond to the single location z/r0 = 30. In the mean
longitudinal velocity shown in figure 2(a) the simulation results exhibit a good
collapse relative to each other, and to both ESH15 and PL93. In figure 2(b) it is
evident that the simulation results approximately reproduce both the amplitude and the
radial dependence of the dimensionless turbulent transport w′2/w2

m found in ESH15.
With respect to PL93, the turbulent transport w′2/w2

m in both the simulation data and
ESH15 is smaller in amplitude, although it has a similar radial dependence. The likely
cause of this difference is the fact that the normalised longitudinal fluctuations w′/wm
adjust to equilibrium over extremely large distances. Indeed, PL93 point out that
equilibrium is not attained until approximately z/r0 = 140. However, the effect that
this has on the integral quantities in the jet is smaller than one might expect, because
the values most strongly affected are concentrated on the centreline. In the Reynolds
stress u′w′ shown in figure 2(c) the numerical results exhibit a good agreement with
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FIGURE 3. (Colour online) (a) Isoregions of instantaneous longitudinal velocity
w(r,π, z, t0), where t0 ≈ 1200τ0 (left-hand side), and average longitudinal velocity w(r, z)
(right-hand side), with darker shades corresponding to larger values. A linear fit to the
theoretical plume width rm = 2α0(z− zv) is indicated on the right hand side with a solid
grey line, in addition to streamlines of the induced ambient flow. (b) Normalised volume
flux Qm/(r0M1/2

m0 ) and (c) momentum flux Mm/Mm0. The interval [zb, zt], used in (4.1) to
obtain the steady-state momentum flux Mm0, is indicated on the left-hand side of (a).

those of ESH15, whose amplitude again lies slightly beneath the far-field data of
PL93.

Using time traces of the centreline velocity w(0, z, t) at z/r0 = 44 and the Taylor
hypothesis, one-dimensional spectra were obtained. An estimation of the dissipation
rate was calculated according to ε ≈ 15ν(∂tw′)2/w2. The peak of the dissipation
spectrum at z/r0 = 44 was observed to occur at a length scale corresponding to four
times the spacing of the grid. The Taylor Reynolds number for the flow, defined
according to Reλ≡w′2

√
15/εν (Tennekes & Lumley 1972), was found to be equal to

100 and 135 in simulations L and H, respectively.

4.2. The steady jet
Figure 3(a) shows an instantaneous and time-averaged slice through the longitudinal
velocity field. Notable is the fact that entrainment into the jet is established close
to the source, which is evident in the positive, and almost uniform, gradient of Qm
for z/r0 > 0. In figure 3(b,c) we display the longitudinal variation of Qm and Mm in
simulations L, H and H∗. Since plume theory only pertains to mean quantities, it is
necessary to define a steady-state momentum flux:

Mm0 ≡ 1
zt − zb

∫ zt

zb

Mmdz 6 M0, (4.1)

where zb/r0 = 28 and zt/r0 = 55, which, as expected, results in a good collapse of
the simulation data from L, H and H∗. From dimensional analysis it follows that Mm
should be constant and Qm proportional to z/r0, which is confirmed in the simulation
results. At the top of the domain the linear behaviour in Qm is slightly affected by an

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

64
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.640


516 J. Craske and M. van Reeuwijk
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FIGURE 4. Dimensionless momentum flux βg (a,d), dimensionless energy flux γg
(b,e), dimensionless turbulence production and pressure redistribution δg (c, f ), and their
constituent parts, in a steady jet. (a–c) The leading-order components; (d–f ) higher-order
components. Thin lines correspond to results from L, and thick lines correspond to results
from H. Constant values corresponding to a Gaussian profile are displayed as vertical lines
in (b,c). The interval over which averaging was performed to obtain the values reported
in table 2 is indicated on the left-hand side of (a).

inclination of the streamlines in the ambient, which influences the integration limit rd.
A steady-state entrainment coefficient α0 and virtual origin zv were determined for
each jet by fitting a straight line to Qm(z) over the interval z ∈ [zb, zt], to give α0 =
0.067 and zv/r0 =−5.0, when averaged over simulations L and H. Hereafter we will
use the notation Qm0= 2α0M1/2

m0 (z− zv) to denote the theoretical steady volume flux in
the jet.

Figure 4 displays longitudinal profiles of βg, γg and δg, and their constituent
parts, which represent the dimensionless momentum flux, energy flux and turbulence
production, respectively. The almost identical behaviour of these variables in L and H
confirms that the statistics examined are practically independent of Reynolds number.
Here, we are focusing on the dimensionless quantities, e.g. Mf /Mm, whose value
should be independent of the dependent variables Qm and Mm. The dimensionless
quantities therefore indicate the relative contribution that is made by all integrals
appearing in the governing integral equations (2.11)–(2.13). Of significance is the
fact that the values of the dimensionless quantities differ, in some cases considerably,
from those that are frequently assumed in models of steady and unsteady jets (see
e.g. Morton et al. 1956; Scase et al. 2006). As can be judged from the profile of
βf ≡ Mf /Mm in figure 4(d), despite the central role that turbulence plays in mixing
momentum locally, turbulent transport terms at the integral level are an order of
magnitude smaller than those associated with the mean flow, but not insignificant.
This observation is consistent with previous findings from experiments, including
PL93 and Hussein, Capp & George (1994). In fact, in βp it is seen that a large
portion of the turbulent transport of momentum flux is balanced by a reduction
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FIGURE 5. (Colour online) The entrainment coefficient α(z) and its constituent parts. Data
for H and L shown in dark grey, large symbols (blue online) and light grey, small symbols
(red online), respectively. The interval z/r0 ∈ [28, 55], over which averaging was performed
to obtain the value α0 = 0.067, is indicated on the right-hand side of the figure.

of pressure in the jet, which can be estimated to a good approximation using the
transverse components of momentum flux Mu and Mv (see e.g. Hussein et al. 1994):

βp =− 1
2(βu + βv), (4.2)

where

βu ≡ 2
Mm

∫ rd(z,t)

0
u′2rdr, βv ≡ 2

Mm

∫ rd(z,t)

0
v′2rdr. (4.3a,b)

In sum, the contribution to the gross momentum flux from pressure and turbulence
accounts for approximately 7 %.

Figure 4(b,e) displays dimensionless energy fluxes and confirms that γm > 1, which
is consistent with the non-uniform profiles that one expects to find in real jets. At
z/r0≈20 the dimensionless energy flux γm appears to have converged to approximately
1.3, which is close to the exact value of γm = 4/3 that one would expect to see
if the mean flow were perfectly Gaussian, and indicates the presence of dispersion.
Below z/r0 = 15, the jet develops from patches of uniform velocity into a developed
flow with significant radial dependence, resulting in the monotonic increase of γm
from 1 to 1.3. The gross energy flux γg is slightly higher than the mean energy
flux because the turbulent transport of mean energy γf exceeds the negative pressure-
work term γp, as seen in figure 4(e). Very close to the source, where z/r0 < 5, the
azimuthal inhomogeneity resulting from the source condition (see § 3) is evidenced in
large values of the variance w′2 and therefore in large values of βf and γf . Further
from the source, beyond the visible local minimum in βf and γf , the flow becomes
azimuthally homogeneous and βf and γf are approximately constant.

In the dimensionless production term δm in figure 4(c), one sees that an
approximately constant value is not established until z/r0 > 20. Below this height,
although one might expect to see a reduction in the entrainment into the jet, since
α0 ∼ −δm/2γm, the steady increase in −δm is approximately balanced by the steady
increase in γm. This is an example of the way in which the independent behaviour
of γm and δm is unimportant in the steady jet equations.

Figure 5 displays the constituent parts of the entrainment coefficient (2.23), for both
L and H. A moving-average filter of dimensionless length one was applied to raw
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TH G H L PL93

α α0 α0 0.065± 0.001 0.069± 0.002 0.082
βf 0.000 0.000 0.157± 0.001 0.160± 0.004 0.187
βu 0.000 0.000 0.099± 0.002 0.102± 0.003 0.094
βv 0.000 0.000 0.104± 0.001 0.108± 0.003 0.097
βp 0.000 0.000 −0.088± 0.001 −0.091± 0.002 —
βg 1.000 1.000 1.068± 0.001 1.069± 0.002 —
γm 1.000 1.333 1.303± 0.003 1.298± 0.005 1.305
γf 0.000 0.000 0.284± 0.003 0.292± 0.006 0.354
γp 0.000 0.000 −0.171± 0.001 −0.185± 0.006 —
γg 1.000 1.333 1.416± 0.006 1.404± 0.006 —
δm −2α0 −8α0/3 −0.187± 0.003 −0.195± 0.006 −0.201
δf 0.000 0.000 0.006± 0.000 0.007± 0.001 —
δp 0.000 0.000 −0.002± 0.000 −0.003± 0.000 —

TABLE 2. The dimensionless parameters of a steady jet. Here TH = top-hat, G =
Gaussian and PL93 = Panchapakesan & Lumley (1993). The values displayed in the
columns beneath H and L are given to within one standard deviation. The dimensionless
parameters reported in this table are averages over the interval z/r0 ∈ [28, 55], which is
indicated in figure 4(a).

data in order to obtain the data displayed in figure 5. The close agreement between α
and (∂zQm)/2M1/2

m implies that the integral equations for momentum (2.12) and energy
(2.13), and therefore area (2.11), are satisfied by the simulation data. As expected,
the term αprod dominates in the steady state, and provides an excellent means of
inferring an entrainment coefficient in a way that is independent, yet consistent, with
the direct calculation of (∂zQm)/2M1/2

m . However, close to the source the role of αdisp2,
whose effects are contained in the similarity drift term in KTC05, is also discernible.
There, αdisp2 has the effect of making a positive contribution to entrainment, which
is the result of a gradual deformation of the source velocity profile over the region
of flow development. Correspondingly, in this region αprod increases monotonically
to its far-field value, which ultimately dominates α(z). Beyond z/r0 = 55, both αdisp2

and (∂zQm)/2M1/2
m appear to be affected by the boundary. Indeed, in figure 3 it

is evident in the streamlines at the top of the domain that the boundary induces
a small longitudinal velocity in the ambient, to which the longitudinal derivative
appearing in αdisp2, and therefore ∂zQm/(2M1/2

m ), is sensitive. Notable, however, is that
the turbulence production term αprod, which provides the dominant contribution to
entrainment, is not affected by the boundary.

The values of the dimensionless integrals are summarised in table 2, along with the
values corresponding to top-hat and Gaussian profiles. In particular, the dimensionless
parameters that we have observed show a good agreement with those of PL93 and do
not reveal anything unexpected. Notable, however, is the significant contribution from
O(rm/L) transport terms such as βf ≈ 0.15 and γf ≈ 0.29, which is partially disguised
when they appear in sum with other terms (e.g. βp + βf ≈ 0.07). In a steady state,
other than creating a mis-match between the source fluxes and the far-field fluxes
(e.g. Mm0 6=M0), such terms have little effect on the perceived momentum and energy
balances. Also noteworthy is the fact that the turbulence production and redistribution
terms δf and δp are almost two orders of magnitude smaller than δm. With respect
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FIGURE 6. (Colour online) Isolines of the normalised ensemble-averaged longitudinal
kinetic energy w2/wL 2

m0, where wL
m0(z) is the characteristic longitudinal velocity in the

steady-state simulation L: (a) step-down (HL); (b) step-up (LH).

to the mean flow transport of energy we note the observation that γm ≈ 1.3 differs
considerably from the top-hat assumption γm = 1, the implication of which will be
discussed in the following sections.

4.3. The unsteady jet

Figure 6 displays isolines of the dimensionless longitudinal kinetic energy, w2/wL 2
m0,

where wL
m0(z) is the characteristic longitudinal velocity in the steady-state simulation

L, on instantaneous longitudinal slices through the domain at several times. For the
unsteady simulations the timescale τ0 is defined according to τ0≡ r2

0/M
∗1/2
m , where M∗m

is a constant characteristic momentum flux that will be defined precisely at the end of
this section. In each case a front, negative in figure 6(a) and positive in figure 6(b),
propagates and spreads in the longitudinal direction. When the source momentum
flux is reduced the region with relatively high momentum flux appears to pinch away
from the region of relatively low momentum flux beneath. This behaviour is not
observed when the source momentum flux is increased. Clear from figure 6 is that
the leading edge of the the region of high momentum flux in figure 6(b) travels at
approximately the same speed as the trailing edge of the region of high momentum
flux in figure 6(a). Ascertaining the rate at which propagation and spreading occurs
forms the focus of this section, and in § 5 we will develop theory relating to these
processes.

The averaging over the ensemble is depicted in figure 7, which displays the
longitudinal profile of momentum flux for each individual simulation at t = 47τ0, in
addition to their ensemble average. In general the amplitude of the deviations from the
ensemble average appears to scale in constant proportion to the average momentum
flux at that height. In contrast to what one might expect, a significant increase in the
relative magnitude of deviations from the ensemble, and therefore in the turbulent
transport, is not discernible at the level of the front. In figure 7 it is possible to
identify a primary front in each case, whose location corresponds approximately to
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FIGURE 7. (Colour online) Individual simulations (thin lines) and their ensemble average
(thick line) at t= 47τ0. The thickness of the line depicting the ensemble average is equal
to twice the estimated standard deviation of the true mean at that location.

the leading edge of the disturbance. In HL it is also possible to identify a secondary
front, that develops below the primary front, and an accompanying trough in Mm. The
secondary front in HL has an appearance that is similar to the primary front in LH.

In figure 8(a,b), which displays longitudinal profiles of Mm averaged over the
ensemble, at the dimensionless times t1 = 31τ0, t2 = 55τ0, t3 = 79τ0, t4 = 103τ0, one
can discern qualitatively the way in which the front evolves. The front propagates and
spreads in the longitudinal direction. More subtle, is the fact that in figure 8(a) the
front appears to spread more rapidly than that in figure 8(b). Indeed, on the basis that
HL comprises relatively high velocities ahead of relatively low velocities, one might
expect to see rarefaction-like behaviour. In LH, on the other hand, the relatively high
velocities occur behind the front and one might expect to see shock-like behaviour.
However, it is evident in figure 8(b) that a shock is prevented from occurring due
to longitudinal mixing. Figure 8(c,d) displays the profiles of the jet radius rm. The
general behaviour of rm is difficult to anticipate, because it depends on both Qm and
Mm. It is observed in figure 8(c,d) that the jet remains approximately straight-sided in
the vicinity of the front, excepting the local increase in rm in HL, which is coincident
with the local minimum in Mm. We will return to the topic of straight-sidedness in
detail in Part 2.

The way in which the ambient flow field is affected by the unsteady jets is
displayed in figure 9. Most noticeable is the divergence in the streamlines in the
vicinity of negative longitudinal gradients of the momentum flux (i.e. regions in
which ∂zMm < 0). This behaviour is consistent with the view that, for non-uniform
velocity profiles, αdisp1 leads to a reduction in entrainment (αdisp1 < 0), or relative
divergence, when the flow decelerates in the longitudinal direction. On the other
hand, in the region in figure 9(a) in which ∂zMm > 0, the behaviour of αdisp1 > 0
indicates an enhanced entrainment resulting from the acceleration of the jet in
the longitudinal direction. When ∂zMm > 0, both the spacing of the streamlines
evident in figure 9(a) and the observation of an enhanced radial inflow reported by
Borée et al. (1997), support the qualitative predictions that can be obtained from
the framework that was outlined in § 2.4. Indeed, we will demonstrate in Part 2
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FIGURE 8. Ensemble-averaged, instantaneous profiles of mean momentum flux Mm (a,b)
and radius rm (c,d). For comparison, the steady state radius rm0 = 2α0z is also displayed
and the location z∗(t), which is defined according to Mm(z∗)= (MA

m+MB
m)/2, is markedE.

The time to which each profile corresponds is ti = 31τ0 + 24τ0i, where i= 0 . . . 3.

that if entrainment were not affected by ∂zMm, the local area Q2
m/Mm of the jet

would necessarily increase or decease in order to accommodate the local deceleration
(∂zMm < 0) or acceleration (∂zMm > 0) of the flow, respectively.

An advantage of examining entrainment via balances of mean momentum and
energy in an unsteady jet is that it is not necessary to develop a storage model for
the volume of the jet independently. Indeed, the area Q2

m/Mm is a statistical quantity
that characterises the lateral spread of the jet rather than an observable physical
threshold corresponding to a precise lateral extent. Consequently, as demonstrated in
(2.23) and the previous paragraph, the entrainment properties of the unsteady jet can
be inferred from the behaviour of Qm and Mm. By definition, at the upper limit rd
of the integrals Qm and Mm, the longitudinal velocity w(rd, z, t) is relatively small.
Therefore, assuming that the unsteady flow remains slender, there will be a relatively
small flux of momentum and energy at r = rd. It is consequently not necessary to
account for the effects of non-lateral entrainment in addition to the terms that already
appear in (2.23). In situations in which the flow is not slender, or w(rd, z, t) is not
relatively small, the entrainment relation (2.23) can be extended in a straightforward
manner to account for longitudinal boundary fluxes.

To track the location of the leading front, z∗(t), we use an intermediate value of the
momentum flux to provide the implicit equation

Mm(z∗)= MA
m +MB

m

2
, (4.4)
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FIGURE 9. (Colour online) Isolines of the stream function ψ(r, z, t) at t/τ0 = 64, where
u≡−r−1∂zψ and w≡ r−1∂rψ , displayed alongside the normalised momentum flux.

where MB
m and MA

m are constants, corresponding to the steady mean momentum
fluxes before and after the step change, respectively. The front position is depicted
in figure 8 with a circle. Figure 10(a,b) displays the relation z∗(t), determined
numerically, and, with respect to the shaded isoregions of ∂zMm, demonstrates that it
coincides approximately with the inflection points in HL and LH, in addition to giving
a smooth representation of the front position. Given the normalisation employed, the
linear behaviour of the data in figure 10(c) reveals that the front position evolves
according to z∗ ∼√t.

The scaling observed in figure 10 can be interpreted by assuming that the front
propagates at a rate given by

dz∗

dt
= λ∗ M∗1/2m

2α0(z∗ − zv)
, (4.5)

where M∗m is a suitable constant momentum flux, characteristic of the motion at
the leading edge of the front, and λ∗ is a constant, which in § 5.1 we show can
be interpreted as an eigenvalue of the system. In fact, under certain simplifying
assumptions that will be discussed in Part 2, the appropriate momentum flux M∗m can
be obtained exactly according to

M∗m =
1
4

(
MA

m −MB
m

MA 1/2
m −MB 1/2

m

)2

, (4.6)

when the front is regarded as a shock (see e.g. Toro 1997). Integration of (4.5) reveals
that

(z∗ − zv)2 = λ
∗M∗1/2m

α0
(t− tv), (4.7)

where tv is a constant of integration that corresponds to the location of an asymptotic
virtual source in time. Equation (4.7) describes the scaling observed in figure 10
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FIGURE 10. (Colour online) Location of front z∗(t) determined from simulation data. (a,b)
Isoregions of ∂zMm, and a parabolic fit to the data shown with a bold line. The location
of the asymptotic virtual source (zv, tv) is marked ×. (c) The front position with respect
to a quadratically scaled longitudinal axis, in addition to the theoretical location of the
front when the longitudinal velocity is assumed to have a top-hat form (λ∗ = 1) and a
Gaussian form (λ∗ = 2).

and, with (4.6), provides a normalisation for fronts of different strengths. A similar
argument was used by Abraham (1996) to deduce that the total mass entrained into an
unsteady gas jet has a cubic dependence on its longitudinal penetration. Observable in
figure 10 is that λ∗ ≈ 2 in both simulations, which suggests that the front propagates
at 2wm rather than wm. For Gaussian profiles 2wm corresponds to the maximum
velocity whilst wm corresponds to the mean velocity. In the next section we will look
at the hyperbolic character of the governing equations in greater detail and show that
the eigenvalue λ∗ can be inferred with reasonable accuracy using the steady-state
data. In doing so we will be able to demonstrate that it is the velocity profile of the
jet that is chiefly responsible for determining the propagation speed of the front.

In figure 11 the momentum flux over the time interval [63, 159]τ0 is plotted with
respect to a similarity variable obtained by rescaling the longitudinal coordinate by
the observed front position z∗(t). The observable collapse of the data confirms that
the length scale associated with the spread of the front scales in proportion to z∗(t).
In turn, one can infer that the processes responsible for the mixing of the front scales
according to the local integral properties of the jet, rather than an independent scale.
The picture that emerges in physical coordinates is similar to the cap of the starting
plume envisaged by Turner (1962): for all times the longitudinal extent of the front
remains in constant proportion to the local radius of the jet rm(z∗(t), t). It is interesting
that for jets the observed, and indeed expected, scaling z∗(t)∼√t corresponds to one
of classical dispersion (Taylor 1953). The self-similarity evident in figure 11 suggests
that unsteady jets attain an equilibrium state. In this state one expects the dynamics of
the front to be invariant with time, provided that all quantities are non-dimensionalised
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FIGURE 11. (Colour online) Self-similarity of the simulation results for the momentum
flux Mm over the time interval [63, 159]τ0 compared to a similarity solution of a
corresponding linear advection–dispersion equation.

using the local scales wm(z, t) and rm(z, t). This kind of self-similarity is weaker than
the similarity that one finds in steady jets, because it does not imply that the radial
dependence of w/wm is everywhere the same. Furthermore, one would not expect to
find similarity in the near field. Indeed, near-field (i.e. small-time) effects are evident
in figure 11 as regions in which the data do not collapse. It is natural to expect that
an unsteady jet produced by any change in source conditions that takes place over a
finite time will eventually attain a state of similarity such that

w
wm
= f

(
r
rm
,

z2α0

M∗1/2m t
,

MA
m

MB
m

)
. (4.8)

In converging to such a state, longitudinal mixing will ensure that the jet has a
progressively weaker dependence on the precise way in which its source conditions
were changed.

5. Theory of the front
In this section we analyse the propagation speed and spreading rate of the front

in greater detail. We will show that the former is determined by the values of the
dimensionless fluxes γg and βg, and is significantly influenced by the steady-state
longitudinal velocity profile. Mixing of the front, in contrast, requires that the
dimensionless fluxes γg and/or βg depart from their steady-state values, which implies
a local departure from similarity in the jet. We distinguish these effects by identifying
them as type I and type II dispersion, respectively.

5.1. Type I dispersion and characteristic curves
Here we will determine the characteristic curves of the system (2.12) and (2.13) in
the general case, for which it will be assumed that the rates with which energy and
momentum are transported are different, i.e. γg 6= βg. Using the momentum–energy
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formulation we express the governing equation for unsteady jets as

∂

∂t

(
Qm
Mm

)
+
 0 βg

−γg
M2

m

Q2
m

2γg
Mm

Qm

 ∂
∂z

(
Qm
Mm

)
=
 0

δg
M5/2

m

Q2
m

. (5.1)

Looking locally, we assume that the dimensionless terms βg, γg and δg are constants,
thereby restricting analysis to type I dispersion. This allows us to understand,
to leading order, the effect that they have on the classification of the system.
Characteristic surfaces, on which a function Φ(z, t) is constant, satisfy the following
condition:

det

 −λ
∗ βg

Qm

Mm

−γg
Mm

Qm
2γg − λ∗

= 0, (5.2)

where the eigenvalue λ∗ represents a dimensionless velocity defined by

λ∗ ≡ dz
dt

Qm

Mm
=−∂Φ

∂t

(
∂Φ

∂z

)−1 Qm

Mm
. (5.3)

The relation (5.2) implies that

λ∗ = γg

(
1±

√
1− βg

γg

)
. (5.4)

In the eigenvalues (5.4) we see that when the rates with which momentum and
energy are transported are equal (i.e. when βg = γg) the eigenvalues, and therefore
the characteristic curves, overlap. In that case it can be shown that the eigenvectors
of the system are not linearly independent and the system is parabolic (see e.g.
Whitham 1974). Indeed, it is a parabolic form of the equations that is implied by the
top-hat model of Scase et al. (2006). However, substitution of the values of γg and
βg obtained from the steady state (see table 2) suggests that

λ∗ ≈ 1.4± 0.7, (5.5)

and therefore that the system is hyperbolic. Unlike parabolic systems, in hyperbolic
systems fast-propagating disturbances can overtake slower disturbances. Indeed, there
is a close analogy between the unsteady jet equations and the shallow-water equations
for supercritical flow. In both cases there are generally two families of characteristic
curves and information is only able to travel downstream.

The characteristic curves are paths along which the total derivatives of several quasi-
invariant quantities are decoupled. Using the eigenvectors of the system, the invariants
are defined in terms of the total derivatives:

dYm =−γg

λ∗
Mm

Qm
Q−γg/λ

∗
m dQm +Q−γg/λ

∗
m dMm, (5.6)

where the integrating factor Q−γg/λ
∗

m has been introduced. The quasi-invariants are
therefore found to be

Ym =MmQ−γg/λ
∗

m , (5.7)
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to within a constant factor. We note that when the system is parabolic and λ∗ = 1,
the quasi-invariants are identical and equal to Mm/Qm = wm. Along the characteristic
curves the governing equations become

dYm

dt
= δg

M5/2
m

Q2+γg/λ∗
m

. (5.8)

The quasi-invariants prove particularly useful in understanding the behaviour of the
area of the jet Am. It can be shown that along fast and slow characteristic curves
emanating from an instantaneous change in Mm, the area retains its steady-state form,
Am = 4α2

0z2. In Part 2 we show that the behaviour of the area between these curves
depends on their separation, i.e. on the discriminant 1− βg/γg, for which there exists
a distinguished value that renders the area insensitive to changes in Qm and Mm. Thus,
there exists a value of 1− βg/γg that ensures straight-sidedness in the jet for all time.
Remarkably, this value is obtained when the jet is assumed to have a Gaussian form,
with βg = 1 and γg = 4/3.

5.2. Type II dispersion and front mixing
In the previous section we established type I dispersion under the assumption that βg
and γg are constants, equal to their steady-state values. However, such an assumption
is unrealistic in the vicinity of a steep front where self-similarity will, in general,
not be maintained. This naturally raises the question of what effect a departure from
self-similarity will have on the local fluxes and, therefore, on the longitudinal mixing
at the front. Indeed, in § 4.3 a non-negligible longitudinal spreading of the front was
observed, which was found to scale according to

√
t. In this section we begin by

estimating the mixing coefficient associated with the observed longitudinal spreading
rate, before looking at the local variations in the dimensionless fluxes in the jet.

The spread of the front can be obtained by assuming that the process can be
described by an advection–dispersion equation of the form

∂Mm

∂t
+ λ∗ M∗1/2m

2α0(z− zv)
∂Mm

∂z
=De

∂2Mm

∂z2
. (5.9)

Equation (5.9) can be expressed as an ordinary differential equation (see appendix B)
using the similarity scaling that was observed in § 4.3. An estimation of the dispersion
coefficient De can be obtained by matching the similarity solution to the data
displayed in figure 11. Specifically, the matching is performed by comparing the
gradient of the similarity solution at the level of the front to that observed in the
transformed simulation data. To do this we average over each of the instantaneous
profiles comprising figure 11. To quantify mixing effects, rather than the spreading
resulting from the rarefaction behaviour of HL, we use LH for our estimation.
The gradient of the similarity solution of (5.9) was obtained to leading order by
assuming that the effects of longitudinal mixing are relatively weak compared to
the advection of the front, as described in appendix B. This procedure suggests that
De/M∗ 1/2

m ≈ 0.22, which defines the similarity solution that is shown in figure 11 with
a solid line. Referring back to § 3, it should be noted that in theory the relatively
small, yet finite, time interval δt< 2τ0 over which we average the data is responsible
for a small amount of smoothing over the longitudinal direction. However, this
contribution scales according to δt2/t2, whose value is no greater than 2 × 10−4 for
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the data presented in figure 11, from which the value of De was inferred. Accounting
for the observed steepness of the front, we estimate that our inferred value of De
overestimates the actual longitudinal mixing coefficient due to time averaging by
not more than 1 %. Figure 11 reveals that (5.9) provides a reasonably accurate first
approximation to the front in each case. An interesting aspect of this result is that
(5.9) ignores the coupling that exists between Qm and Mm. In Part 2 we will account
for the surprising effectiveness of (5.9), and show that it implies that unsteady jets
remain approximately straight-sided.

Having obtained an estimation for De, the logical next step is to ascertain whether
the longitudinal mixing is due to turbulence or shear-flow dispersion of the kind
identified by Taylor (1953). Shear-flow dispersion is caused by lateral gradients in
the mean longitudinal velocity acting over longitudinal gradients of a transported
variable. As discovered by Taylor (1953), dispersion produces a local deformation
in the radial dependence of the transported quantity, which, owing to its correlation
with a non-uniform velocity can enhance or diminish the total flux of the quantity.

We make an estimation of the average turbulence eddy viscosity νTm using the
gradient diffusion hypothesis:

u′w′ =−νTm
∂w
∂r
, (5.10)

and evaluate the dominant production term by assuming that w follows a Gaussian
distribution (2.19):

Pm ≡ 4
∫ ∞

0
u′w′

∂w
∂r

rdr=−4νTm

∫ ∞
0

(
∂w
∂r

)2

rdr=−8νTmw2
m. (5.11)

On using the definition of δm and the relation δm = −2α0γm, implied by (2.24), to
relate Pm to α0, we find

νTm = α0

3
M∗ 1/2

m . (5.12)

The observed dispersion coefficient De is several times larger than the eddy viscosity
νTm; indeed De/M∗ 1/2

m = 0.22 compared to νTm/M∗ 1/2
m = 0.023. Although the estimation

(5.12) does not account for the fact that νTm might change locally at the front, its
value relative to De suggests that the mixing of the front is primarily a dispersive
phenomenon. In Part 2 we address how the mixing of the front can be described using
a simple model for dispersion based on the approach proposed by Taylor (1953, 1954).

We are now in a position to address the origin of the longitudinal mixing observed
in figure 11. In § 5.1 we assumed that γg remains constant in the vicinity of a front.
This amounts to assuming that the self-similarity of the jet is unaffected by a shock
or rarefaction, which, from a physical point of view, is unrealistic. In fact, unless the
velocity profiles have a top-hat form, we expect that non-uniform profiles of velocity
will redistribute energy in the longitudinal direction and therefore smooth steep fronts.
This behaviour is confirmed in figure 12, which displays a moving average of the
dimensionless mean (a) and dimensionless turbulence (b) longitudinal kinetic energy
relative to steady-state profiles. Positive (negative) values indicate parts of the flow
where the mean or turbulence energy is higher (lower) than the steady-state value at
the same location. In LH the negative longitudinal gradient in Mm at the front means
that fluid of relatively high energy, transported from behind the front, is concentrated
on the axis of the jet and surrounded by fluid of relatively low energy. In HL, in
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FIGURE 12. (Colour online) Moving averages (following the front), relative to steady-
state profiles. (a) Normalised longitudinal mean kinetic energy profile and (b) longitudinal
turbulence kinetic energy. Steady-state profiles were obtained by averaging profiles in both
L and H over the range z/r0 ∈ [28, 55].

which the longitudinal gradient in Mm is positive, the situation is reversed and fluid
with relatively high energy is removed from the axis of the jet at the front. It is
notable that the deformation of both the mean energy profile and the turbulence energy
profile has a similar form.

The moving average of the dimensionless fluxes displayed in figure 13 confirms
that both γm and γf increase in LH and decrease in HL in the vicinity of the front.
Noteworthy is the fact that in spite of the departures from steady-state similarity
observable in w′2 in figure 12, figure 13 shows that the dimensionless turbulent
transport βf is not significantly affected by the front. To appreciate this, note that
the deviation from self-similarity of w′2 shown in figure 12 appears in a product
with r when integrated over the jet to give βf . The dispersion described in the
previous paragraph arises due to the redistribution of a quantity over the radius of
the jet, rather than a change in the area integral of that quantity. Such effects belong
exclusively to the mean energy equation, because there, unlike in the momentum
equation, the quantities appear in a product with w. In particular, the parameter
describing dispersion in ww′2 is γf − 2βf (see § 2), and has a behaviour that is similar
to γm− 1 in the vicinity of the front in LH. We also note that the significant increase
in γm in HL upstream of the front (see bottom of figure 13a) is coincident with the
trough in Mm that develops slightly ahead of the secondary, slower front (see also
figure 8), whose dynamics is beyond the scope of the present investigation.

6. Conclusions

In this paper we have presented results from the direct simulation of steady and
unsteady jets. To inspect the results we developed an unsteady momentum–energy
framework that provides a logical generalisation, in the absence of buoyancy, of the
approach employed by Priestley & Ball (1955) and Kaminski et al. (2005). Using the
framework in a diagnostic capacity, we reported the value of several dimensionless
transport and turbulence production parameters in a steady jet, which prove useful
in understanding the behaviour of unsteady jets. In particular, we observed that
the propagation speed of a front is approximately equal to λ∗w∗m, where λ∗ ≈ 2
and w∗m ≡ M∗m/2α0z is a top-hat velocity that characterises the motion at the front
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FIGURE 13. (Colour online) Moving average of energy flux parameters, at the level of
the front. Dashed lines correspond to the average parameter values from the steady data,
reported in § 4.2.

(see figure 10). Following relatively small changes in Mm at the source, we have
M∗m ≈ Mm, and the front’s propagation speed will be 2wm, which, for Gaussian
profiles, is equal to the velocity on the axis of the jet. In addition, we observed
that the behaviour of the front accords with a self-similar process (see figure 11),
whose position and longitudinal extent scales according to z∗∼√t. This allowed us to
determine the longitudinal spreading rate of the front using a similarity transformation
(appendix B) and, consequently, a mixing coefficient De. By comparing De to the
typical magnitude of the eddy viscosity it was demonstrated that the mixing is
primarily due to dispersion.

The notion of energy dispersion unifies several distinct concepts that are prevalent
in the behaviour of unsteady jets. In this regard, type I dispersion results from non-
uniform profiles of velocity that remain self-similar with height. Under such conditions
the profile of kinetic energy is narrower than the profile of velocity, which means that
the dimensionless energy flux is greater than the dimensionless momentum flux. In
turn, this gives the resulting integral equations a hyperbolic character. In Part 2, we
will show that type I dispersion determines the behaviour of the area of the jet in the
vicinity of a front and the rate at which perturbations at the source grow or decay
in the longitudinal direction. Type II dispersion, in contrast, concerns departures from
self-similarity that modify the local fluxes, and was shown to be chiefly responsible for
the longitudinal mixing in the unsteady jets. In addition, type II dispersion provides
the only way in which the area of the jet can be mixed in the longitudinal direction.
Both type I and type II dispersion reside in the mean energy equation.

Dispersion in jets can account for highly influential transport processes in terms
of mean flow properties alone, without explicit reference to turbulence terms. More
precisely, in the present context turbulence can be viewed as a process that inhibits
dispersion in the way that Taylor (1954) made evident for pipe flow. Longitudinal
mixing by dispersion includes the effects of turbulence implicitly and, by focusing
on the properties of the mean flow, sits comfortably with the established treatment
of jets and plumes. Moreover, in keeping with Taylor dispersion, it is the Reynolds
stress, u′w′, which determines the steady-state entrainment, that continues to play
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a dominant role. However, the present study has not examined the effect that a
step change in momentum flux has on the turbulence kinetic energy budget. In
particular, the behaviour of the turbulence production is an area that would benefit
from further attention (see e.g. Borée et al. 1997) and could be analysed from an
integral perspective using the framework that we described in § 2. In Part 2 of this
work we will produce a simple closure for unsteady jets based on Taylor dispersion.
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Appendix A. Description and verification of the code
In this appendix we describe the numerical method in detail. The name of the

code we employ is SPARKLE and it is based on a finite volume discretisation of
the governing equations. Specifically, SPARKLE employs the symmetry-preserving
method of Verstappen & Veldman (2003), which conserves mass, momentum and
energy, and is accurate to fourth order. The challenge of obtaining fully conservative
schemes at orders higher than two is formidable, and as such has received much
attention from numericists (see e.g. Morinishi et al. 1998). To achieve conservation
and fourth-order accuracy, the scheme of Verstappen & Veldman (2003) adopts a finite
volume approach over two nested control volumes. In three dimensions the volume
of the larger control volume is 33 times that of the smaller (see figure 14a). Standard
central differencing is applied to the fluxes at the boundary of each control volume
independently. These operations are then combined, using Richardson extrapolation,
to eliminate their leading, second-order, error. Each control volume is centred on the
location of the transported variable and fluxes are defined on the centre of each face
(see figure 14b). The staggered arrangement of variables over the grid means that
transporting velocities and their transported quantities need to be interpolated to the
centre of each control volume face, before their product can be taken to obtain a
flux. In the case of the transport of scalar terms, which are defined on the centre
of each cell, the velocities coincide with the point at which the flux is defined and
the only interpolation that is required is of the scalar variable. Figure 14(b) shows
a two-dimensional section of a typical control volume. We use → to denote the
location of a flux and E to denote the location of the transported quantity. In the
case for whichE represents a velocity,@ represents the location of lateral transporting
velocities.

A.1. Description of the code
Using the approach described above, the discrete approximation to the Navier–Stokes
equations is

δu
δt
+N(u)u=−Gp+ Lu,

Du= 0.

 (A 1)

Here, capitalised letters denote differencing operators, δ/δt is a discrete approximation
of a time derivative, u is a vector of velocities and p is pressure. The differencing
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(a) (b)

FIGURE 14. Staggered arrangement of variables relative to a single computational cell,
where → denotes the location of a flux,E the location of the transported quantity and, in
the case for whichE represents a velocity,@ represents the location of lateral transporting
velocities. (a) Control volume and (b) a typical two-dimensional section.

approach designed by Verstappen & Veldman (2003) ensures that on a periodic
domain the inner products

〈Du, φ〉 =−〈u, Gφ〉, 〈N(u)v,w〉 =−〈v,N(u)w〉, (A 2a,b)

are satisfied, which is consistent with the skew-symmetry one finds in the advection
and gradient operators on a continuum, and in turn means that the total energy on
a periodic domain is changed only as a result of external forcing and/or viscous
dissipation.

To describe the spatial differencing operators, we focus on the case of a grid of
uniform spacing 1x,1y and 1z, which is consistent with the grid that was employed
for the simulations reported in this paper. In general however, the code supports a non-
uniform grid spacing in z. We will use Ω to denote the effective volume that appears
when conservation equations for the large and small control volumes are combined:

Ω ≡ (35 − 33)1x1y1z= 2161x1y1z. (A 3)

With these definitions, to take an example, the third component G3 of the gradient
operator G results in

G3 pi,j,k+1/2 = 1x1y
Ω

[
35
(
pi,j,k+1 − pi,j,k

)︸ ︷︷ ︸
inner

− 32
(
pi,j,k+2 − pi,j,k−1

)︸ ︷︷ ︸
outer

]
, (A 4)

in which differences corresponding to the inner (small) and outer (large) control
volumes have been indicated. In (A 4) the subscript k + 1/2 refers to the fact that
whilst p is defined on the cell centres, G3p is defined on the horizontal faces of
control volumes, i.e. coincident with the location of w. The first two components of
G are obtained in a similar manner.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

64
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.640


532 J. Craske and M. van Reeuwijk

The divergence operator D is defined according to

Du(i,j,k)+1/2 = 1y1z
Ω

[
35
(
ui+1,j,k − ui,j,k

)− 32
(
ui+2,j,k − ui−1,j,k

)]
+ 1z1x

Ω

[
35
(
vi,j+1,k − vi,j,k

)− 32
(
vi,j+2,k − vi,j−1,k

)]
+ 1x1y

Ω

[
35
(
wi,j,k+1 −wi,j,k

)− 32
(
wi,j,k+2 −wi,j,k−1

)]
. (A 5)

The diffusion operator is found from D and G, according to L ≡ DG, which, for
example, results in

L3wi,j,k = 1x21y2

Ω

[
310

(
wi,j,k+1 −wi,j,k

Ω
− wi,j,k −wi,j,k−1

Ω

)
− 37

(
wi,j,k+2 −wi,j,k−1

Ω
− wi,j,k+1 −wi,j,k−2

Ω

)
− 37

(
wi,j,k+2 −wi,j,k+1

Ω
− wi,j,k−1 −wi,j,k−2

Ω

)
+ 34

(
wi,j,k+3 −wi,j,k

Ω
− wi,j,k −wi,j,k−3

Ω

) ]
. (A 6)

The advection operator N requires that variables are interpolated to the centre of each
control volume face. For example, the longitudinal transport of horizontal momentum
is approximated according to

N(w) ui,j,k = 1x1y
Ω

{
35

[
I1wi−1/2,j,k+1

(
ui,j,k + ui,j,k+1

2

)
− I1wi−1/2,j,k

(
ui,j,k−1 + ui,j,k

2

)]
− 32

[
I1wi−1/2,j,k+2

(
ui,j,k + ui,j,k+3

2

)
− I1wi−1/2,j,k−1

(
ui,j,k−3 + ui,j,k

2

)]}
.

(A 7)

Here I1 is a fourth-order interpolation operator over the first spatial dimension:

I1wi−1/2,j,k ≡ 9
8

(
wi,j,k +wi−1,j,k

2

)
− 1

8

(
wi+1,j,k +wi−2,j,k

2

)
. (A 8)

For non-uniform grids the spatial discretisation has a similar form to the examples
provided here. However, for conservation on non-uniform grids, care must be taken
to ensure that it is the fluxes, e.g. 1yj1zkui,j,k, that are interpolated, rather than the
velocities, because for that case 1yj and 1zk vary over the domain. For further details
see Verstappen & Veldman (2003).

To advance the solution for a variable φ in time, the code employs a third-order
variable-time-step, Adams–Bashforth scheme. To this end the problem is regarded as
an ordinary differential equation

dφ
dt
= f (t, φ). (A 9)

Third-order accuracy is obtained by utilising previous values of the right-hand side f :

φn+1 = φn +1tn

m∑
i=0

αi f (tn−i, φ
n−i), (A 10)
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where φn denotes the values over the entire computational domain of variable φ at
the time tn. The coefficients αi are determined by examining the Taylor series of each
contribution f (tn−i, φ

n−i) and eliminating the leading-order error. To achieve third-order
accuracy we use

α0 = 1+ 1tn(21tn−1 +1tn−2)

21tn−1(1tn−1 +1tn−2)
+ 1t2

n

31tn−1(1tn−1 +1tn−2)
,

α1 =−1tn(1tn−1 +1tn−2)

21tn−11tn−2
− 1t2

n

31tn−11tn−2
,

α2 = 1tn1tn−1

21tn−2(1tn−1 +1tn−2)
+ 1t2

n

31tn−2(1tn−1 +1tn−2)
,


(A 11)

which, if the time increments are uniform, reduce to α0 = 23/12, α1 = −4/3 and
α2= 5/12. At every time step an intermediate velocity u∗ is obtained by applying all
forcing terms involving velocity, in addition to the pressure gradient of the previous
time step:

u∗ − un =
2∑

i=0

αi1tn f n−i −1tnGpn−1, (A 12)

where f n−i are explicit acceleration terms. Defining the current pressure to be pn =
pn−1 +πn/1tn results in the following correction to the velocity field:

un+1 − u∗ =−Gπn. (A 13)

Applying the divergence operator D to this equation and defining the projection to be
such that Dun+1 = 0, results in the Poisson equation

Lπn =Du∗. (A 14)

The Poisson equation can be solved efficiently by decomposing the projection π into
Fourier modes π̂mn, of wavenumbers m and n, over the homogeneous directions x
and y. For each Fourier mode the problem is reduced to a finite difference equation
in the remaining z direction, which is solved by inverting a sparse matrix of the form

T =
× × × ⊗ × × ×

. . .
. . .

. . .
. . .

. . .
. . .

. . .

× × × ⊗ × × ×

 . (A 15)

Here, the six entries on each row denoted by × are grid-dependent numbers that are
independent of the wavenumber mn, whereas the leading diagonal ⊗ is dependent on
both the wavenumber and the grid, and must therefore be computed for each mode.
The matrix T is augmented with an additional six rows, which determine the value
of a set of ghost cells, and therefore the boundary conditions, at the top and bottom
of the domain. For information about the boundary conditions employed the reader is
referred to Craske & van Reeuwijk (2013).

The parallelisation we employ to solve (A 1) is a two-dimensional decomposition, in
which each process handles a set of interior cells spanning the remaining dimension,
surrounded by a set of ghost cells. During each time step the processes update their
ghost cells either using information from neighbouring processes or specified boundary
conditions.
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FIGURE 15. Norm of global truncation error of (b) u and (c) v in the simulation of the
Taylor–Green vortex, whose stream function is shown in (a), on a uniform grid in three
orientations: O(h2) schemeE; O(h4) schemeA; ‖εg‖ ∝ h4 - - - -. Different sized symbols
correspond to different orientations of the vortex.

A.2. Verification
To verify the spatial discretisation we simulate a Taylor–Green vortex (Taylor &
Green 1937), which satisfies the Navier–Stokes equations and has the exact analytical
solution

u(x, y, t)= sin(2πx) cos(2πy) exp
(
−8π2

Re
t
)
, (A 16)

v(x, y, t)=− cos (2πx) sin (2πy) exp
(
−8π2

Re
t
)
, (A 17)

p(x, y, t)= 1
4

[
cos (4πx)+ cos (4πy)

]
exp

(
−16π2

Re
t
)
, (A 18)

on the domain (x, y) ∈ [0, 1] × [0, 1], with free-slip boundary conditions. We use the
two-dimensional solution (A 16)–(A 18) to test all three dimensions by applying the
permutation (xyz), which aligns the axis of the vortex along each coordinate in turn.
This approach allows one to check that on uniform grids the discretisation is indeed
isotropic. In figure 15(b,c) we plot the norm, taken over all points in the domain, of
the global truncation error εg against the grid size h. The global truncation error is
defined as the difference, εg ≡ φn

ijk − ϕ(x, tn), between the numerical solution and
the exact solution at the end of the simulation, which corresponds here to tn = 1.
The simulations employ a uniform grid of spacing h = 1x = 1y = 1z. Figure 15
shows that the discretisation preserves the symmetry of the exact solution (the errors
for u and v are identical) and for all orthogonal orientations of the vortex yields
a global truncation error that scales according to O(h4). Shown for comparison are
the results obtained for the same problem using the previous, second-order-accurate,
discretisation.

Appendix B. Similarity solution
The linear advection–dispersion equation

∂Mm

∂t
+ λ∗M∗1/2m

2α0z
∂Mm

∂z
=De

∂2Mm

∂z2
, (B 1)
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can be expressed as an ordinary differential equation if it is assumed that Mm has the
self-similar form Mm = f (z/z∗). The relationship z∗(t) found in (4.7) implies that an
appropriate similarity variable is

λ≡ z2α0

tM∗1/2m
, (B 2)

so that λ(z∗)= λ∗. Partial derivatives with respect to t and z can then be expressed as

∂

∂t
=−λ

t
d

dλ
,

∂

∂z
= 2λ

z
d

dλ
,

∂2

∂z2
= 2λ

z2

(
d

dλ
+ 2λ

d2

dλ2

)
. (B 3a−c)

Transformation of (B 1) according to (B 2) therefore yields

d2Mm

dλ2
= 1

2λ

[
Pe
(

1− λ
λ∗

)
− 1
]

dMm

dλ
, (B 4)

where

Pe≡ λ
∗M∗1/2m

2α0De
. (B 5)

The dispersive Péclet number Pe is useful here, because it indicates the longitudinal
extent of the front relative to the distance travelled by the front. Solutions of (B 4),
subject to the boundary conditions Mm(0)=MA

m and Mm(∞)=MB
m, can be expressed

in terms of Kummer’s confluent hypergeometric function M (Abramowitz & Stegun
1972, p. 504). When Pe� 1 it is reasonable to suppose that the second term in the
square brackets of (B 4) can be neglected. In such circumstances, the solution can be
expressed as

Mm =MA
m +

MB
m −MA

m

Γ (Pe/2+ 2)

(
Pe λ
2λ∗

)Pe/2+1

exp
(
−Pe λ

2λ∗

)
M
(

1,
Pe
2
+ 2,

Pe λ
2λ∗

)
(B 6)

where M is Kummer’s function. Also of interest is the dependence of dMm/dz on Pe
at the level of the front. Differentiation of (B 6) and setting λ= λ∗ results in(

λ∗

MA
m −MB

m

)
dMm

dλ

∣∣∣∣
λ=λ∗
=−

√
Pe
4π
+O

(
1√
Pe

)
. (B 7)

Alternatively, a numerical solution to (B 4) can be readily obtained by prescribing
arbitrary conditions at λ = λ∗, such as Mm = 0 and dMm/dλ = 1, and then solving
the initial value problem forwards and backwards over the intervals [λ∗, Lz] and
[0, λ∗], respectively. A solution satisfying the boundary conditions Mm(0) = MA

m and
Mm(∞)=MB

m can then be obtained by using the invariance of (B 4) with respect to
the transformation Mm 7→ aMm + b.
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