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Abstract. We determine when a polynomial is the reduced zeta function of a basic
set of a Smale diffeomorphism of a compact surface.

This paper is a continuation of the work of Blanchard and Franks on the problem
of which subshifts of finite type ZA cannot arise as basic sets on surfaces [1, 2],
Our results essentially exhaust their technique in that we find precisely which
polynomials over 22 are reduced zeta functions for some O-dimensional basic set
of a structurally stable surface diffeomorphism (see theorems 2 and 3 below).

In § 3 of this paper we determine a lower bound for the dimension of the first
mod 2 homology group of a connected surface S that supports a mixing SA (theorem
4). This gives the first known examples of subshifts supported on some connected
closed surfaces but not on all (proposition 3).

We thank Paul Blanchard and John Franks for their encouragement.

1. Reciprocality of reduced zeta functions
We call^non-zero rational function R(t) over a field F, R eF(f)*, reciprocal if
K(t ) - r R(t) for some k<=l. One sees easily that reciprocal functions form a
subgroup of F(t)*. The relevance of this notion for dynamical systems stems from
Pomcare duality as in the following theorem. All the properties of reduced zeta
functions that we use are proved in [2].

PROPOSITION 1. Suppose f:S-*S is an embedding of a compact surface. Tlien the
reduced Lefschetz zeta function £>(/)eZ2(0 is reciprocal. The same holds for the
relative reduced Lefschetz zeta function of a pair of surfaces.
Proof. First suppose S has no boundary. Then/preserves the non-singular intersec-
"on pairing ( , ):VxV->Z2 where V = //,(<?; Z2). Thus, choosing a basis for V,
a[r™-nCeSj r e p r e s e n t i n S < » > a n d t he matrix a representing/*,: V-*V satisfy

Let q(t) »det (I-at). Since / and a are invertible,

and

Thus q{t) is reciprocal.
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16 D. Fried

The reduced Lefschetz zeta function is expressed in terms of the transformations

by

det(/-r/*i)
b * w det(/-r/*o)det(/-/ /*a)

The denominator is a product of reciprocal terms of form 1 - tn and the numerator
is q(t). So the theorem is shown in this case. -

Second, suppose only that / is homotopic to a diffeomorphism g. Let S' be the
surface obtained from S by coning off each circle in dS. Then g extends to a
diffeomorphism h:S'-*S'. The ratio ^(/O&Cg)"1 is the relative zeta function for
the map of pairs h: (S',S)+>t hence it is a product of terms (I-/")""1. As £2(h) is
reciprocal by the case considered above and CiiD-Ciig) we see that Ci(f) is
reciprocal.

Finally, let / be any self-embedding of S. We may approximate / by an embedding

fo:S-+'\nt(S).

We now argue as in [1: lemma 2], We define a larger surface S' by coning off those
boundary components C^dS for which fcC bounds a disk in the subsurface
S -f0S. Then /0 extends to an embedding

such that no component B of the subsurface S' — gS' is a disk. By considering the
Euler characteristic one shows that such B are annuli with one boundary component
in dS' and the other in g(dS') [1]. Thus g is homotopic to a diffeomorphism.

Now the previously proved case of our theorem shows ^2(g) is reciprocal. The
ratio CiigHiifo) is the relative zeta function of the map of pairs g: (S\ S)^> but
this is clearly one. Thus

is reciprocal, proving our theorem in the absolute case.
For a pair of compact surfaces (M, N), the relative zeta function is the ratio of

two absolute zeta functions. D

We will now extend the above result to the reduced Artin-Mazur zeta function in
the Axiom A case. Let S be a compact surface, f:S-*S an Axiom A embedding and

a pair of invariant compact subsurfaces with
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Subshifts on surfaces 17

(such pairs arise naturally when / has no cycles). Let Aj be the basic sets in M — N
and A = U Ar. Let £(f) e Q(r) be the Artin-Mazur zeta function for A,

and let £2(0e Z2(r) be its mod 2 reduction.

THEOREM 1. £2(0 is reciprocal.

Proof, C2(t)~
y is the product of terms ( I - / " ) * 1 arising from sources and sinks in A

and the relative reduced Lefschetz zeta function for (M, N) by [2]. The latter is
reciprocal by proposition 1. •

2. Surfaces supporting subshifts of finite type
Let A be a 0-1 matrix and £ A the associated subshift of finite type. We say that
a compact surface S supports £ A if there is an embedding g:S^S and compact
subsurfaces M! and M2 c int Mx such that

(1) giWJcintAf/f/ = l , 2 ;
(2) the invariant set

n>0 n>0

is topologically conjugate to £ A and is a basic set of unstable dimension 1;
(3) A meets every component of S.

By taking Mx smaller if necessary we can arrange that every component of the
region R = Afi-M2 meets A. We shall assume from now on that this holds.

The following immediate corollary of theorem 1 generalizes the main result of [1].

THEOREM 2. If S supports 2 A and pA(t) is the mod 2 reduction of

det (I-tA), pA(t)eZ2[tl
then pA(t) is reciprocal.

Blanchard and Franks proved that pA(t) cannot have odd degree unless pA(l) = 0,
and this is clear from theorem 2.

We now prove the converse of theorem 2 and show that there are no further
non-trivial restrictions on these polynomials pA{t). The following proposition tells
when certain periodic data is realizable in a given mapping class.

ROPOSITION 2. Let S be a closed connected surface. Let f be a representative for
a mapping class on S and let

* i ( ; ) ;

uppose {m,},G/, {nj}ieJ are finite non-empty collections of positive integers and that

P(0eZ2[r].
If one has

det ( / - to) p(£)

/11') i n M t ) (*}
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18 D. Fried

then there is a fitted diffeomorphism F isotopic to f such that the ntt are the periods
of the periodic sources of F> the iij are the periods of the periodic sinks and the rest
of the non-wandering set of F consists of one mixing basic set SA with P A ( 0 = P ( 0 «

Note. If F satisfies the conclusions of the theorem then (*) is the zeta function form
of the Lefschetz formula mod 2 [2], so (*) is necessary as well as sufficient.

Proof of proposition 2. It is well known that one can produce a fitted diffeomorphism
Fo isotopic t o / with {mjjej as periods of sources and the {n]}jej as periods of sinks:
one chooses a handle decomposition for 5 with (# / ) 0-handles and (#/) 2-handles
and then one fits / appropriately [4], Let

be the filtration associated to this handle decomposition. Applying the Lefschetz
formula to Fo and using (*), one sees that p(t) is the relative reduced Lefschetz
zeta function for

[2]. As the basic sets A& c M r M 0 have unstable dimension 1, pit)'1 is the reduced
zeta function

by [2]. Consequently if there is only one Afc and it is mixing then we are done [2].
This can be arranged by isotoping Fo to a different fitted diffeomorphism F with

the same sources and sinks and an appropriate geometric intersection matrix G(F)
on Mi -Mo. We need

LEMMA 1. Given a handle decomposition of Sg, there is a fitted diffeomorphism
h: Sg-£> isotopic to the identity with fixed sinks and sources that has positive geometric
intersection matrix G(h) in dimension one.

Proof of lemma 1. Let h be the composition in any order of fitted diffeomorphisms
Fih * 9*/. that wrap the ith 1-handle through the yth, / ?*/, and leave everything else
unchanged. The geometric intersection matrix for Fif is

Eti an elementary matrix, and the product of these matrices (in any order) is positive.
Choosing the same order to define h, one obtains the geometric intersection matrix
G(h), proving the lemma. D

To finish the proof of proposition 2, take F = hF0. Then every non-zero column
in the geometric intersection matrix

G(F) = G(h)G(F0)

is positive. It follows that there is only one basic set in M\ -MQ and it is mixing. •

We now state our converse to theorem 2.

THEOREM 3. Given a reciprocal polynomial p(t)eZ2[t] with constant term 1, there
is a connected oriented surface S and a mixing subshift of finite type 2A supported
on S with pA{t) -p(t).
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Subshifts on surfaces 19

Proof. By proposition 2, it suffices to find S, a mapping class on S, and sets {mt},
such that (*) holds.

If p(t) has odd degree 2g +1 , then by reciprocality p(l) = 0, Hence we have

Then we choose wii = 1, iti = 2 and we take no other rcij,«/.
If p(t) has even degree 2g, let q(t) = p(r). Then we choose mi = 1, nx = 1 and we

take no other m{t nt.
In either case, we need only solve

det (J-af) = <?(') (**)
for a, where q(t) is a given reciprocal polynomial over Z2 of degree 2g and a is
the map induced on the first Z2-homology V of the closed oriented surface Sg of
genus g by some homeomorphism /.

Choose a standard basis for V so that the intersection pairing is represented by
the block matrix

(.; a-*
If p is symmetric then

0 I

satisfies the condition a xJa — J. It follows that a is induced by some homeomorphism
of Sg [3: p. 178]. Also one easily checks that

det (/ - at) = tg • det ( £ - ( / + z"1)/).

So to solve (**) we need only prove

LEMMA 2. Given a reciprocal polynomial q(t) e Z2[r] of degree 2g with constant term
1 there is a symmetric gxg matrix (3 over Z2 with

Proof. One sees easily that q(t) • t g is uniquely expressible as r(t + t l) where
r{t)eZ2[t] has degree g. Thus it suffices to solve detQ3-f) = r(f) for 0, given a
degree g polynomial r(t) e Z2[/].

Using direct sums, one may assume without loss of generality that r(t) is irreduc-
ible. Let F be the extension field of Z2 obtained by adjoining a root £ of r. As F
is finite, this extension is separable and so the Z2-valued symmetric bilinear form

<x,y) = Tr(xy), x ,yeF ,

is non-singular. For this bilinear form, the linear transformation @{x) = $x of F is
symmetric and has characteristic polynomial r(f). As ( , > is a non-singular sym-
metric bilinear form over Z2 and is not alternating, there is a basis for F over Z2

for which < , ) is represented by the identity matrix. Then 0 is given by a symmetric
matrix with characteristic pc lynomial r(t). This completes the proof of theorem 3. D
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20 D. Fried

We recently received an example from John Franks that shows that the characteristic
polynomial of an integral symplectic matrix can be any monic reciprocal polynomial
over Z of even degree. This gives another solution to (**) in the preceding
proposition.

3. Bounds on the first Betti number
The results of § 1 and § 2, and those of earlier investigators, do not restrict the,
topological type of a surface S that supports a given SA. To obtain such restrictions
we will keep track of first Betti numbers as we simplify the surface by the methods

Since S supports SA iff the associated closed surface supports 1At we do not lose
generality by assuming dS = 0. For convenience we will only consider mixing
subshifts 2A, SO we may suppose S is connected.

We introduce some algebraic terminology to describe our restrictions on S. Let
be the collection of all finite products

For p(t)eZ2[t] we write dist (p(f)» <%) (the distance from p(t) to the cyclic poly-
nomials) for the least value of deg (q(0) over all solutions q(t) e Z2[f] to

p(t) = q(t)c(t), c(t)e%.

As previously we write pA(t) for the Z2 reduction of det {I-tA). Then we find the
following constraint on a surface supporting a given subshift.

THEOREM 4. Let £A be a mixing subshift of finite type. If S is a closed connected
surface that supports 2A then the first mod 2 Betti number (3 t(S) and pA(t) satisfy

Remark. The right-hand side is easily computed for given A.

Proof of theorem 4. Let (M, N) be a filtration pair for SA
 c S. As 2 A is mixing, we

may suppose M-N is connected. Let T be the connected surface obtained from
the region R =M-N by capping off the boundary components of R. We can
compare the Euler characteristics of S and T.

Proof. Let k{-) denote the number of boundary components of a surface. As disks
have Euler characteristic one, we have

(a) x(T) = x(R) + k(R).
Let P = S-R. Then P is a compact surface and every component B of P meets
R. This gives xW^k{B) with equality iff B is a disk. Summing over all B's gives

(b)
Also

(c)
Combining (a), (b) and (c) gives

proving the lemma. •
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In [1] it was shown that T carries an Axiom A-No Cycles diffeomorphism / : T ^
whose only basic set of unstable dimension 1 was SA. Then, as in the remark
following proposition 2, the Lefschetz formula gives

det (I-at) PAU) ,^

do n
where a is the action of / on Hi(T\ Z2), the mt are the periods of the sources of
/ and the ns are the periods of the sinks. Multiplying this out gives

dist (pA(0(l ~ t)2, <S) ̂  deg (det (/ - of)) = P i
But by lemma 3,

Combining the last two inequalities proves the theorem. O

Based on theorem 4, we can give an example of a subshift of finite type SA that
is supported on T2 but not S2. Surely analogous examples can be found for higher
genus surfaces by the same techniques.

We have

PROPOSITION 3. Let a eGl(2, Z) be a hyperbolic toral automorphism with an odd
number of fixed points and at least two distinct orbits of period 3. Let f: T2«D be the
Axiom A-No Cycles diffeomorphism obtained by double DA-ing a along two period
3 orbits. Then f has a unique basic set A of unstable dimension 1, A s S A for some
A and SA is not supported on S2 or UP2.

Proof. Except for the last statement, our conclusions follow from general theory.
We now compute pA(t). Over Z2, we have

pA{t) _det (I-ta)
(1-r3)2 ( 1 - 0 2

since / has a unique source and sink orbit, each of period 3. Our assumption that
a has an odd number of fixed points gives that Tr a is odd so

de t ( / - to ) = l + r + r2 (mod 2).

We obtain pA(t) = (1 +1 +12)\
The distance from {l-t)2pA(t) = {l-t3)2{l + t + t2) to <g is easily seen to be 2.

So theorem 4 implies /3i(S)2:2 for any closed connected surface S supporting SA

and thus

•
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