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Abstract

Preterm birth (PTB) is one of the leading causes of deaths in infants under the age of five.
Known risk factors of PTB include genetic factors, lifestyle choices or infection.
Identification of omic biomarkers associated with PTB could aid clinical management of
women at high risk of early labour and thereby reduce neonatal morbidity. This systematic
literature review aimed to identify and summarise maternal omic and multi-omic (genomics,
transcriptomics, proteomics and metabolites) biomarker studies of PTB. Original research
articles were retrieved from three databases: PubMed, Web of Science and Science Direct,
using specified search terms for each omic discipline. PTB studies investigating genomics,
transcriptomics, proteomics or metabolomics biomarkers prior to onset of labour were
included. Data were collected and reviewed independently. Pathway analyses were completed
on the biomarkers from non-targeted omic studies using Reactome pathway analysis tool.
A total of 149 omic studies were identified; most of the literature investigated proteomic
biomarkers. Pathway analysis identified several cellular processes associated with the omic
biomarkers reported in the literature. Study heterogeneity was observed across the research
articles, including the use of different gestation cut-offs to define PTB. Infection/inflammatory
biomarkers were identified across majority of papers using a range of targeted and non-
targeted approaches.

Introduction

‘Omics’ refers to the biosciences fields with the suffix ‘-omics’, such as genomics, transcrip-
tomics, metabolomics and proteomics, which are commonly explored for biomarkers of
diseases. Preterm birth (PTB), defined by the World Health Organisation (WHO) as birth
less than 37 weeks of gestation, is a complex multi-factorial condition with no robust biomar-
kers. A higher rate of morbidity in neonates is associated with ‘very preterm’ births (between
28 and 32 weeks of gestation) compared with ‘moderate to late preterm’ births (32 to 37 weeks
of gestation) (Refs 1, 2). Non-medically indicated PTB can be further categorised into the clin-
ical sub-groups: spontaneous preterm labour with intact membranes (sPTB) and preterm pre-
labour rupture of membranes (PPROM).

Risk factors of PTB include genetics, lifestyle choices and environmental influences (infec-
tion, nutrition or maternal stress) (Ref. 3). Studies have shown that women with a family his-
tory of PTB in mothers or sisters are at higher risk of delivering preterm (Refs 4-7). Svensson
et al. (Ref. 7) reported that 25% of variance in PTB was explained by maternal genetic effects.
PTB risk has also been shown to vary between different ethnic groups (Ref. 8).

A more personalised approach of screening women at risk of PTB is required to improve
pregnancy outcomes, and hence reduce rates of PTB, as opposed to the traditional methods
that are currently used (such as collecting obstetric history or ultrasound scans) (Ref. 3).
In the aim to identify molecular biomarkers involved in the onset of PTB and utilise these
for diagnosis, many types of omic studies have been conducted (Ref. 9).

Several genes involved in the inflammatory pathway, such as EBFI (early B-cell factor 1),
and various signalling molecules, for instance Wnt, have been indicated as potential biomar-
kers of PTB in the literature (Ref. 10). However, the mechanisms of action are not yet under-
stood. Recent studies have demonstrated that the genomes of large populations can be
screened using advanced microarray technology, enhancing biomarker research (Refs 10-12).

In addition to genomic studies, gene expression level analyses (or the field of ‘transcrip-
tomics’) using microarray or sequencing technology have highlighted more candidate biomar-
kers including ABCA13 (ATP-binding cassette sub-family A member 13) reported by Heng
et al. (Ref. 13). More recently, microRNAs (miRNA) and miR (mature form of miRNA)
have been associated with PTB (Refs 14-18). miRNAs are non-coding RNAs with a key
role in gene expression regulation (Ref. 19). Gene expression can be measured between differ-
ent gestational time points and sample types, enabling longitudinal analysis. Many protein bio-
markers of PTB such as MMP-8 (matrix metalloproteinase-8), TNF (tumour necrosis factor)
and interleukins (ILs) have been identified using a range of omic technologies (Refs 20-22).

Metabolites are small molecules that are part of primary and intermediate metabolism that
can help unveil the underlying pathophysiology of early labour (Refs 23, 24). Mass
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spectrometry and nuclear magnetic resonance (NMR), tradition-
ally applied in proteomics studies, have been implemented for
in-depth metabolome exploration for PTB biomarker discovery
(Refs 25, 26).

Different approaches have been implemented for omic studies
such as targeted and non-targeted (or unbiased) techniques.
Unbiased methods have enhanced exploration of the genome,
transcriptome, proteome and metabolome enabling detection of
candidate biomarkers related to a disease (Refs 10, 15, 24).

The pathways involved with the onset of sPTB are not yet
known, even though several omic studies have suggested different
markers of PTB (or sPTB or PPROM). Multi-omic data analysis
approaches could assist with (1) identification of the mechanistic
pathways initiated in PTB, by exploring interactions between dif-
ferent types of omic data; (2) improve our understanding of the
‘systems biology’ of PTB and (3) determine biomarkers in early
stages of pregnancy for earlier and more effective clinical inter-
vention to improve pregnancy outcome and neonatal health out-
come. A summary of candidate omic biomarkers could aid future
PTB omic studies, particularly multi-omic research. This systematic
literature review aimed to (1) identify and summarise maternal
omic (genomics, transcriptomics, proteomics and metabolites) bio-
marker studies of PTB, including the phenotypes sPTB and
PPROM and (2) of these studies, identify which studies performed
multi-omic research.

Methods

Literature searches were conducted using three databases:
PubMed, Web of Science and Science Direct. The resulting litera-
ture studies were filtered for journal (research) articles and human
studies only. Original research articles from individual omic
fields, published up to and including November 2020, were iden-
tified using the following search terms:

(1) Genomics: ((Preterm birth OR preterm labour OR preterm
delivery OR pregnancy OR premature birth OR premature
labour OR premature delivery)) AND (biomarkers OR bioin-
dicators OR biological markers OR biochemical markers OR
predictors) AND (genomics OR genetics OR genome wide
association OR GWAS OR genetic associations OR DNA
OR single nucleotide polymorphisms OR epigenetic OR epi-
genome OR methylation).

(2) Transcriptomics: ((Preterm birth OR preterm labour OR pre-
term delivery OR pregnancy OR premature birth OR prema-
ture labour OR premature delivery)) AND (biomarkers OR
bioindicators OR biological markers OR biochemical markers
OR predictors) AND (transcriptomics OR RNA OR mRNA
OR miRNA OR microRNA OR gene expression profiling OR
RNA profiling OR microRNA profiling OR transcriptome).

(3) Proteomics: ((Preterm birth OR preterm labour OR preterm
delivery OR pregnancy OR premature birth OR premature
labour OR premature delivery)) AND (biomarkers OR bioin-
dicators OR biological markers OR biochemical markers OR
predictors) AND (proteomic OR clinical proteomics OR proteins
OR protein profiling OR peptidomic profiling OR proteome).

(4) Metabolomics: ((Preterm birth OR preterm labour OR pre-
term delivery OR pregnancy OR premature birth OR prema-
ture labour OR premature delivery)) AND (biomarkers OR
bioindicators OR biological markers OR biochemical markers
OR predictors) AND (metabolomics OR metabolites OR
metabolome).

Literature was screened and selected if the following inclusion
criteria were met: an original research article investigating PTB
(including PPROM and sPTB of any gestational age); maternal
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sample (human only) was analysed (including whole blood,
plasma, serum, cervical vaginal fluid and amniotic fluid); the sam-
ple was taken before start of labour process or symptoms and was
a biomarker study with omic methods or analysis were indicated.
Research of both foetal and maternal samples was included but
only maternal analysis results were reported in this review (if
maternal analysis could be separated from foetal analysis).

Studies were excluded if samples were collected after patients
were admitted to hospital because of presenting symptoms of
PTB (such as start of contractions or ruptured membranes
observed) or if the births were iatrogenic (medically induced).
Genetic studies investigating familial relative inheritability of genes
associated with PTB were excluded as no direct comparisons
between term and PTB outcomes based on maternal genes.

Papers that reported investigation of more than one omic data-
set were allocated to one omic systematic search to avoid
duplication.

Research articles that met the review criteria were summarised
into targeted studies (where a select number of candidate markers
was chosen for exploration) or non-targeted investigations (whereby
the whole genome, transcriptome, proteome or metabolome was
explored) based on reported methods and technologies applied.

Biomarkers reported in the literature from non-targeted
approaches were collated per omic field (gene symbols, miRNA
names, UniProt IDs and KEGG IDs). Duplicates were removed
and each omic list was uploaded to Reactome for pathway analyses
(Refs 27, 28). Literature investigating more than one type of omic
data was identified. PTB gestation cut-offs applied in all identified
literature studies were plotted using the ‘Matplotlib’ v3.3.3 package
in Python 3.8.

Results

PRISMA diagrams of the individual omic systematic searches are
summarised in Figure 1. In total, 149 omic studies were identified,
of which the majority were proteomics biomarker studies (n = 79),
followed by genomics (n = 39), metabolomics (n =20) and tran-
scriptomics research (n=11).

Genomic biomarkers

Of the 39 genomic studies identified, nine applied non-targeted
approaches (including microarrays) (Table 1), whereas 30 utilised
targeted (mainly polymerase chain reaction methods) (Table S1).

Many single-nucleotide polymorphisms (SNPs) across differ-
ent ethnicities were identified as associated with PTB or sPTB
(Table 1). In European ethnic populations, EBFI and NFKBI
(nuclear factor kappa B subunit 1), both of which are
inflammation-related (Refs 10, 30) (Table 1). Zhang et al’s
(Ref. 10) genome-wide association study identified EBFI as sig-
nificantly associated with PTB and gestational age. EBF1 tran-
scripts were further explored by Zhou et al. (Ref. 18).

Inflammation- and infection-associated genes TIMP2 (tissue
inhibitor of metalloproteinase 2) (rs2277698), COL4A3 (collagen
type IV alpha 3 chain) (rs1882435) and TNF variants were explored
in more than one targeted study (Table S1). Frey et al. (Ref. 36) and
Romero et al. (Refs 5, 37) examined TIMP2. Similarly, COL4A3 was
reported by Romero et al. (Refs 5, 37). TNF, a pro-inflammatory
cytokine, was investigated by Annells ef al. (Ref. 38), Gebhardt
et al. (Ref. 39), Ramos et al. (Ref. 40) and Valdez et al. (Ref. 41)
(Table S1). Similarly, TNF-or was reported by Fortunato et al
(Ref. 42) and Menon et al. (Refs 22, 43).

Fortunato et al. (Ref. 42), Menon et al. (Ref. 22) and Plunkett
and Muglia (Ref. 7) suggested an association between PTB and
TNF receptors 1 (TNFR1) and 2 (TNFR2) genes. Kalish et al.
(Ref. 44) found that TNFRSF6 (tumour necrosis factor receptor
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Fig. 1. PRISMA diagrams of individual PTB omic biomarker literature searches (N =149) (last search date: 18/06/2021).

superfamily member 6 or Fas gene) was associated with an
increased risk of PPROM. Toll-like receptors are proinflammatory
agonists, gene variants of which were associated with an increased
risk of PPROM as reported by Ramos et al. (Ref. 40) and Romero
et al. (Ref. 36) (Table S1).

No epigenetic studies that met the criteria were identified, how-
ever Zhang et al. (Ref. 10) detected H3K4me3 (histone H3 lysine 4
trimethylation) in the endometrial stromal cell line. Zhang et al.
(Ref. 10) suggested that the binding of EBFI to the SNP region
rs3820282 modulates WNT4, which could influence gestational

length.

Transcriptomics biomarkers

Fewer transcriptomics studies met the review criteria, five were
non-targeted (Table 2) and six were targeted biomarker studies
(Table S2).

The study cohort sizes ranged from 20 participants (Ref. 15)
(Table 2) to 1118 participants (Ref. 46) (Table 2; Table S2).

Five studies reported different miRNAs as either increased or
decreased in preterm cases, four non-targeted (Table 2) and one tar-
geted study (Table S2) (Refs 15-18, 45). Sanders et al. (Ref. 17) high-
lighted six miRNAs that were significantly associated with shorter
gestational length, including miR-142. Zhou et al. (Ref. 18) investi-
gated miRNA transcripts related to EBF1 and determined that
MIR4266, MIR1251, MIR601 and MIR3612 were associated with
sPTB. Further research by Zhou et al. (Ref. 47) also identified the
long non-coding RNAs, LINC00870 and LINC00094, in association
with PTB.

Awasthi and Pandey (Ref. 46) demonstrated that TLR4
(Toll-like receptor 4) mRNA was increased in PTB cases in a tar-
geted study. Interleukin 6 receptor (IL-6R) gene expression was
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identified in a non-targeted investigation by Lee et al. (Ref. 48)
(Table S2).

Proteomics biomarkers

A total of 70 targeted proteomic studies met the review criteria,
followed by nine non-targeted research (Table 3).

Study cohorts were relatively small compared with genomics
and transcriptomics, except for Lynch et al (Ref. 54) and
Pereira et al. (Ref. 56) with over 100 participants for untargeted
proteomics studies (Table 3).

Elevated levels of lipocalin-type prostaglandin D2 synthase
were detected in cervicovaginal secretions, which was associated
with an increased risk of PTB (Ref. 58) (Table S3). Further
inflammatory-associated proteins were identified in proteomic
investigations, such as ILs reported by Gunko et al. (Ref. 53)
and Liong et al. (Ref. 55) associated with PTB and PPROM,
respectively (Table 3).

Targeted findings are summarised in Table S3. Non-targeted
studies of the maternal proteome profile indicated growth factors
as biomarkers, which were also reported in targeted literature
(Table 3; Table S3). Other inflammatory-related protein markers
(e.g. chemokines, ILs and TNF) were also reported in genomics
and transcriptomics studies. Pawelczyk et al. (Ref. 59) described
that TLR4 induces ILs, which increase the level of prostaglandins
and cause uterine smooth muscle contraction leading to induc-
tion of PTB.

Metabolomics biomarkers

A total of 20 metabolomics studies, 13 untargeted (Table 4) and
seven targeted (Table S4) met the review criteria.


https://doi.org/10.1017/erm.2022.13

Juhi K. Gupta and Ana Alfirevic

Table 1. Maternal genes or SNPs identified in PTB (or PTL for preterm labour) unbiased genome-wide screen studies (n=9)

Total number of

maternal Technology/
Study Ethnic groups Genes/SNPs identified Phenotype participants technique P value
Rappoport European, African, rs1979081 (upstream of FAM87A) - PTB 888 Illumina P<0.05
et al. (Ref. 12)  American, Asian Americas (<37 weeks) [PTB n=334, HumanOmni 2.5
rs17591250 - African control n=554] array
Zhang et al. European Gestational age: Gestational age 43 568 Illumina Findings
(Ref. 10) EBF1 (rs2963463, rs2946171) and PTB (<37 HumanHap550+ reported:
EEFSEC (rs2955117, rs200745338) weeks) BeadChip P<1x1078
AGTR2 (rs201226733, rs5950491)
WNT4 (rs56318008, rs12037376)
ADCY5 (rs4383453, rs9861425)
RAP2C (rs200879388)
PTB:
EBFI1 (rs2963463, rs2946169)
EEFSEC (rs201450565, rs200745338)
AGTR2 (rs201386833, rs5950506)
Manuck et al.  African American SNPs within 7q21-7g31 region (PTB sPTB 177 Illumina African NA
(Ref. 29) women susceptibility) and LOD >1.5: (<37 weeks) American
rs7802588, rs7807771, rs10488004, admixture panel
rs6465387, rs10256829, rs6466115,
rs2790012, rs1322849, rs9784907,
rs883403, rs17154865, rs1525200,
rs10275038, rs12533049, rs2141360
Bacelis et al. Norwegian - European NFKBI1 (rs1609798) Gestational age 1921 Association NA
(Ref. 30)? ENG (rs10117075) and PROM tests and
MEFV (rs220381) (PTB, <37 weeks) gene-set
SP3 (rs6718188) enrichment
ABCA1 (rs12336969) analysis
DPYI9L2 (rs1607800)
FRMD4A (rs3740121)
Zhang et al. Caucasian, African DCPIA (rs17053026) sPTB 2210 Affymetrix NA
(Ref. 31)° American, Hispanic, GLIS3 (rs501631) (<34 weeks) [PTB n=935, genome-wide
Other SPNS3 (rs7211542) control n =946, human SNP
CNTN5 (rs1025888) validation cohort  array
control n=329]
Wu et al. European 544675 SNPs on autosomes analysed sPTB 2000 Illumina NA
(Ref. 32) (<37 weeks) [PTB n=1000, Human660W
control n=1000] quad array
Myking et al. American, Danish and  rs4562494 sPTB 3022 Illumina NA
(Ref. 33) Norwegian rs7892483 (<37 weeks) [PTB n=1535, Human660W
rs5972070 control n =1487] quad array
FRMD7 (rs2747022)
ILIRAPLI (rs4829104)
REPS2 (rs12557633)
Karjalainen Finnish AR and IL2RG sPTB 473 Affymetrix NA
et al. (Ref. 34) (<36 weeks) [PTB n=272, genome-wide
control n=201] human SNP
array
Plunkett et al.  European American, FSH rs6741370 PTB 328 Affymetrix NA
(Ref. 35) African American and  FSHR (rs11686474, rs11680730, (37 weeks) [PTB n=165, genome-wide
Hispanic (Mexican) rs12473815) control n=163] human SNP
array

LOD score, logarithm of the odds score; PTB, preterm birth; SNP, single nucleotide polymorphisms; sPTB, spontaneous preterm birth.
Where available, relevant significant P-value cut-off have been summarised.
2Summarised top SNPs (P<1x 10~ associated with genes.

The study sample sizes for metabolomics studies were overall
higher than proteomics (Table 4; Table S4).

Most studies applied mass spectrometry followed by NMR
approach on largely non-invasive samples including urine, amni-
otic fluid, cervicovaginal fluid and serum. Higher levels of meta-
bolites such as glutamate were detected in PTB women, whereas
glutamine, pyruvate and inositol were lower in PTB (Ref. 24)
(Table 4). Virgiliou et al. (Ref. 24) also observed many significant
uncharacterised saturated lipids. Both Considine et al. (Ref. 64)
and Eick et al. (Ref. 70) (Table 4; Table S4) determined prosta-
glandins as a potential biomarker for PTB. Targeted investigations
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determined significant differences in nitrate oxide levels between
preterm and term births (Table S4).

Multi-omic studies

As demonstrated in Figure 2a, multi-omic studies can identify dif-
ferent types of molecules that may be related to the same pathway
or pathways involved in PTB. Across the individual omic litera-
ture searches, six studies explored more than one omic dataset
and met the inclusion criteria for this systematic review (Fig. 2b
and ¢; Table 5). Table 5 highlights which studies explored
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Table 2. Summary of PTB non-targeted transcriptomics biomarker literature (n=5) that investigated maternal samples
Total number
Sample of maternal Technology/

Study Transcripts identified Phenotype type participants technique P value
Cook et al. hsa-let-7a-5p, hsa-miR-374a-5p, hsa-miR-15b-5p, SPTL <34 Plasma 164 nCounter miRNA P<0.001
(Ref. 45) hsa-miR-19b-3p, hsa-miR-23a-3p, hsa-miR-93-5p, weeks [PTB n=23] assay

hsa-miR-150-5p, hsa-miR-185-5p and hsa-miR-191-5p
Gray et al. miR223 (increase in sPTB) sPTL Plasma 24 Nanostring nCounter ~ P<0.001
(Ref. 16) miR302b, miR1253, clustering of miR548 miRNAs [miR548a, (28-32 [sPTL n=12, miRNA expression

miR548aa, miR548ai, miR548ak and miR548n] (under weeks) control n=12] assay

expressed in sPTB)
Heng et al. SPTB genes up-regulated: sPTB Blood 165 Affymetrix human P<0.001
(Ref. 13) ABCA13, MYOF, SASH1, LAP3 (<37 weeks) [PTB n=51; gene 2.1 ST array and

SPTB genes down-regulated: control n= RT-PCR

FCERIA, CPA3, ABCG1, ABCAL 114]
Sanders miR-21, miR-142, miR-30e, miR-148b, miR-29b and miR-223 PTB Cervical 53 NanoString nCounter P =0.009
et al. (<37 weeks) cells [PTB n=4, miRNA expression
(Ref. 17) control n=49] assay
Elovitz et al.  miR-25, miR-145, miR-143, miR-199b-5P PTB Cervical 20 Affymetrix GeneChip P <0.002
(Ref. 15) (<37 weeks) cells [PTB n=10, miRNA array

control n=10]

miR, microRNA; PTB, preterm birth; RT-PCR, reverse transcriptase-polymerase chain reaction; sPTB, spontaneous preterm birth; sPTL, spontaneous preterm labour.

different omic datasets. Of these studies, the majority of them
explored both genetic and proteomic data (Fig. 2c; Table 5).

Gestation threshold distribution

Each omic study utilised different gestational cut-offs to define
PTB (or the subclinical groups of sPTB and PPROM).
Comparison of these studies highlighted 29 weeks of gestation
as the lowest time point applied, whereas the highest and most
common was 37 weeks of gestation threshold (Fig. SI).

Pathway analysis of biomarkers

Gene symbols (n =14), miRNA names (n =35), UniProt ID for
proteins (n=158) and KEGG IDs for metabolites (n =60) were
retrieved from the respective non-targeted omic studies and
included in the pathway analyses. In total, 24 pathways were
detected for genomics, 4 for transcriptomics, 102 for proteomics
and 72 metabolomics, at P < 0.05. After correction for multiple
testing (FDR P<0.05), the number of significant pathways
reduced to 2 for transcriptomics, 44 for proteomics and 19 for
metabolomic markers. No pathways were significant for genomics
biomarkers at FDR P < 0.05. Top pathways for each omic discip-
line are summarised in Table S5.

Multiple insulin-like growth factor-binding proteins and ILs
identified from the literature were indicated in the significant
insulin-like growth factor-binding pathway (FDR P <0.05)
(Table S5). Other identified proteomic biomarkers such as preg-
nancy associated plasma protein A (PAPPA) were also mapped
to this pathway, indicating the role of PAPPA in regulating
insulin-like growth factor.

Solute-carrier transporter pathway (also significant at FDR P <
0.05) was obtained from the metabolomics biomarkers reported
in PTB literature. This pathway matched with several input meta-
bolites including acetate, creatinine and histidine.

Non-targeted transcriptomics pathway over-representation
analysis highlighted cholesterol transport regulation pathway
(FDR P<0.05) (Table S5), in which ATP-binding cassette sub-
family A type 1 (ABCA1) and G type 1 (ABCG1) were found.

The secretin family receptor pathway, involving G-protein-
coupled receptors, mapped to the input genes calcitonin receptor
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(CALCR) and WNT4. These were related to female reproductive
system development and WNT4 was identified as a potential
PTB biomarker by Zhang et al. (Ref. 10).

Discussion

Many PTB biomarker studies (N =149) were identified across
genomics, transcriptomics, proteomics and metabolomics.
Infection pathway-related molecules, for example IL-6, TNF,
TLR4 and prostaglandins were commonly reported across these
studies. Cytokines have been suggested to play a key role in
PTB (Refs 42, 43, 48). Targeted proteomics literature also supports
this (Table S3). Non-targeted proteomics studies reported a range of
proteins involved in immunological pathways, for example apolipo-
proteins (Table 3). Considine et al. (Ref. 64), Eick et al. (Ref. 70) and
Kumar et al. (Ref. 58) studied protein concentration of prostaglan-
dins in association with PTB. Nuclear factor-xf is a regulator of
inflammation pathways that could be activated by TLR, TNF and
ILs, initiating inflammatory and hence leading to early labour, as
reviewed by Maclntyre et al. (Ref. 75).

Suggested genetic biomarkers, such as TIMP2, COL4A3 and
TNF variants, were identified in a similar pathway as EBFI,
which is involved in the regulation of B-cells (Ref. 10).
Furthermore, a follow-up study of these findings by Zhou et al.
(Ref. 18) found that EBFI-related LINC00870 and LINC00094
were correlated to sPTB. No epigenetics studies met the review
criteria, though the role of detected H3K4me3 was discussed in
a genomics study by Zhang et al. (Ref. 10). Rappoport et al.
(Ref. 12) is one of several studies that have hypothesised the asso-
ciation of foetal genes with onset of early labour. However, this
review focussed on maternal biomarkers as a potential screening
tool (preferably non-invasive) that could be implemented with
enough time to provide medical intervention (Ref. 76).

Transcriptomics was identified as an increasingly popular
omic field as multiple miRNAs were indicated as candidate bio-
markers of PTB (Refs 15-18, 45). Notably, gene expression studies
indicated that miR1253 was under-expressed in women with
sPTB (Ref. 16) or increased expression of miR-142 was associated
with shorter gestation (Ref. 17).

Proteomics was the most popular omic field, reporting the
highest number of candidate biomarkers of PTB. Targeted
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Table 3. Non-targeted proteomics studies (n=9) of PTB proteomics maternal biomarkers
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Total number of

maternal Technology/
Study Proteins identified Phenotype Sample type participants technique P value
Kim et al. Up-regulated proteins in PTB: ZNF185, TRIM33, PTB Cervicovaginal 12 iTRAQ and P<0.05
(Ref. 49) IGHV4-39, TOLLIP, TF, S100A10, RPLP2, IMPAL, CP, (<37 weeks) fluid [PTB n=5; 2D-nLC-MS/MS
METAP2, BST1, HSPA6, LRRFIP1, RAC1, A1BG, control n=7]
IGHV1-8, AGT
Down-regulated proteins in PTB: VAMP8, SDCBP2,
FCAR, CREG1, ACP1, GLUL, CLCA4, SERPINB7,
S100P, DMBT1, DPP4, KRT14, SERPINB2, EPS8L2,
DSTN, GNB1, TP53I3, ARSB, KRT17, TGM3, DCD,
RPTN, APEX1, GDF15, CCT2, SYNCRIP, FLG2, CPM,
KRT2, KRT9, SPRR2D, KRT10, FLG, KRT1, LCE3D
Hallingstrom Increased protein expression: PTD Amniotic fluid 59 LC-MS and ELISA P<0.05
et al. (Ref. 50) lipocalin-15; microfibril-associated glycoprotein 4 (<37 weeks) [SPTB n=22,
Decreased protein expression: control n=37]
neutrophil gelatinase-associated lipocalin;
plasminogen activator inhibitor 1; extracellular
superoxide dismutase [Cu-Zn]; insulin-like growth
factor-binding protein 5; insulin-like growth
factor-binding protein 7; semaphorin-3B;
urotensin-2
Te-Yao et al. Apolipoprotein A-IV; lumican; kininogen-1; PTB Amniotic fluid 57 2D-DIGE and MALDI P<0.05
(Ref. 51) T-complex protein 1 subunit theta; Vitamin (<37 weeks) [PTB n=36, TOF/TOF
D-binding protein; serum albumin; SPARC control n=21]
D’Silva et al. Of 30 proteins, includes: alpha-1-antitrypsin, sPTB Serum 20 2D electrophoresis P<0.05
(Ref. 52) vitamin D binding protein, apolipoprotein A-1 (<37 weeks) [sPTB n=10, and LC/MS/MS
control n=10]
Gunko et al. Insulin-like growth factor-binding protein 1; PTB Serum 20 Mass-spec P<0.05
(Ref. 53) bikunin; MMP-8; IL-6; IL-7; fibrinopeptide B; (<37 weeks) [PTB n=10,
transcription elongation factor S-II; retinol-binding control n=10]
protein-2; ribosomal protein S6 kinase alpha-3;
pigment epithelium-derived factor; lipocalin-1
Lynch et al. Complement factors B and H coagulation factors  PTB Plasma 129 Protein assay P<0.01
(Ref. 54) IX and IX ab (20-37 weeks) [PTB n=41,
control n=88]
Liong et al. Annexin A3, cystatin A (dimer), FABP5, GGCT, IL1ra, PPROM Cervical vaginal 15 2DDIGE P<0.05
(Ref. 55) M/NEI, SCCA-1, thioredoxin, VDBP (<37 weeks) fluid [PPROM n=5,
control n=10]
Pereira et al. 52 proteins identified sPTB Serum 110 MALDI/TOF-MS and P<0.05
(Ref. 56) (<34 weeks) [sPTB n=48, 2-dimensional LC/
and PTL (>34 PTL n=62] MS/MS
weeks)
Pereira et al. Calgranulin B; serotransferrin precursor; sPTB Cervical vaginal 18 LC/LC-MS/MS, P<0.05
(Ref. 57) calgranulin A; fatty acid-binding protein; (16-37 weeks)  fluid [PTL control MudPIT and
alpha-1-antitrypsin precursor; profilin-1; annexin n=6, PTB n=6, fluorescence 2DDIGE
A3; haptoglobin precursor; control n=6]

glyceraldehyde-3-phosphate dehydrogenase;
alpha-1-acid glycoprotein 1 precursor; thymosin
beta-4; lymphocyte cytosolic protein 1; calgranulin
C; vitamin D-binding protein precursor; heat-shock
protein beta-1; desmoplakin

2DDIGE, two-dimensional differential in-gel electrophoresis; 2D-nLC-MS/MS, two-dimensional nanoflow liquid chromatography-tandem mass spectrometry; iTRAQ, isobaric tags for relative

and absolute quantitation; LC/MS/MS, liquid chromatography mass spectrometry/mass spectrometry; MALDI/TOF-MS, matrix-assisted laser desorption ionisation time-of-flight mass
spectrometry; PPROM, preterm pre-labour rupture of membranes; PTB, preterm birth; sPTB, spontaneous preterm birth.

proteomic biomarker studies were traditionally applied in PTB
research; hence many candidate markers were highlighted in
this review (Table S3). This overlapped with the other omic
results, particularly for protein levels of TNF and ILs (Table S3;
Table 3).

More recent studies of metabolomic markers have applied
non-targeted approaches to detect multiple metabolite markers
(Table 4), whereas earlier studies applied targeted assay for
example, to detect nitric oxide metabolite levels (Ref. 77). Nitric
oxide (which is involved in many physiological processes) was
often explored because of its potential interactions with inflamma-
tory pathway components, for example cytokines. Non-targeted
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methods, such as NMR, provide individual level data, which can
be integrated with other omic data for personalised medicine. Six
research articles that studied more than one omic field met the
review criteria (Table 5; Fig. 2c). Figure 2a outlines how different
types of omic molecules can correspond to the pathway (e.g. an
inflammation-activated pathway) that initiates early labour.
Though biomarkers can be detected by single omic studies, the
interrelationship between these molecules cannot be inferred.
Multi-omic studies offer a holistic ‘systems biology’ approach to
understanding the ‘cross-talk’ between different omic molecules
and determine the pathway leading to PTB (Ref. 78). However,
multi-omic studies come with many challenges related to
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Table 4. Non-targeted metabolomics PTB maternal biomarker studies (n=13) reported in literature

Total number of

maternal Technology/

Study Metabolites identified Phenotype Sample type participants technique P value
Stelzer Include: cortisol isomer, SPTB (<37 weeks) Blood 63 LC-MS/MS P<0.05
et al.(Ref. 60) 1-methylhypoxanthine, 17-OH pregnenolone [SPTB n=63]

sulphate, 4-aminohippuric acid, arabitol,

xylitol, 5-hydroxytryptophan,

N-lactoylphenylalanine, pregnenolone

sulphate
Zhao et al. In microvesicles, PS (glycerophosphoserines) PTB (<37 weeks) Plasma 176 LC-MS/MS NA
(Ref. 61) (34:0), PS (0-42:0), PI [PTB n=68,

(glycerophosphoinositols) (0-36:1), C24 (OH) control n=108]

sulphatide, and PE

(glycerophosphoethanolamines) (0-33:0)

were lower in PTB (AUC >0.8)
Morillon et al. Lower levels in sPTB: SPTB (<37 weeks) Plasma 48 LC-MS P<0.05
(Ref. 62) 12 phosphatidylcholines, 7 [sPTB n=16,

phosphatidylethanolamines, 1 control n=32]

phosphatidylinositol, 2 ceramides and 4

sphingomyelins

Higher level in sPTB:

diaglyceride - DG (34:4)
Souza et al. Undecane, dodecane and decane PTB (<34 weeks) Serum 321 GC-MS P<0.05
(Ref. 63) [PTB n=211,

control n=110]
Considine et al.  Bile acids, prostaglandins, vitamin D and PTB (<37 weeks) Serum 105 LC-MS P<0.01
(Ref. 64) fatty acids [PTB n=50,
control n=55]

Virgiliou et al. Serum lipids: acylglycerophosphoserines, PTD (<37 weeks) Serum and 70 UHPLC-MS P<0.01
(Ref. 24) diacylglycerophosphoethanolamines, amniotic fluid [PTB n=35,

phosphatidylinositol, phosphatidylglycerol control n=35]

Amniotic fluid:

glutamine, pyruvate, and inositol (lower in
PTD), glutamate (higher in PTD).

Serum: pyroglutamic acid (higher),
hypoxanthine and tryptophan (lower in PTD)

Amabebe et al.  Acetate PTB (<37 weeks) Cervical 277 NMR spectroscopy P=
(Ref. 25) vaginal fluid [PTB n=83, 0.003
asymptomatic
PTB n=129,
symptoms of PTL
n=65]
Thomas et al. NA sPTB (<37 weeks) Cervical 60 GC-MS
(Ref. 65) vaginal fluid [sPTB n=30,
control n=30]
Ghartey et al. Metabolic pathways with observed changes: sPTB (<37 weeks) Cervical 20 LC-MS NA
(Ref. 66) amino acids; peptide; carbohydrate; energy; vaginal fluid [PTB n=10,
lipid; nucleotide; cofactors and vitamins; control n=10]
xenobiotics
Maitre et al. Steroid conjugate (P=0.045) SPTB (<37 weeks) Urine 464 Proton NMR
(Ref. 67) Lysine (P=0.016) [sPTB n=88,
Trimethylamine-N-oxide (P=0.032) control n=275]

Glycine (P=0.049)
N-Methyl-2-pyridone-5-carboxamide
(P=0.049)

Formate (P =0.009)

Graca et al. Histidine, isoleucine/leucine, methionine, PTD (<37 weeks) Amniotic fluid 17 Ultra-high NA

(Ref. 68) phenylalanine, valine and urine performance liquid
chromatography
-mass spectrometry
(UHPLC—MS)

Diaz et al. Urine metabolites: Pre-premature Urine and 198 NMR

(Ref. 69) 2-hydroxyisobutyrate (1.02 x 1072) Choline delivery (PTD) (<37 plasma

(free) (1.51x1072) weeks)

Unknown metabolite (3.14 x 1072

(Continued)
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Table 4. (Continued.)

Total number of

maternal Technology/
Study Metabolites identified Phenotype Sample type participants technique P value
Romero et al. Increased in PTL: hexose cluster 6, dulcitol, PTL (<37 weeks) Amniotic fluid 168 Gas and liquid NA
(Ref. 37) urocanic acid, possible N-acetyl glutamine, chromatography and
1-methyladenine, butanoic acid, beta mass spectrometry

hydroxyphenylethylamine, vitamin B6,
salicylamide, oleic acid and other unknown
metabolites

Decreased in PTL: alanine, pyroglutamic
acid, proline, glycine, glutamine, galactose,
hexose cluster 5, hexose cluster 3, mannose,
inositol, urea, 3-hydroxybutanoic acid,
palmitate, octadecanoic acid and
Butanedioic acid

GC-MS, gas chromatography-mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; NMR, nuclear magnetic resonance; PPROM, preterm pre-labour rupture of membranes;
PTB, preterm birth; PTD, preterm delivery; PTL, preterm labour; sPTB, spontaneous preterm birth; UHPLC-MS, ultra-high-performance liquid chromatography coupled to mass spectrometry.
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Fig. 2. (a) Schematic diagram of omic data types in the direction of transcription and translation into end-products (such as proteins or metabolites). Of the vast
number of omic molecules in the human system, some of these can be identified as part of the pathway (or pathways) that leads to the onset of PTB (as circled in
red). These biomarkers can be detected using single or multiple omic investigations. (b) PTB omic studies identified and included, per type of omic data, in this
systematic review. (c) From the identified PTB omic studies, the number of multi-omic studies per type of omic data is summarised.

Table 5. Summary of PTB studies that investigated more than one omic dataset identified in the systematic literature search (N =6)

Study Biomarker(s) Omic data investigated

Stelzer et al. (Ref. 60) Top markers included: 11 metabolomics, 17 proteomics, 14 immunome Metabolome, proteome and immunome
Pandey et al. (Ref. 71) IL-6 polymorphisms and MMP-9 levels Genetics and proteomics

Hao et al. (Ref. 72) SNPs: SOD2, SOD3 and CAT Genetics and proteomics

Awasthi and Pandey (Ref. 46) TLR4 mRNA and TNF-o genotype Transcriptomics and genetics

Wang et al. (Ref. 73) Mannose-binding lectin Genetics and proteomics

Mustafa et al. (Ref. 74) Organochlorine pesticides Transcriptomics and proteomics
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experimental design, sample preparation as well as handling and
analysing large datasets (Ref. 78). Advanced computational skills
and methods from field such as advanced statistics and machine
learning (from artificial intelligence) are being applied across differ-
ent medical research fields (Ref. 78).

Pathway analysis of non-targeted individual omic layers indi-
cated cellular processes associated with infection-related func-
tions. Few pathways were significant at FDR P <0.05, possibly
because of the low number of studies included in the analyses
(Table S5). To date, no online platforms can implement pathway
analysis of all four omic disciplines (genomics, transcriptomics,
proteomics and metabolomics) using the molecule identifiers
selected in this review, thereby, reducing the capability of investi-
gating the interaction between the omic layers.

Meta-analysis including all the studies in this review could not
be performed because of heterogeneity caused by differences in
factors including technology or methods, study design, sampling
time and PTB outcome definition. Samples were obtained from
first trimester up to a few days before the patient delivered or
started experiencing contractions prior to or around third trimes-
ter. Furthermore, different gestational cut-offs were applied across
the studies (Fig. S1). Different ethnic populations were included
in the genomics studies, which would cause genetic heterogeneity
if meta-analyses were to be performed. Targeted and non-targeted
studies could not be combined as this would lead to bias in inter-
pretation and therefore, meta-analysis was not suitable for this
review.

The majority of studies applied <37 weeks cut-off to define
PTB (Fig. S1), though this is considered late-PTB by the defin-
ition provided by the WHO and thereby more likely to detect
molecular changes closer to term delivery. Fewer studies applied
earlier gestational age thresholds; the earliest was 29 weeks as
reported by Annells ef al. (Ref. 38). Each study also collected dif-
ferent types of samples at differing gestational timepoints, for
example, serum at 11-13 weeks of gestation by Kansu-Celik
et al. (Ref. 79) or plasma at 16-20 weeks of gestation by Ellis
et al. (Ref. 80). These studies explored the molecular characteris-
tics of PTB sub-clinical phenotypes sPTB or PPROM, however
this increased the clinical heterogeneity in this review as other
studies did not distinguish between the PTB phenotypes. Most
likely all clinical sub-groups were grouped under the term ‘PTB’
or ‘sPTB’ using the <37 weeks gestation cut-off. This raises
another issue that there is no standard classification system of
PTB phenotypes, as described by Goldenberg et al. (Ref. 9).
Any combination of risk factors can affect women of different
ethnic and socio-economic status at varying gestational time-
points (Ref. 9). Women recruited at the time of onset of contrac-
tions or admission to hospital because of symptoms of early
labour were excluded from the review as labour had already
started. This would not be an ideal predictive biomarker, espe-
cially for asymptomatic women.

Current PTB prevention guidelines in the UK recommend that
women experiencing PTB symptoms at <34 weeks of gestation are
in most need of PTB prevention treatment, therefore a diagnostic
screen before this timepoint would be appropriate (Ref. 81).
An ideal biomarker for PTB would be implemented in early stages
of pregnancy and utilise non-invasive sampling techniques (for
instance, systemic fluids, including maternal blood samples
(serum or plasma samples) or amniotic fluid collected from the
vagina), similar to the studies highlighted in this review. This
would also enable clinical decisions to be made earlier that
could improve pregnancy outcomes (Ref. 76). The biomarker
should be technically simple to execute in non-specialist clinical
settings (such as laboratories), low cost, high accuracy and reason-
ably quick to obtain results. The integration of this type of screen-
ing into the healthcare system and acceptability amongst the
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pregnant population would also need to be considered. Few pre-
natal diagnostic tests are offered, and these are often to detect
severe conditions affecting the foetus, which raises ethical impli-
cations for mothers, as would be the case for PTB screening.
In addition to this, the biomarker (or a panel of biomarkers)
should be suitable for a multi-ethnic population. However, further
work would be required to ensure the validity of the biomarker,
which requires large, prospective, multicentre multi-omic studies.
One of the current efforts include the ‘March of Dimes’, an organ-
isation based in the USA (https://www.marchofdimes.org/index.
aspx), who have funded several international PTB research centres
that are leading global multi-centre PTB omic research. Large
cohort studies, with a robust study design, can enable firm con-
clusions to be drawn.

The studies outlined in this review implemented different
experimental approaches and study designs for biomarker identi-
fication, but these were not validated, or the diagnostic value was
not reported. This limitation results from the lack of standard for
reporting omic biomarkers and quality assessment of omic studies
(Ref. 82). Future work could involve development of a quality
assessment tool for the articles that applied a specific study design
and reported biomarker diagnostic value and by adapting current
guidelines.

The literature has demonstrated that multi-omic studies can be
completed on the same cohort of women. Integration of clinical
data with omic biomarkers could lead to predictive models of
pregnancy outcome. Our experiences of prospectively recruiting
women to a multi-omic study of PTB highlighted the need for
a large sample size to retain statistical power at the multi-omic
level, whereby samples loss occurred within the individual omic
analyses then during multi-omic data integration (Refs 83, 84).
Study participant recruitment and sample collection during preg-
nancy required trained staff and is time-intensive, despite this,
participants missing appointments could not be avoided leading
to further data loss. The number of PTB cases is relatively low
in a single population and even lower when categorised into the
sub-groups sPTB and PPROM (Refs 83, 84). This reiterates the
need for a multi-centre recruitment approach.

To conclude, this review has demonstrated that PTB omic
studies have reported biomarkers in concordance with the key
risk factor of infection or inflammation, hence suggesting the
role of infection or immunological pathway components in initi-
ating early labour. This also highlights the need for multi-omic
studies to determine biomarkers and pathways associated with
PTB based on interactions between omic layers.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/erm.2022.13.
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