ON THE ANALYTICAL CONSTRUCTION OF POPULATION AND DEATH CURVES TO FORM THE BASIS OF A LIFE-TABLE.

By T. E. HAYWARD, M.B. (Lond.), F.R.C.S. (Eng.), Medical Officer of Health of Haydock, Lancashire.

The "graphic" method of constructing a Life-Table which is ably and lucidly expounded in the paper by Drs Newsholme and Stevenson (published in the Journal of Hygiene, vol. III. No. 3, pp. 297-324), is one way of dividing up foundation figures of population and deaths, given in groups of ages, into numbers belonging to each separate year of age, so that, either directly by the fraction $\frac{2 P_{x}-d_{x}}{2 P_{x}+d_{x}}$, or indirectly by first obtaining $m_{x}=\frac{d_{x}}{P_{x}}$, and then finding the value of $\frac{2-m_{x}}{2+m_{x}}$, the series of p_{x} values is obtained forming the connecting link between the data and the results of the Life-Table.

In this method the curve is drawn, guided in its course by previously constructed parallelograms, and the required ordinates are measured from points in the base-line corresponding to mid-yearly intervals.

In the alternative "analytical" method the mid-yearly ordinates are measured by processes of calculation, and when so obtained they may be plotted out, one by one, to scale; then, by drawing a curved line through the extremities of these ordinates, and by the further addition of parallelograms representing to scale the foundation numbers as given in groups of ages, a diagram of a population or of a death curve is obtained corresponding to a diagram belonging to the "graphic" method, but arrived at by a reverse process.

There was described in a paper contributed by the present writer to the Journal of Hygiene, vol. 1I. No. 1, a method of constructing analytically an extended Life-Table, which consisted essentially (1) in calculating at certain intervals ordinates of population and death curves,
(2) in obtaining from these the corresponding p_{x} values, and (3) in completing the yearly series of p_{x} values by interpolations in series where $u_{x}=\log p_{x}$.

However the writer is now of opinion that if it be worth while to set out to construct an extended Life-Table by analytical methods it is best to begin by interpolating population and death numbers for each year of age after the first five.

The object of this paper is first to give a series of formulae (based on the method of finite differences) reduced to their lowest terms of simplicity, by means of which population and death curves may be calculated before being graphically represented, and then to illustrate the results by one pair of diagrams chosen out of a considerable number which have been prepared in the evolution of the scheme.

It is of some importance, however, to comprehend the difference in the geometrical aspect of the "graphic" and "analytical" methods.

Whereas in the graphic method the foundation numerical data are first represented as parallelograms and then the curve is drawn through, and by means of these, in the analytical method only "linear quantities" can be dealt with, therefore by the successive addition to the number belonging to the age-group 85 and upwards of the number belonging to the age-group 75-85, and then of the number belonging to the age-group 65-75, and so on, a series of linear quantities will be obtained representing, as the case may be, the numbers of population or deaths at age x and upwards. These may be regarded as ordinates of a curve erected at points in a base-line corresponding to exact ages (or values of x) $4,5,10,15,20,25 \ldots 85$.

It is convenient to use the symbol u_{x} to represent the number of population or of deaths at age x and upwards.

If now by processes of calculation we can interpolate the intermediate ordinates u_{6}, u_{7}, u_{8}, etc., so as to complete the series for each exact year of age, then it is obvious that $u_{5}-u_{6}$ will give the number of population or deaths, as the case may be, belonging to the year of age from 5 to 6 , and so on; and if we are plotting out by analytical means a population or a death curve we start with a base-line and measure out at the point $5 \frac{1}{2}$ in this base-line an ordinate equal to $u_{5}-u_{6}$, and so on.

In actual practice, however, it is best to use not the numbers but the logarithms of the numbers expressing population or deaths at age x and upwards, because it is only thus possible to obtain a rational continuation
of the series beyond the point where the actual data cease to be available.

Further, instead of effecting interpolations in two series in one of which $u_{x}=$ the \log of the number representing population at age x and upwards, and in the other $u_{x}=$ the log of the corresponding number of deaths at age x and upwards, the two series may be so modified that $u_{x}=$ the \log of the number representing twice population minus deaths at age x and upwards in one series, and in the other $u_{x}=$ the \log of the number representing twice population plus deaths at age x and upwards.

If numbers were being dealt with the results would be the same whether population and deaths were dealt with separately or in combination, as $2 P-d$ and $2 P+d$, but if the logarithms of the numbers are used the results as regards the values of P and d for each year of age must necessarily differ.

When population and deaths are taken separately, the series of u_{x} values (logs) having been completed by interpolation, the numerical values of the series are taken out and then by subtracting the value corresponding to u_{x+1} from the value corresponding to u_{x} the value of P or d is obtained for the year of age x to $x+1$.

On the other hand when the combined method is used similar procedures result in the obtaining of values representing $2 P-d$ and $2 P+d$ for each year of age.

Then $\quad P=\frac{1}{4}[(2 P-d)+(2 P+d)]$
and

$$
d=\frac{1}{2}[(2 P+d)-(2 P-d)],
$$

that is to say, from the two combined values the population number is obtained by taking a fourth part of their sum, and the death number by taking half their difference.

It is found that the values of P obtained by the two methods very nearly coincide, but that the values of d may differ considerably. However, when the two sets of values are plotted out, it is seen that the two curves only diverge from each other at intervals, and that they alternately intersect each other.

Seeing that a third diagram originally prepared to illustrate these points (as regards the two death curves) could not be satisfactorily reproduced on the diminished scale necessary for publication, it has had to be left out. The practical point brought out in the large diagram is that the death curve obtained by the combined method of interpolation (as $2 P-d$ and $2 P+d$) is on the whole decidedly a smoother and better
curve than the other obtained by interpolations in deaths taken separately. In the actual construction of a Life-Table the smoother curve of deaths would give the smoother m_{x} and p_{x} curves, and therefore, from this point of view, the combined method is to be preferred. It may also be noted that a comparison having been made of the results obtained by the application of the "Improved method of constructing shortened Life-Tables" (described in this Journal, vol. v. No. 1), to the data of the Life-Table for Brighton (males) for 1891-1900, first with P and d taken separately, and then as $2 P-d$ and $2 P+d$, the latter gave the nearer approach to the results of the original Life-Table ${ }^{1}$.

The two diagrams of population and death curves given respectively in Figs. 1 and 2 (pp. 223, 225) represent numbers obtained by interpolations according to the combined method.

After these preliminary observations the proposed scheme of interpolation and the formulae belonging to it may now be given. In order that the scheme may be comprehended, some degree of knowledge of the theory of "finite difference" and "interpolation" must be presupposed. Reference may be made by those without such knowledge to some attempted brief explanations given in the paper already alluded to as having been published in this Journal, vol. II. No. 1, January 1902, pp. 15-18 and 23-25.

Scheme of Interpolation.

```
Series \(1 \ldots u_{4}\left[u_{5} \underline{u_{10}, u_{15}}\right] u_{20}\)
    , \(2 \ldots \ldots u_{5}\left[\overline{u_{10}} \underline{u}_{15} u_{20}\right] u_{25}\)
    , \(3 \ldots \ldots \ldots u_{10}\left[\overline{u_{15} \underline{u_{20}}} u_{25}\right] u_{35}\)
    \(" 4 \ldots \ldots \ldots \ldots . u_{15}\left[\overline{u_{20} \underline{u_{25}}} u_{35}\right] u_{45}\)
    " \(5 \ldots \ldots \ldots \ldots \ldots \ldots u_{20}\left[\overline{u_{25}} \underline{u}_{35} u_{45}\right] u_{55}\)
    " \(6 \ldots \ldots \ldots \ldots \ldots \ldots . . u_{25}\left[\overline{u_{35}} \underline{u_{45}} u_{55}\right] u_{65}\)
    , 7.......................... \(u_{35}\left[\overline{u_{45}} \underline{u_{55}} u_{65}\right] u_{75}\)
    , \(8 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . u_{45}\left[\overline{u_{55} u_{65}} u_{75} u_{85} \ldots\right]\)
```

The general principles of the scheme are:
(1) To take the given series of u_{x} values in eight series consisting of five terms in each, symmetrically overlapping each other, the orders of differences used being thus limited to four.
(2) To use only the central part of each series.

[^0](3) To weld or combine the overlapping series by pairs of factors derived from the "curve of cosines" so that one series shall gradually pass into the other.

In the above scheme the part of each series actually used is indicated by brackets, and the underlined part of the series above is to be welded with the corresponding overlined part of the series below.

With 5-yearly intervals there are of course four intermediate terms to be combined, and with 10-yearly intervals nine.

In order that the simplest formulae of interpolation may be used it is necessary to have five consecutive equidistant terms in each series.

Having given five such terms it is a simple matter to set them down and "difference" them until the fourth difference is obtained.

As in each series of the given scheme the interpolation is required to begin at the second line of differences, this line must be completed by filling up the blank space by the constant fourth difference.

Then, indicating the second term of the series (relatively to the other terms) as u_{0}, and denoting the differences corresponding to 5 -yearly or 10 -yearly intervals by the symbol Δ, the subdivided line of differences corresponding to yearly intervals, represented by the symbol δ, may be obtained by the following formulae.

5-yearly intervals.

$$
\begin{aligned}
& \delta^{4} u_{0}=\cdot 0016 \Delta^{4} u_{0} \\
& \delta^{3} u_{0}=\cdot 008 \Delta^{3} u_{0}-6 \delta^{4} u_{0} \\
& \delta^{2} u_{0}=\cdot 04 \Delta^{2} u_{0}-4 \delta^{8} u_{0}-8 \delta^{4} u_{0} \\
& \delta u_{0}=\cdot 2 \Delta u_{0}-2 \delta^{2} u_{0}-2 \delta^{3} u_{0}-\delta^{4} u_{0}
\end{aligned}
$$

10-yearly intervals.
$\delta^{4} u_{0}=\cdot 0001 \Delta^{4} u_{0}$
$\delta^{3} u_{0}=\cdot 001 \Delta^{3} u_{0}-13 \cdot 5 \delta^{4} u_{0}$
$\delta^{2} u_{0}=\cdot 01 \Delta^{2} u_{0}-98^{3} u_{0}-44 \cdot 25 \delta^{4} u_{0}$
$\delta u_{0}=\cdot 1 \Delta u_{0}-4 \cdot 5 \delta^{2} u_{0}-12 \delta^{3} u_{0}-21 \delta^{4} u_{0}$

The pairs of "welding" factors required are as follows:

5 -yearly intervals.		10-yearly intervals.	
		-976	. 024
-904	. 096	-904	. 096
		-794	-206
. 654	$\cdot 346$	$\cdot 654$	-346
		. 500	. 500
$\cdot 346$	-654	-346	$\cdot 654$
		-206	-794
-096	$\cdot 904$	-096	-904
		. 024	$\cdot 976$

It will be noted that the given terms in series $1,3,4$ and 5 are not equidistant. Therefore, before the simple formulae applicable to an equidistant series of terms can be made use of, the following formulae, which have been worked out by means of the general formula of

Lagrange, must be employed to obtain the required relative terms in each series.

For series 1,

$$
u_{0}=\frac{625 u_{4}+11 u_{20}-64 u_{15}}{44}-4\left(4 u_{5}-u_{10}\right) .
$$

The bringing in of the term u_{4} avoids the break in the regularity of Life-Table curves between the ages of 4 and 5 which may otherwise occur.

The required five consecutive equidistant terms to be differenced are $u_{0}, u_{5}, u_{10}, u_{15}, u_{20}$.

For series 3,

$$
u_{30}=u_{15}-2\left[\left(u_{20}-u_{25}\right)+\frac{1}{10}\left(u_{10}-u_{35}\right)\right] .
$$

The required five terms are then $u_{10}, u_{15}, u_{20}, u_{25}, u_{30}$.
For series 4,

$$
u_{30}=\frac{5\left(u_{15}+9 u_{25}+3 u_{25}\right)-\left(24 u_{20}+u_{45}\right)}{40} .
$$

The terms to be differenced are, then, $u_{15}, u_{20}, u_{25}, u_{30}, u_{35}$.
For series 5,

$$
u_{15}=\frac{4\left(32 u_{20}-7 u_{45}\right)+5 u_{55}}{35}-2\left(2 u_{25}-u_{35}\right) .
$$

(This u_{15} is of course only a relative term in series $\check{5}$; it must not be confounded with the true u_{15} in the preceding series.)

The terms to be differenced are $u_{15}, u_{25}, u_{35}, u_{45}, u_{55}$.
The foundation figures of population and deaths to which the preceding formulae have been applied to obtain the results graphically represented in Figs. 1 and 2 (pp. 223, 225), are those relating to England and Wales (males) for the decennium 1881-90.

The "years of life" for the decennium have been calculated from the enumerated population at the censuses of 1881 and 1891 (as given finally corrected in Table 13, page 206 of Appendix A in The General Report of the Census of 1901), by the method of Mr A. C. Waters (described in The Journal of the Royal Statistical Society, vol. Lxiv. Part II. June 1901).

It must be noted, however, that the enumerated figures for ages from 0 to 15 inclusive have been dealt with as one age-group, and that the "years of life" therein included have been divided up between the agegroups $0-5,5-10$, and $10-15$ in proportion to the calculated numbers
of survivors in these age-groups given in Table 19, page 211 of the Census Report for 1901 above alluded to.

The "years of life" for the age-group $0-5$ have been further subdivided into numbers belonging to each of the first five years of age in proportion to numbers obtained by deaths and of births.

The attempt thus made to eliminate errors due to misstatements of age during the first 15 years of life would appear to have been successful from the regularity of the population curve in Fig. 1.

For representation on the scale employed the proportionate distribution of half a million of the total of $133,020,965$ "years of life" has been shown.

For the curve of deaths, as out of $133,020,968$ " years of life" there occurred $2,698,316$ deaths, the number of deaths out of half a million " years of life" was $10,142 \cdot 45$, and the proportionate distribution of this number has been shown in the diagram.

> Concluding remarks as to the preferability of "analytical" or "graphic" methods.

In so far as the present writer is concerned he must confess that the result of having laboured to devise what might appear the simplest and best analytical method has been to increase his admiration for the beauty and simplicity of Milne's method of graphically constructing population and death curves as it has been explained by Mr George King, F.I.A., etc.

However, to satisfactorily apply this graphic method there would appear to be required a high degree of technical skill in drawing and measuring the curves, especially in drawing them.

If it should appear that the method of analytically calculating population and death curves described in this paper, when the results are graphically represented, gives curves such as might have been drawn by a master of the art of graphic construction, it may be that some who are doubtful of their graphic powers will care to avail themselves of the perhaps more common ability to calculate according to a given scheme.

It is further to be considered that the application of such a scheme to several sets of data will eliminate variations due to "personal equation" in drawing curves and measuring ordinates, and will ensure that the esults obtained will be strictly comparable.

In the following tables are given the numbers of population and of deaths, calculated for each year of age, which have been used in the construction of the two curves represented respectively in the diagrams.

England and Wales (Males), 1881—1890. Population.

$\underset{x+1}{\text { Age } x \text { to }}$			$\begin{gathered} \text { Age } x \text { to } \\ x+1 \end{gathered}$		
0	14957		45	4800	
1	13609		46	4661	
2	13080		47	4526	
3	12808		48	4389	
4	12652		49	4247	
			50	4098	41602
5	12451		51	3945	
6	12268		52	3792	
7	12097	60522	53	3643	
8	11933		54	3501	
9	11773				
			55	3368	
10	11611		56	3242	
11	11445		57	3121	
12	11272	56314	58	2998	
13	11090		59	2872	
14	10896		60	2742	28004
			61	2610	
15	10696		62	2479	
16	10497		63	2349	
17	10262	51104	64	2223	
18	9977				
19	9672		65	2100	
			66	1979	
20	9374		67	1859	
21	9074		68	1738	
22	8798	44173	69	1618	15615
23	8566		70	1499	15615
24	8361		71	1380	
			72	1262	
25	8154		73	1147	
26	7952		74	1033	
27	7757				
28	7570		75	923	
29	7387		76	816	
30	7208	73134	77	715	
31	7032		78	619	
32	6859		79	530	5178
33	6690		80	448	5178
34	6525		81	374	
			82	307	
35	6365		83	248	
36	6212		84	198	
37	6063				
38	5913		85	155	
39	5759		86	119	
40	5599	56669	87	90	
41	5434		88	66	
42	5269		89	48	56
43	5106		90	34	56
44	4949		91	24	
			92	16	
			93	10	
			94	7	

England and Wales (Males), 1881-1890. Deaths.
Interpolations in $2 P-d$ and $2 P+d$.

[^0]: ${ }^{1}$ For a previous discussion of the same point see Journal of the Royal Statistical Society, vol. Lxir. Part Iv. pp. 696-699, where the same conclusion is arrived at as to the preferability of the combined method of interpolation.

