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Summary

More and more rare genetic variants are being detected in the human genome, and it is believed that besides
common variants, some rare variants also explain part of the phenotypic variance for human diseases. Due to
the importance of rare variants, many statistical methods have been proposed to test for associations between
rare variants and human traits. However, in existing studies, most methods only test for associations between
multiple loci and one trait; therefore, the joint information of multiple traits has not been considered simul-
taneously and sufficiently. In this article, we present a study of testing for associations between rare variants
and multiple traits, where trait value can be binary, ordinal, quantitative and/or any mixture of them. Based
on the method of generalized Kendall’s τ, a nonparametric method called NM-RV is proposed. A new kernel
function for U-statistic, which could incorporate the information of each rare variant itself, is also presented
and is expected to enhance the power of rare variant analysis. We further consider the asymptotic distribution
of the proposed association test statistic. Our simulation work suggests that the proposed method is more
powerful and robust than existing methods in testing for associations between rare variants and multiple traits,
especially for multivariate ordinal traits.

1. Introduction

In genome-wide association studies, thousands of
common variants associated with human complex dis-
eases have been successfully identified using statistical
methods over the last 10 to 20 years. However, these
common variants explain only a small portion of in-
heritable phenotypic variance for human diseases
(Maher, 2008; Manolio et al., 2009; Eichler et al.,
2010). We expect that most missing heritability can
be explained by low frequency variants. Up to now,
it has been widely believed that human complex dis-
eases are likely caused by both common and rare
variants (Bodmer & Bonilla, 2008; Ng et al., 2010;
Robinson et al., 2014). At the same time, along with
the rapid development of next-generation sequencing
technologies (Metzker, 2010), more and more rare gen-
etic variants have been detected in the human genome,

where rare variants (RVs) are usually defined as having
minor allele frequencies (MAFs) of less than 5%.

Although statistical methods have allowed for enor-
mous steps in testing for associations between com-
mon variants and complex traits, these methods may
lead to larger bias and lower power in detecting rare
variants (Li & Leal, 2008). Owing to the convenience
of using large data sets of rare variants, many statistic-
al approaches have been proposed to be used when
examining rare variants that may be associated with
complex traits. Currently, the idea of collapsing a
group of rare variants in a gene is widely used in associ-
ation tests. For instance, Morgenthaler and Thilly
(2007) proposed the cohort allelic sums test (CAST);
Pan (2009) developed the sum test (SUM); and
Madsen and Browning (2009) presented the method
of weighted sum statistic (WSS). These collapsing
methods are validated to be more powerful than
single-marker methods. In addition, several methods
of detecting associations of rare variants have been pro-
posed by other groups, in which the direction and mag-
nitude of the effects of causal variants are discussed,
including adaptive methods (Zhang et al., 2010 a;
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Fang et al., 2012), the sequence kernel association test
(SKAT; Wu et al., 2011) and the sequence kernel as-
sociation optimal test (SKAT-O; Lee et al., 2012).

Almost all the existingmethods focus on single binary
or quantitative phenotype. However, ordinal responses
are also very common in the investigations of complex
traits, such as mental illnesses or behavioural disorders.
Meanwhile, in these investigations multiple traits are
often recorded as different types (e.g. binary, ordinal
and quantitative). To date, researchers have already pro-
vided some methods to test for associations between
multiple traits and common variants. For example,
Lange et al. (2003) proposed the FBAT-GEE method;
Zhang et al. (2010 b) proposed a nonparametric method
based on generalized Kendall’s τ, and Zhu et al. (2012)
presented covariate-adjusted association tests based on
generalized Kendall’s τ. Investigation results show that
testing for multiple traits together is more powerful
than testing for one single trait at a time in association
studies (Zhu&Zhang, 2009; 2013).However, it is not en-
tirely clear as to how beneficial simultaneous testing for
multiple traits is in association studies of rare variants.
One drawback to consider when using multiple traits to
examine rare variants is that common-variant-based
approaches could not be used directly.

To circumvent this difficulty and improve power
compared to single-trait tests, in this article we provide
a nonparametric method to test for associations be-
tween rare variants and multiple traits, which is based
on generalized Kendall’s τ (Zhang et al., 2010 b). The
traits involved in our method may be binary, ordinal,
quantitative and/or any mixture of them. We expect
that this approach can combine the weak signals
from each variant, which should provide high reso-
lution for detecting associations. With this in mind,
we define a new kernel function based on multiple
rare variants to measure the genotype dis-similarity of
each pair of individuals in generalized Kendall’s τ,
which could incorporate the information of each rare
variant itself. Furthermore, our proposed test statistic
has an asymptotic Chi-square distribution. Extensive
simulations are performed to compare the proposed
method with other existing methods and the simulation
results show that our method is effective, powerful and
robust for rare variant association analysis. It can con-
trol Type I error, has higher power and, therefore, can
increase the chance of detecting causal variants.

2. Methods

We consider data collected from n independent
subjects. Let Yi = (Yi

(1) , . . .Yi
(q))′ denote the observed

multiple traits, and Gi= (Gi1, . . . ,Gim)′ denote
the genotypic score vector at m loci for individual
i (i = 1, . . . , n), where Yi

(k) (k = 1, . . . , q) may be binary,
ordinal or quantitative; Gil = 0, 1 and 2 correspond to

genotypes AA, Aa and aa (l= 1, . . . ,m), and the fre-
quency of minor allele a is less than 5%. Assume that
them rare variant loci are independent.Weare concerned
with the problem of testing for associations between rare
variants andmultiple traits. In the following, we propose
our nonparametric association test method by construct-
ing a U-statistic and further constructing a nonparamet-
ric statistic W to test for the associations. We call the
proposed method NM-RV for brevity.

(i) U-statistic

Similar to the method of Zhang et al. (2010 b), which
is based on generalized Kendall’s τ, we propose a
U-statistic

U = n
2

( )−1 ∑
i,j

F (Yi,Yj)K(Gi,Gj) (1)

to measure the correlation between rare variants and
multiple traits. For each pair (i, j), F(Yi, Yj) and K
(Gi, Gj) are the kernel functions that measure the dis-
similarities of the traits and of the genotypes between
individuals i and j. Following the method of Zhang
et al. (2010 b), let

Fij = F Yi,Yj
( )

= f1 Y 1( )
i − Y 1( )

j

( )
, . . . , fq Y

q( )
i − Y

q( )
j

( )( )′
,

where function fk ·( ) is defined as

fk Y k( )
i − Y k( )

j

( )
= Y k( )

i − Y k( )
j , k = 1, . . . , q,

if the kth trait is quantitative or binary, and

fk Y k( )
i − Y k( )

j

( )
= sign Y k( )

i − Y k( )
j

{ }

=
1, Y k( )

i − Y k( )
j . 0,

−1, Y k( )
i − Y k( )

j , 0

0, Y k( )
i − Y k( )

j = 0,

⎧⎪⎪⎨
⎪⎪⎩ , k = 1, . . . , q,

if the kth trait is ordinal.
Next, we define the kernel function K(Gi, Gj) such

that it can be used to measure the dis-similarity of
the genotypes for m rare variants between individuals
iand j. For the purpose of simplicity, we assume that
the kernel function K(Gi, Gj) is a summation of
Kl(Gil, Gjl) defined at each locus l (l = 1, . . ., m), that is,

K Gi,Gj
( ) = ∑m

l=1

Kl Gil,Gjl
( )

,

where Kl (Gil, Gjl) is the kernel function that represents
the dis-similarity of genotypes at the lth rare variant
for the pair (i, j). Because the effects of all m rare var-
iants on the traits may not be identical in practice, we
should define different kernel functions for different
rare variants. Then, we need to define the kernel
function Kl (Gil, Gjl) for each locus l discriminately.
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Unfortunately, the kernel function proposed by
Zhang et al. (2010 b) is not applicable to rare variants
owing to the following two shortcomings. First, their
kernel function assumes the dis-similarity between
genotypes AA and Aa is the same as the dis-similarity
between genotypes Aa and aa at a single locus, which
is obviously unreasonable when allele a is a rare mu-
tation. Second, their kernel function does not take
into account MAFs for different loci, which is essen-
tial for association studies of rare variants. In this
work, a new kernel function is defined as

Kl Gil,Gjl
( ) = log

nGil

nG jl

( )
,

where nGil represents the total number of observed
genotype Gil for all individuals at variant l, and nGjl

has analogous explanation. This kernel function,
motivated by the shrinkage of entropy-guided distance
(EGS) of Jin et al. (2014), does take MAFs into ac-
count and could incorporate the information of the
rare variant itself. We expect that this kernel function
possesses very similar advantages as the EGS of Jin
et al. (2014), although the EGS was proposed to meas-
ure the dis-similarity of haplotype pairs.

Replacing the kernel function K(Gi, Gj) in formula
(1), the U-statistic is given by

U = n
2

( )−1 ∑
i,j

Fij

∑m
l=1

Kl Gil,Gjl
( )

.

Moreover, the U-statistic can be simplified into the
following form

U =
∑m
l=1

Ul,

where

Ul = 2
n− 1

∑n
i=1

�Fi log nGil

( )
,

is a U-statistic defined for the lth variant, and

�Fi = 1
n

∑n

j=1
Fij (see Appendix 1 for more details).

The main difference between our Ul and the
U-statistic given by Zhang et al. (2010 b) is that our
Ul is proposed for analysing rare variants using a
new kernel function. Our proposed U-statistic is a sim-
ple summation of the U-statistics for all rare variants
of interest, where the number of rare variants involved
in our analysis could be very large.

(ii) Association test statistic W and its asymptotic

According to generalized Kendall’s τ (Zhang et al.,
2010 b) and based on the above proposed
U-statistic, we define an association test statistic as

W = (U − E U |Y( ))′Var−1 U |Y( ) U − E U |Y( )( ),

where

E U |Y( ) = 2
n− 1

∑n
i=1

�Fi

∑m
l=1

E log nGil

( )|Y( )
,

Var U |Y( ) = 2
n− 1

( )2 ∑n
i=1

�Fi �F
′
i

∑m
l=1

Var log nGil

( )|Y( )
.

The detailed calculation of E(U|Y) and Var(U|Y)
can be found in Appendix 2. Similar to the results of
Zhang et al. (2010 b), it can be determined that
under the null hypothesis of no association between
rare variants and multiple traits, the statistic W fol-
lows an asymptotic Chi-square distribution, where
the degrees of freedom are given by the rank of the
variance matrix Var(U|Y).

3. Simulation studies

We conduct simulation studies to evaluate the per-
formance of our proposed method (NM-RV). In the
simulations, we compare the performance of the pro-
posed method and five other competing tests: SUM,
CAST, SKAT, SKAT-O and WSS. Two traits are
considered in our comparisons.

(i) Simulation design

To comprehensively demonstrate the validity of
NM-RV, we conduct two simulations: a simulation
based on designed parameters and a simulation based
on a real data set. In each simulationwe consider the as-
sociation analyses between multiple rare variants and
two kinds of bivariate traits, respectively (i.e. two ordin-
al traits and a mixture of binary and ordinal traits).

(a) Simulation 1. Simulation based on designed
parameters

In this simulation, m(= 20 and 40) rare variants and
two ordinal traits, as well as a mixture of binary and
ordinal traits are simulated. A total of 12 causal var-
iants out of the 20 rare variants are assigned if m= 20,
and 20 causal variants out of the 40 rare variants are
assigned if m= 40. Sample size n= 500 is considered.
Firstly, genotypes of m rare variant loci are generated
independently with the MAF pl � U 0 · 001,(
0 · 01), l = 1, . . . ,m, where U(0·001, 0·01) denotes a
uniform distribution in the interval (0·001, 0·01).
Under the assumption of Hardy–Weinberg equilib-
rium law, the frequencies of genotypes AA, Aa and
aa at locus l are 1− pl

( )2
, 2pl 1− pl

( )
and pl2, re-

spectively. Then the genotype of any individual i can
be randomly generated according to the probability
distribution. Based on the generated genotype (AA,
Aa, aa), the corresponding genotypic score Gil ( = 0,
1, 2) can be recorded. Secondly, the trait value vector
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Ti = Ti
1( ),Ti

2( )( )′
of two quantitative traits of individ-

ual i is generated according to the following model,

Ti
j( ) = μ+ γj

′Gi + εij, j = 1, 2,

where εi1, εi2( )′ � N 0,Σ( ), and Gi = (Gi1, · · · ,Gim)′
is the genotypic score vector at m loci for individual

i. We set μ = 0,Σ = 1 0 · 25
0 · 25 1

( )
, γj = βj ·

1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0( )′ if
m= 20, γj = βj · (1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1,
1,0,1,0,0,1,0,1,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,.1)′ if
m= 40, where the element 1 in vector γj represents
that the corresponding locus is a causal variant. In
the simulation, the values of β1 are taken as 0, 0·2,

0·4, 0·6 and 0·8, and we take β2 =
1
2
β1 correspondingly.

It is noteworthy that the simulated data when (β1,
β2) = (0, 0) are under the null hypothesis and are
used to calculate Type I errors, whereas the simulated
data when (β1, β2)≠ (0, 0) are under the alternative hy-
pothesis and are used to caulate powers for each
method. Lastly, the ordinal (or mixed) trait value vec-
tor Yi = Yi

1( ),Yi
2( )( )′

is generated by discretizing the
values of Ti

1( ) and Ti
2( ) separately. For simplicity,

we set the numbers of categories of Yi
1( ) and Yi

2( ) to
be 3 and 4 for two ordinal traits, respectively. We
use the 50 and 67% sample percentiles to discretize
Ti

1( ) and generate Yi
1( ), and use the 33, 54 and 75%

sample percentiles to discretize Ti
2( ) and

generate Yi
2( ). To generate the trait value vector

Yi = Yi
1( ),Yi

2( )( )′
of the mixture of binary and ordin-

al traits, where Yi
1( ) = 0, 1( ) denotes the binary trait

value and Yi
2( ) ( = 1, 2, 3, 4) denotes the ordinal

trait value, we use the 40% sample percentile to dis-
cretize Ti

1( ) and generate Yi
1( ), and still use the 33,

54 and 75% sample percentiles to discretize Ti
2( )

and generate Yi
2( ). Thus the simulated data including

m rare variants and two ordinal traits, as well as the
mixture of binary and ordinal traits are obtained.

(b) Simulation 2. Simulation based on a real data set

To better show the performance of the proposed
method, we apply the proposed NM-RV and the
other five methods to real genotype data from
GAW17, which are extracted from the sequence align-
ment files provided by the 1000 Genomes Project for
their pilot3 study (http://www.1000genomes.org).

We chose the real genotype data of 697 unrelated
individuals from GAW17, and chose the TG and
COL6A3 genes as candidate genes. The TG gene
encodes thyroglobulin, and mutation of the TG gene
may cause hypothyroidism and autoimmune disorders
(Maierhaba et al., 2008); while the COL6A3 gene
encodes one component of collagen VI, and mutation
of this gene will cause the occurrence of collagen

disease and myopathy dystrophy (Baker et al.,
2005). The TG gene has 146 SNPs and 113 out of
the 146 SNPs are rare (MAF <5%), while the
COL6A3 gene has 187 SNPs and 143 out of the 187
SNPs are rare. For each of these two genes, we ran-
domly chose the genotype data of 20 and 40 rare var-
iants of the 697 individuals, and we assumed that all
the causal variants in the selected rare variants had
the same direction of effects. To perform simulation
studies based on the real genotype data set, the values
of traits (two ordinal traits or a mixture of binary and
ordinal traits) of each individual were simulated in the
same way as in Simulation 1.

For each of the two above simulations, the nominal
significance levels 0·01 and 0·05were used. The sixmeth-
ods (NM-RV, SUM, CAST, SKAT, SKAT-O and
WSS) were used to analyse the simulated data. For
Type I error evaluation and power comparisons, the
simulation results were obtained from 1000 replications
for all sixmethods.When using the other five competing
methods to analyse the bivariate traits, we first tested for
each trait separately, then applied Bonferroni correction
to adjust for correspondingmultiple testing. It should be
pointed out that the significance level of each single-trait
test was set to 0·01/2 and 0·05/2 based on Bonferroni ad-
justment for the other five competing tests, and each
single-trait test was counted on its own, giving rise to
2000 tests under the null hypothesis.

(ii) Simulation results

(a) Evaluation of Type I errors

The simulated data were generated under the null hy-
pothesis, that is, there exists no association between
the rare variants and the bivariate traits when calculat-
ing Type I errors. The results of the estimated Type I
errors for the two simulations are listed in Tables 1–6.

Tables 1 and 2 show the estimated Type I errors of
the six methods at different nominal significance levels
when analysing the two kinds of bivariate traits in
Simulation 1. The traits considered in Table 1 are the
mixture of binary and ordinal ones. The upper part of
Table 1 lists the estimated results at the nominal signifi-
cance level of 0·01, and the lower part corresponds to the
nominal significance level of 0·05. From Table 1 we can
see that each estimated Type I error was very close to the
corresponding nominal significance level. The Type I
errors can be well controlled by our proposed method
(NM-RV) at different nominal significance levels for
each of the two settings of rare variants. The other five
methods can also control the estimated Type I errors.
By comparison, the estimated Type I errors of the
SKAT and the SKAT-O seem a little lower than those
of the other methods, that is to say the two test methods
are somewhat conservative. Table 2 lists the estimated
Type I errors of the six methods when both of the two
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traits are ordinal, and it is not hard to see that the char-
acteristics of the results are similar to those exhibited in
the association analyses of the mixture of binary and or-
dinal traits.

Tables 3 and 4 present the estimated Type I errors
of the six methods for the TG gene when the signifi-
cance levelα is equal to 0·05 in Simulation 2, and the
estimated Type I errors of various methods for the
COL6A3 gene in Simulation 2 are listed in Tables 5
and 6. It can be seen that similar conclusions can be

drawn, while this time CAST seems a little conserva-
tive alongside SKAT and SKAT-O. In addition,
from Tables 1–6 we can see that the number of rare
variants has little impact on Type I errors for each
method, as does the proportion of causal variants.

(b) Power comparison

In order to better show the advantages of NM-RV in the
association analysis between the rare variants and the
multiple traits, we generated data under the alternative
hypothesis and calculated test powers of each method
under each setting. The simulation results of power com-
parisons for the six methods are listed in Tables 7–12.

Tables 7 and 8 present the power comparison results
of the six methods for a mixture of binary and ordinal
traits, and two ordinal traits in simulation 1. From

Table 1. Estimated Type I errors of the six methods for
a mixture of binary and ordinal traits in simulation 1.

n= 500 Test 20 RVs 40 RVs

α= 0·01 NM-RV 0·012 0·009
SUM 0·013 0·009
CAST 0·008 0·011
SKAT 0·005 0·009
SKAT-O 0·008 0·004
WSS 0·015 0·015

α= 0·05 NM-RV 0·053 0·051
SUM 0·054 0·058
CAST 0·051 0·051
SKAT 0·027 0·030
SKAT-O 0·043 0·040
WSS 0·063 0·059

Table 2. Estimated Type I errors of the six methods for
two ordinal traits in simulation 1.

n= 500 Test 20 RVs 40 RVs

α= 0·01 NM-RV 0·007 0·011
SUM 0·011 0·008
CAST 0·009 0·008
SKAT 0·006 0·003
SKAT-O 0·004 0·006
WSS 0·014 0·010

α= 0·05 NM-RV 0·049 0·048
SUM 0·052 0·050
CAST 0·034 0·041
SKAT 0·034 0·025
SKAT-O 0·041 0·031
WSS 0·048 0·046

Table 3. Estimated Type I errors of the six methods in
the association studies of the TG gene and a mixture of
binary and ordinal traits at α = 0·05 in simulation 2.

n= 697 Test 20 RVs 40 RVs

α= 0·05 NM-RV 0·050 0·049
SUM 0·058 0·045
CAST 0·048 0·044
SKAT 0·033 0·025
SKAT-O 0·044 0·035
WSS 0·055 0·045

Table 4. Estimated Type I errors of the six methods in
the association studies of the TG gene and two ordinal
traits at α = 0·05 in simulation 2.

n= 697 Test 20 RVs 40 RVs

α= 0·05 NM-RV 0·047 0·054
SUM 0·046 0·039
CAST 0·039 0·037
SKAT 0·044 0·033
SKAT-O 0·040 0·041
WSS 0·057 0·043

Table 5. Estimated Type I errors of the six methods in
the association studies of the COL6A3 gene and a
mixture of binary and ordinal traits at α = 0·05 in
simulation 2.

n= 697 Test 20 RVs 40 RVs

α= 0·05 NM-RV 0·048 0·055
SUM 0·036 0·044
CAST 0·032 0·031
SKAT 0·030 0·032
SKAT-O 0·029 0·036
WSS 0·038 0·037

Table 6. Estimated Type I errors of the six methods in
the association studies of the COL6A3 gene and two
ordinal traits at α = 0·05 in simulation 2.

n= 697 Test 20 RVs 40 RVs

α= 0·05 NM-RV 0·052 0·052
SUM 0·042 0·051
CAST 0·033 0·037
SKAT 0·038 0·030
SKAT-O 0·040 0·036
WSS 0·045 0·041
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the two tables we can draw several conclusions. The
power of NM-RV is higher than that of the other meth-
ods in any situation. With an increase in the number of
rare variants or the number of true causal variants, the
power of NM-RV becomes much higher. When the
number of rare variants m= 40 is considered, although
the proportion of causal variants is less than that ofm=
20, the power attains the greatest value (0·993) when (β1,
β2) =(0·8, 0·4) at α= 0·05 (Table 8). Besides, a common
tendency of the six methods is that the power increases
with an increase in the values of β1 and β2. Because
large β1 and β2 values correspond to high heritability,
the simulated results confirm that heritability is an im-
portant factor that has significant impact on the test
powers. By comparing the details of the simulation
results in Tables 7 and 8, we found that in each case
with the same parameters, the power of the proposed
NM-RV is higher when the two traits are ordinal than
when the traits are mixed.

Tables 9 and 10 list the simulation results of power
comparisons for the TG gene when considering associa-
tions with two bivariate traits in simulation 2. We also
consider two situations: 12 out of the 20 rare variants
are causal variants and 20 out of the 40 rare variants
are causal. Significance level is taken as 0·05. At this
time, we yield the same conclusions as the aforemen-
tioned analysis, that is, NM-RV has the highest power
in any simulation situation; the larger the number of
rare variants or the number of the true causal variants
is, the higher the power will be for each method, but

the power of NM-RV is still the highest; and the pro-
posed NM-RV is more powerful in the association ana-
lysis between rare variants and two ordinal traits.

In the power comparisons for the COL6A3 gene in
simulation 2, we consider three situations: 12 out of
the 20 rare variants are causal variants, 12 out of the
40 rare variants are causal, and 20 out of the 40 rare
variants are causal. From Tables 11 and 12 it is not
hard to see the same conclusion; that the power of
NM-RV is still the highest out of all of the sixmethods.
Besides, as expected, the power in the situation of 20
causal variants is higher than in the situation of 12 cau-
sal variants when the number of rare variantsm = 40 is
considered; the power in the situation of 20 rare var-
iants is higher than in the situation of 40 rare variants
when the number of causal variants is 12, that is to say
the proportion of causal variants is an important fac-
tor that affects power.

All in all, through comparing Type I errors and
powers of the six methods, we validate that our pro-
posed NM-RV is effective, powerful and robust; it
does not matter if the genotype data m= 40 are ran-
domly generated or are based on real data. When
the multivariate traits are all ordinal, the advantages
of the proposed method are more obvious. In fact,
the main reason is that the proposed method suffi-
ciently mines the joint information of multiple traits
(even if partially or approximately true information),
which helps to enhance the power of identifying asso-
ciations between rare variants and multiple traits.

Table 7. Power comparisons of the six methods for a mixture of binary and ordinal traits in simulation 1.

Number of RVs Test β1 = 0·8 β2 = 0·4 β1 = 0·6 β2 = 0·3 β1 = 0·4β1 = 0·2 β1 = 0·2 β2 = 0·1

α= 0·01 20 (12 causal) NM-RV 0·794 0·468 0·181 0·029
SUM 0·392 0·229 0·087 0·020
CAST 0·369 0·220 0·084 0·018
SKAT 0·144 0·047 0·008 0·002
SKAT-O 0·434 0·220 0·069 0·013
WSS 0·382 0·222 0·086 0·019

40 (20 causal) NM-RV 0·912 0·674 0·273 0·058
SUM 0·529 0·341 0·140 0·026
CAST 0·458 0·274 0·115 0·022
SKAT 0·216 0·074 0·016 0·005
SKAT-O 0·631 0·347 0·121 0·023
WSS 0·501 0·322 0·132 0·022

α= 0·05 20 (12 causal) NM-RV 0·908 0·721 0·387 0·139
SUM 0·562 0·403 0·215 0·072
CAST 0·535 0·368 0·184 0·061
SKAT 0·351 0·157 0·053 0·015
SKAT-O 0·654 0·406 0·186 0·049
WSS 0·558 0·391 0·198 0·070

40 (20 causal) NM-RV 0·968 0·864 0·542 0·164
SUM 0·684 0·520 0·291 0·094
CAST 0·615 0·441 0·233 0·076
SKAT 0·446 0·202 0·067 0·023
SKAT-O 0·792 0·558 0·265 0·071
WSS 0·668 0·488 0·267 0·088
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4. Discussion

With the innovation and development of biotechnol-
ogy, it is now possible to obtain a huge amount of
genetic data, among which is a massive amount of
rare variant data, which impels us to find new statistic-
al methods to be used in genetic association studies.
Since comorbidity is common in mental illness and be-
haviour disorders, researchers are beginning to study
the associations between multiple traits and genetic
loci. Zhang et al. (2010 b) proposed a method to test
for associations between multiple traits and marker
loci based on generalized Kendall’s τ. Referring to

the method of Zhang et al. (2010 b), we proposed a non-
parametric approach to test forassociationsbetween rare
variants and multivariate phenotypes. The reason that
we adopted a nonparametric statistical method was to
avoid problems caused by parameter models, such as
overfitting and strong collinearity. The more parameters
used in the model, the more stable the model will be;
however, it will bring difficulties to parameter estimation
and lead to greater calculation burden. In the simulation
studies, we used both simulated genotype data and real
genotype data fromGAW17, among which we analysed
the TG and COL6A3 genes. The simulation results

Table 8. Power comparisons of the six methods for two ordinal traits in simulation 1.

Number of RVs Test β1 = 0·8 β2 = 0·4 β1 = 0·6 β1 = 0·3 β1 = 0·4 β2 = 0·2 β1 = 0·2 β2 = 0·1

α= 0·01 20 (12 causal) NM-RV 0·877 0·648 0·272 0·062
SUM 0·439 0·281 0·106 0·030
CAST 0·403 0·237 0·097 0·023
SKAT 0·401 0·200 0·055 0·008
SKAT-O 0·564 0·359 0·138 0·026
WSS 0·434 0·264 0·109 0·032

40 (20 causal) NM-RV 0·973 0·813 0·420 0·074
SUM 0·564 0·394 0·171 0·033
CAST 0·481 0·311 0·124 0·021
SKAT 0·501 0·275 0·064 0·010
SKAT-O 0·704 0·499 0·221 0·029
WSS 0·537 0·369 0·152 0·027

α= 0·05 20 (12 causal) NM-RV 0·957 0·806 0·509 0·179
SUM 0·586 0·436 0·236 0·078
CAST 0·552 0·387 0·193 0·069
SKAT 0·554 0·345 0·146 0·039
SKAT-O 0·718 0·516 0·275 0·082
WSS 0·577 0·421 0·217 0·079

40 (20 causal) NM-RV 0·993 0·934 0·660 0·200
SUM 0·698 0·546 0·324 0·100
CAST 0·631 0·462 0·250 0·076
SKAT 0·634 0·432 0·170 0·035
SKAT-O 0·818 0·642 0·369 0·097
WSS 0·681 0·517 0·300 0·089

Table 9. Power comparisons of the six methods in the association studies of the TG gene and a mixture of binary and
ordinal traits at α = 0·05 in simulation 2.

Number of RVs Test β1 = 0·8 β2 = 0·4 β1 = 0·6 β2 = 0·3 β1 = 0·4 β2 = 0·2 β1 = 0·2 β2 = 0·1

α= 0·05 20 (12 causal) NM-RV 0·819 0·568 0·292 0·109
SUM 0·520 0·352 0·171 0·060
CAST 0·449 0·280 0·127 0·042
SKAT 0·286 0·129 0·058 0·030
SKAT-O 0·568 0·332 0·138 0·047
WSS 0·479 0·299 0·139 0·048

40 (20 causal) NM-RV 0·888 0·688 0·356 0·116
SUM 0·564 0·389 0·180 0·055
CAST 0·555 0·377 0·160 0·050
SKAT 0·315 0·151 0·050 0·022
SKAT-O 0·642 0·396 0·162 0·046
WSS 0·564 0·391 0·180 0·053
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suggested that our proposed method outperforms the
existingmethods whenmultiple traits are analysed joint-
ly, especially for ordinal traits.

In our method, we first defined a new kernel func-
tion to measure the difference of multiple rare variants
between individual pairs. Then we constructed a
U-statistic. By calculating the conditional expectation
and variance of the U-statistic under the condition of
traits, we finally proposed an association test statistic
W, which has an asymptotic Chi-square distribution.
Therefore we can easily calculate p-values in the simu-
lations based on the asymptotic distribution, one ad-
vantage of which is the saving of time.

Meanwhile, our method can be easily extended to
analyse family-based data, as well as to consider
cases with covariates such as gender, age and environ-
mental factors. In this article, we assume that all rare
variant loci that we considered are independent and

each locus has equal weight in the kernel function K
(Gi, Gj). In fact, we can also consider how to add a
suitable weight ωl to the kernel function K(Gi, Gj) to
better discriminate each locus, so that the improved
association test statistic W based on the new kernel
function K Gi,Gj

( ) = ∑m
l=1 ωl Kl Gil,Gjl

( )
may gain

higher power in the association test between rare var-
iants and multiple traits. The weighted idea in Madsen
& Browning (2009) may be a better reference for us to
use when defining the weight ωl. Of course, how to
choose an optimal weight ωl is one of the issues we
will continue to consider.

Although the simulation results indicated that our
method is better than other existing methods when
analysing multiple traits, the proposed method still
has some shortcomings. A limitation of our proposed
test is that it may lose power when all rare variants
influence traits in different directions. Besides, in this

Table 11. Power comparisons of the six methods in the association studies of the COL6A3 gene and a mixture of
binary and ordinal traits at α= 0·05 in simulation 2.

Number of RVs Test β1 = 0·8 β2 = 0·4 β1 = 0·6 β2 = 0·3 β1 = 0·4 β2 = 0·2 β1 = 0·2 β2 = 0·1

α= 0·05 20 (12 causal) NM-RV 0·877 0·651 0·348 0·108
SUM 0·521 0·344 0·166 0·046
CAST 0·548 0·355 0·166 0·049
SKAT 0·211 0·076 0·034 0·017
SKAT-O 0·567 0·342 0·142 0·038
WSS 0·549 0·362 0·176 0·058

40 (12 causal) NM-RV 0·465 0·315 0·178 0·088
SUM 0·267 0·177 0·088 0·043
CAST 0·203 0·124 0·060 0·031
SKAT 0·163 0·080 0·038 0·023
SKAT-O 0·298 0·170 0·083 0·036
WSS 0·218 0·140 0·070 0·040

40 (20 causal) NM-RV 0·901 0·683 0·367 0·141
SUM 0·557 0·385 0·202 0·068
CAST 0·430 0·266 0·129 0·043
SKAT 0·244 0·112 0·053 0·024
SKAT-O 0·613 0·387 0·178 0·054
WSS 0·456 0·303 0·151 0·054

Table 10. Power comparisons of the six methods in the association studies of the TG gene and two ordinal traits at
α = 0·05 in simulation 2.

Number of RVs Test β1 = 0·8 β2 = 0·4 β1 = 0·6 β2 = 0·3 β1 = 0·4 β2 = 0·2 β1 = 0·2 β2 = 0·1

α= 0·05 20 (12 causal) NM-RV 0·934 0·735 0·394 0·131
SUM 0·543 0·366 0·164 0·051
CAST 0·479 0·298 0·134 0·036
SKAT 0·533 0·309 0·137 0·050
SKAT-O 0·700 0·473 0·221 0·067
WSS 0·531 0·351 0·165 0·053

40 (20 causal) NM-RV 0·968 0·829 0·477 0·149
SUM 0·593 0·415 0·195 0·058
CAST 0·604 0·440 0·218 0·070
SKAT 0·547 0·336 0·126 0·037
SKAT-O 0·707 0·532 0·248 0·071
WSS 0·599 0·431 0·214 0·069
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article we did not consider the problem of population
stratification and the interactions among genes. We
will carry out further investigations and develop new
methods to deal with these issues in future work.

Appendix 1

The simplification of the proposed U-statistic
According to the definition of the proposed

U-statistic, and further replacing the expression of
the kernel function Kl(Gil, Gjl) in the statistic, we have

U = n

2

( )−1 ∑
i,j

Fij

∑m
l=1

Kl Gil,Gjl
( )

= 2
n n− 1( )

∑m
l=1

∑
i,j

FijKl Gil,Gjl
( )

= 2
n n− 1( )

∑m
l=1

∑
i,j

Fij log
nGil

nG jl

( )

= 2
n n− 1( )

∑m
l=1

∑
i,j

Fij log nGil

( )− log nGjl

( )( )

= 2
n n− 1( )

∑m
l=1

∑n
i=1

log nGil

( )
∑n
j=1

Fij. Since Fij = −F ji and Fii = 0
( )

.

Let Fi = 1
n

∑n
j=1

Fij , then

U = 2
n− 1( )

∑m
l=1

∑n
i=1

�Filog nGil

( )
.

Further let

Ul = 2
n− 1

∑n
i=1

�Fi log nGil

( )
,

so, the U-statistic can be expressed as

U =
∑m
l=1

Ul .

Appendix 2

The calculating process of E(U|Y) and Var(U|Y) under
the null hypothesis

Because the rare variant loci are independent, it is
easy to obtain

E U |Y( ) = 2
n− 1

∑n
i=1

�Fi

∑m
l=1

E log nGil

( )|Y( )
,

Var U |Y( ) = 2
n− 1

( )2 ∑n
i=1

�Fi �F
′
i

∑m
l=1

Var log nGil

( )|Y( )
.

So we only need to calculate E log nGil

( )|Y( )
and

Var log nGil

( )|Y( )
. Under the null hypothesis and the

assumption of Hardy–Weinberg equilibrium law for
each locus, we have

E log nGil

( )|Y( ) = P Gil = 0( ) log n0 + P Gil = 1( )logn1
+ P Gil = 2( )logn2

= 1− pl
( )2

log n0 + 2 pl 1− pl
( )

logn1 + pl2logn2

= logn+ 2 1− pl
( )2

log 1− pl
( )

,

+ 2 pl 1− pl
( )

log 2 pl 1− pl
( )[ ]+ 2 pl2 log pl

Table 12. Power comparisons of the six methods in the association studies of the COL6A3 gene and two ordinal traits
at α= 0·05 in simulation 2.

Number of RVs Test β1 = 0·8 β2 = 0·4 β1 = 0·6 β2 = 0·3 β1 = 0·4 β2 = 0·2 β1 = 0·2 β2 = 0·1

α= 0·05 20 (12 causal) NM-RV 0·963 0·787 0·431 0·152
SUM 0·556 0·397 0·188 0·052
CAST 0·599 0·431 0·208 0·066
SKAT 0·476 0·267 0·107 0·035
SKAT-O 0·663 0·474 0·220 0·063
WSS 0·586 0·420 0·205 0·067

40 (12 causal) NM-RV 0·652 0·412 0·227 0·100
SUM 0·341 0·221 0·119 0·059
CAST 0·269 0·164 0·084 0·037
SKAT 0·411 0·236 0·092 0·038
SKAT-O 0·485 0·296 0·135 0·052
WSS 0·275 0·173 0·087 0·040

40 (20 causal) NM-RV 0·977 0·832 0·496 0·167
SUM 0·608 0·451 0·248 0·085
CAST 0·501 0·337 0·168 0·051
SKAT 0·533 0·323 0·136 0·044
SKAT-O 0·708 0·528 0·269 0·078
WSS 0·507 0·348 0·175 0·057
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where nGil represents the total number of observed
genotype Gil ( = 0, 1, 2) for all individuals at variant
l. Similarly,

Var log nGil

( )|Y( )
= E log2 nGil

( )|Y( )− E log nGil

( )|Y( )[ ]2
= log 1− pl

( )[ ]2
4 1− pl
( )2

1− 1− pl
( )2( )[ ]

+ log 2 pl 1− pl
( )[ ]2

2 pl 1− pl
( )

1− 2 pl 1− pl
( )[ ][ ]

+ log pl
( )2

4 pl2 1− pl2
( )[ ]

− 8 pl 1− pl
( )3

log 1− pl
( ) · log2 pl 1− pl

( )
− 8 pl2 1− pl

( )2
log pl · log 1− pl

( )
− 8 pl3 1− pl

( )
log pl · log2 pl 1− pl

( )

,

where pl is the MAF of the lth rare variant.
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