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Particle–wall interactions have broad biological and technological applications. In
particular, some artificial microswimmers capitalize on their translation–rotation coupling
near a wall to generate directed propulsion. Emerging biomedical applications of
these microswimmers in complex biological fluids prompt questions on the impact of
non-Newtonian rheology on their propulsion. In this work, we report some intriguing
effects of shear-thinning rheology, a ubiquitous non-Newtonian behaviour of biological
fluids, on the translation–rotation coupling of a particle near a wall. One particularly
interesting feature revealed here is that the wall-induced translation by rotation can occur
in a direction opposite to what might be intuitively expected for an object rolling on a solid
substrate. We elucidate the underlying physical mechanism and discuss its implications on
the design of micromachines and bacterial motion near walls in complex fluids.
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1. Introduction

The motion of microparticles near boundaries is of broad interest because the proximity
of boundaries is all but unavoidable in most real situations. Particle–wall interactions can
have important biological and technological implications such as the segregation of blood
cells and platelets in vessels and the techniques of particle manipulation in microfluidic
channels. More recently, the locomotion of bacteria near surfaces and its connection
to biofilm formation have received considerable attention (Lauga et al. 2006; Lemelle
et al. 2010; Di Leonardo et al. 2011; Morse et al. 2013). In the development of artificial
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microswimmers, it is also crucial to account for the presence of boundaries, which may
lead to propulsion enhancement or hindrance, and trapping or guiding of these swimmers
(Spagnolie & Lauga 2012; Takagi et al. 2014; Elgeti & Gompper 2016). In particular,
a class of artificial microswimmers, known as surface walkers or microrollers, exploit
their interactions with nearby surfaces to generate directed propulsion (Tierno et al. 2008;
Sing et al. 2010; Driscoll et al. 2017). These microswimmers are driven into rotation
typically by external magnetic fields. Symmetry breaking in the proximity of a boundary
rectifies their rotation into translation, analogous to rolling of a wheel on a solid surface.
The simplicity and effectiveness of these microrollers demonstrate vast opportunities
for applications in targeted therapeutics and microsurgery (Alapan et al. 2020;
Ahmed et al. 2021).

Particle–wall interactions at low Reynolds numbers are well studied in a Newtonian
fluid. Emerging biomedical applications of micromachines in complex biological fluids,
however, prompt new questions on the impact of non-Newtonian rheology on these
interactions (Elfring & Lauga 2015; Sznitman & Arratia 2015). In particular, biological
fluids such as blood and mucus are typically shear-thinning fluids (Cho & Kensey 1991;
Gijsen, van de Vosse & Janssen 1999; Li et al. 2008), which lose viscosity with applied
strain rates due to changes in the fluid microstructure. Recent studies have uncovered
the profound effects of shear-thinning rheology on locomotion (Montenegro-Johnson,
Smith & Loghin 2013; Vélez-Cordero & Lauga 2013; Datt et al. 2015; Li & Ardekani
2015; Montenegro-Johnson 2017), impacting both living micro-organisms and artificial
swimmers (Gagnon, Keim & Arratia 2014; Gagnon & Arratia 2016; Park et al. 2016;
Gómez et al. 2017; Demir et al. 2020; Qu & Breuer 2020). The non-Newtonian fluid
behaviour also enables locomotion otherwise impossible in a Newtonian fluid (Qiu et al.
2014; Han et al. 2020).

In this work, we report some intriguing effects of shear-thinning rheology on the
translation–rotation coupling of a particle near a wall. Such coupling is relevant to not
only the propulsion of microrollers but also the near-wall dynamics of swimming bacteria
in complex fluids. One particularly interesting feature revealed in this work is that the
wall-induced translation by a rotating particle can occur in a direction opposite to what
might be intuitively expected in a Newtonian fluid. We elucidate the physical mechanism
underlying the counterintuitive phenomena and discuss its implications on the design
and control of micromachines in complex biological fluids. Our results also suggest a
plausible mechanism for the observed directional change in circular motion of swimming
bacteria near a solid wall in complex fluids. In addition, the features reported may inspire
novel techniques for particle manipulation in microfluidics with non-Newtonian flows and
microrheological measurements.

2. Theoretical framework

Classical results of wall-induced translation of a rotating object were obtained in a
Newtonian fluid in the Stokes regime. For the three-dimensional (3-D) Stokes flow around
a rotating sphere near a plane wall (Dean & O’Neill 1963; O’Neill 1964, 1967), the sphere
translates parallel to the wall in a direction consistent with the rolling of a sphere along
the wall, without any velocity component normal to the wall, U = Uex; see notation and
set-up in figure 1. The direction of induced translation can be understood as a consequence
of the fact that the rotating sphere causes higher velocity gradients in the fluid gap between
the sphere and the wall and hence a larger hydrodynamic force on the side of the sphere
closer to the wall than that on the other side. The force imbalance thus drives the sphere
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A rotating particle near a wall in a shear-thinning fluid
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Figure 1. Wall-induced translation of a rotating cylinder or sphere of radius a at a distance h above a plane
wall. Upon a prescribed rotational velocity Ω = −Ωez, the particle translates parallel to the wall with an
unknown velocity U = Uex. In this work, the case U > 0 (U < 0) is referred to as the forward (backward)
mode.

to translate in a direction expected for a rolling sphere on a solid substrate via friction
asymmetry.

Surprisingly, a later two-dimensional (2-D) analysis by Jeffrey & Onishi (1981) found
that the 2-D Stokes flow around a rotating cylinder near the wall yields exactly zero
induced translation, despite the broken symmetry due to the wall. Here, we revisit
these classical results on translation–rotation coupling near a wall and examine how
shear-thinning rheology modifies the coupling in both the 2-D and 3-D cases. In particular,
the fact that there is no induced translation in the Newtonian 2-D case allows us to attribute
any translation in a shear-thinning fluid in two dimensions solely to the non-Newtonian
rheology.

2.1. Asymptotic analysis
We begin our analysis with the momentum and continuity equations for an incompressible
flow in the low-Reynolds-number limit,

∇ · σ = 0, ∇ · u = 0, (2.1a,b)

where u is the fluid velocity, σ = −pI + τ is the stress tensor, and p and τ are the pressure
and the deviatoric stress, respectively. To capture the shear-thinning behaviour, we use the
Carreau constitutive equation, which was shown to describe effectively the viscosity η of
different biological fluids (Bird, Armstrong & Hassager 1987; Vélez-Cordero & Lauga
2013),

η = η∞ + (η0 − η∞)(1 + λ2|γ̇ |2)(n−1)/2. (2.2)

Here η0 and η∞ represent, respectively, the zero- and infinite-shear-rate viscosities, and the
strain-rate tensor γ̇ = ∇u + (∇u)T has a magnitude |γ̇ | = (γ̇ijγ̇ij/2)1/2. The power-law
index n < 1 characterizes the degree of shear thinning, and 1/λ characterizes the critical
shear rate at which the non-Newtonian behaviour becomes significant. Henceforth, we
use dimensionless variables with time, length and stress scaled by 1/Ω , a and η0Ω ,
respectively. The dimensionless nonlinear constitutive equation is therefore given by

τ = [β + (1 − β)(1 + Cu2|γ̇ |2)(n−1)/2]γ̇ , (2.3)

where the Carreau number, Cu = λΩ , compares the rotational rate to the critical shear
rate of the shear-thinning fluid, and β = η∞/η0 ≤ 1 is the viscosity ratio.

We consider the weakly nonlinear (non-Newtonian) limit by expanding

{u, γ̇ , p, σ , U} = {u0, γ̇ 0, p0, σ 0, U0} + ε{u1, γ̇ 1, p1, σ 1, U1} + O(ε2), (2.4)

where ε = 1 − β � 1. The zeroth-order solution corresponds to the Newtonian flow,
satisfying ∇ · σ 0 = 0 and ∇ · u0 = 0, where σ 0 = −p0I + γ̇ 0 is the Newtonian
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fluid stress. At O(ε), the momentum and continuity equations are given by

∇ · σ 1 = 0, ∇ · u1 = 0, (2.5a,b)

where the first non-Newtonian correction to the fluid stress reads

σ 1 = −p1I + γ̇ 1 + A (2.6)

and
A = [−1 + (1 + Cu2|γ̇0|2)(n−1)/2]γ̇ 0. (2.7)

The goal here is to obtain the first non-Newtonian correction to the induced translational
velocity U1. We utilize the Lorentz reciprocal theorem (Lauga 2014; Elfring 2017; Masoud
& Stone 2019) to calculate the velocity U1, bypassing calculations of the velocity and
pressure fields at O(ε). As a remark, the reciprocal theorem is particularly useful for
determining quantities such as the velocity of a particle and the force and torque on a
particle. However, this integral approach does not provide detailed information such as the
distribution of viscosity and the distribution of surface traction on a particle, which require
calculations of the pressure and velocity fields.

2.2. The reciprocal theorem
To apply the reciprocal theorem, we consider an auxiliary Stokes flow problem, whose
flow field (û) and fluid stress (σ̂ ) satisfy

∇ · σ̂ = 0, ∇ · û = 0, (2.8a,b)

where
σ̂ = −p̂I + ˆ̇γ , (2.9)

and p̂ and ˆ̇γ = ∇û + (∇û)T denote, respectively, the pressure and the strain-rate tensor in
the auxiliary flow problem.

Taking the inner product of the momentum equation in (2.5a) with û and the inner
product of the momentum equation in (2.8a) with u1, we obtain the relation

û · ∇ · σ 1 = u1 · ∇ · σ̂ . (2.10)

We then integrate (2.10) over the fluid volume V and employ the divergence theorem to
obtain∫

S
n · σ̂ · u1 dS −

∫
S

n · σ 1 · û dS =
∫
V

σ 1 : ∇û dV −
∫
V

σ̂ : ∇u1 dV, (2.11)

where n is the unit normal vector on surface S .
By substituting the fluid stress in the first-order problem given by (2.6) and that in the

auxiliary flow problem given by (2.9) into the integrands on the right-hand side of (2.11),
one can show that σ 1 : ∇û − σ̂ : ∇u1 = A : ∇û due to the continuity equations (∇ ·
û = ∇ · u1 = 0) and symmetry (γ̇ 1 : ∇û = ˆ̇γ : ∇u1). Moreover, suppose the particle
in the auxiliary problem translates with velocity Û without rotation, the integral relation
(2.11) then becomes

F̂ · U1 − F 1 · Û =
∫
V

A : ∇û dV, (2.12)

where F̂ = ∫
S n · σ̂ dS and F 1 = ∫

S n · σ 1 dS denote, respectively, the force on the
particle in the auxiliary and first-order problems. By enforcing the force-free condition
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(F 1 = ∫
S n · σ 1 dS = 0), one obtains the non-Newtonian correction to the induced

translational velocity from the reciprocal theorem as

F̂ · U1 =
∫
V

A : ∇û dV . (2.13)

Here, only known Newtonian solutions in the zeroth-order (u0) and auxiliary flow (û)
problems are required to determine the non-Newtonian correction to the speed, U1. We
apply this integral theorem in 2-D and 3-D set-ups and discuss the results in §§ 3.1 and
3.2, respectively.

2.3. Numerical solution
To compare with the results from the asymptotic analysis, we also performed full
numerical simulations of the momentum and continuity equations (2.1a,b) together with
the Carreau constitutive equation (2.3) using the finite element method implemented in
the COMSOL Multiphysics environment. A 2-D rectangular computational domain of size
1000a × 500a (in the x- and y-directions, respectively) is used to simulate the dynamics
of a rotating cylinder near a wall. For a rotating sphere near a wall, we take advantage
of the symmetry about the x–y plane through the centre of the sphere and use a 3-D
computational domain consisting of a rectangular prism of size 250a × (125a + h) ×
125a (in the x-, y- and z-directions, respectively) to simulate only half of the full domain.
A known angular velocity together with the unknown translational velocity are prescribed
on the particle surface as the boundary condition.

The momentum and continuity equations are solved simultaneously with the force-free
condition to determine the induced translational velocity in different directions. Here,
P2 + P1 (second order for fluid velocity and first order for pressure) triangular/tetrahedral
mesh elements are used for the 2-D/3-D simulations, with local mesh refinement near the
rotating cylinder/sphere. The degree of freedom is of the order of (1.2–2) × 106 for the
2-D simulations and (3.5–6) × 106 for the 3-D simulations, depending on the distance
of the cylinder/sphere from the wall. We use the Multifrontal Massively Parallel Sparse
(MUMPS) direct solver for all simulations. In addition to comparing with the results from
the asymptotic analysis, we validated the numerical implementation against analytical
solutions in a Newtonian fluid in previous works (Dean & O’Neill 1963; O’Neill 1964,
1967; Jeffrey & Onishi 1981).

3. Results and discussion

3.1. Two-dimensional problem
First, we revisit the surprising result that a rotating cylinder does not translate near a
wall in the Stokes limit (Jeffrey & Onishi 1981), U0 = 0, and calculate the leading-order
translational velocity, εU1, induced by shear-thinning rheology. We employ the result
from the integral theorem (2.13) with two known exact Newtonian solutions by Jeffrey
& Onishi (1981): the Stokes flow around a cylinder rotating near a plane wall, u0, and
the Stokes flow around a cylinder translating parallel to wall in the auxiliary problem, û.
Substituting these flows into (2.13) and evaluating the integral numerically, we obtain the
leading-order translational velocity parallel to the wall, U = Uex ∼ εU1ex, as shown in
figure 2(a). The asymptotic results (lines) agree well with results by numerical simulations
(symbols) at different relative heights above the wall. Figure 2(b) compares the asymptotic
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Figure 2. Wall-induced translation of a rotating cylinder in a shear-thinning fluid. (a) The induced translational
velocity U (scaled by aΩ) as a function of the Carreau number Cu for different distances h (scaled by a)
from the wall. Asymptotic results via the reciprocal theorem (lines) agree well with results by full numerical
simulations (symbols). The induced translation occurs in the backward mode (U < 0) in a shear-thinning fluid,
opposite to what might be intuitively expected for an object rolling on a solid substrate. Here, β = 0.9 and
n = 0.25. (b) The translational velocity U as a function of ε = 1 − β with a distance h = 1.5 from the wall.
Inset: U as a function of h with a viscosity ratio β = 0.5. Here, n = 0.25 and Cu = 1.

and numerical results for a full range of ε = 1 − β; the asymptotic result is still effective
in capturing the qualitative behaviour with an intermediate value of β (inset).

From these results, first, unlike the Newtonian case, the shear-thinning rheology gives
rise to a parallel (to the wall) translation of a rotating cylinder. Second, similar to the
Newtonian case, numerical simulations found negligibly small induced translation normal
to the wall, consistent with the asymptotic result via the reciprocal theorem using the
Stokes flow around a cylinder translating normal to the wall (Jeffrey & Onishi 1981)
as the auxiliary problem. The absence of induced translation normal to the wall in a
shear-thinning fluid is in contrast to the scenarios where other types of nonlinearities
such as fluid elasticity, wall elasticity and inertial effects are present (Leal 1980; Wang
& Joseph 2003; Daddi-Moussa-Ider et al. 2018b; Fang et al. 2020). Third, our results
reveal an interesting feature that the induced translation occurs in the negative x-direction
(referred to as the backward mode in this work), opposite to what might be intuitively
expected for an object rolling along a solid surface.

To develop some understanding of these results, we examine the viscosity distribution
around the rotating cylinder, when it is not free to translate. Under this set-up we analyse
the hydrodynamic force on the rotating cylinder and probe any resulting force imbalance
that drives a translation. As a reference, in an unbounded domain, the rotational motion
of the cylinder reduces the fluid viscosity symmetrically around the cylinder (figure 3(a),
top panel). The presence of the wall breaks the up–down symmetry and causes higher
velocity gradients in the fluid gap below the cylinder than in the fluid above it. When the
fluid is shear-thinning, although the viscosity around the cylinder decreases generally, the
viscosity in the fluid gap is reduced to a greater extent due to higher velocity gradients,
as shown in the bottom panel of figure 3(a). The less viscous fluid below the cylinder
therefore leads to a weaker hydrodynamic force on the lower half of the cylinder (F�;
acting to the right) compared with the force on the upper half (Fu; acting to the left), as
shown in figure 3(b) for different Cu. The force imbalance (F� < Fu; net force acting to
the left) thus drives the rotating cylinder to translate to the left in the backward mode.
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Figure 3. (a) Viscosity map (η/η0) around a rotating cylinder in an unbounded (top panel) and wall-bounded
(bottom panel) domains, when the cylinder is not free to translate. In an unbounded domain, the hydrodynamic
force on the upper (open triangles, Fu) and lower (filled triangles, F�) half of the cylinder are equal in magnitude
in a shear-thinning fluid as shown in (b). The combined effect of shear-thinning viscosity and symmetry
breaking by the wall induces a weaker hydrodynamic force on the lower half of the cylinder (filled circles) than
that on the upper half (open circles) for different values of Cu. The viscosity maps shown in (a) correspond to
the case Cu = 0.8, around which the maximum translational speed occurs for a rotating cylinder at a distance
h = 1.1 from the wall. In (b), forces are scaled by η0a2Ω . The force imbalance on the cylinder drives it to
translate in the backward mode. Inset: the force on the upper (open circles) and lower (filled circles) half of the
cylinder as a function of 1 − β. Here, in both panels, β = 0.9 (except for the inset) and n = 0.25.

We note that the broken spatial symmetry due to the wall alone is insufficient to
generate the asymmetric forces in a Newtonian fluid (F� = Fu when Cu = 0). The
emergence of induced translation in two dimensions thus requires the combined presence
of shear-thinning effect and spatial symmetry breaking. At an exceedingly large Cu,
the fluid is largely shear-thinned and the rotating cylinder is surrounded by a virtually
Newtonian fluid with the infinite-shear-rate viscosity, η∞; the asymmetry in force therefore
decays, inducing vanishingly small translation when Cu � 1.

3.2. Three-dimensional problem
In contrast to the 2-D case, in three dimensions a rotating sphere translates parallel to the
wall even in a Newtonian fluid, U0 = U0ex with U0 > 0, in a direction consistent with the
rolling of a sphere along the wall (the forward mode). The Newtonian translational velocity
can be obtained based on analytical results obtained by O’Neill (1964, 1967) and Dean &
O’Neill (1963). Here, we determine how shear-thinning rheology impacts the wall-induced
translation of a rotating sphere.

Similar to the 2-D analysis, we obtain the non-Newtonian correction U1 = U1ex via the
reciprocal theorem (2.13) but with two different Newtonian solutions: we use the Stokes
flows around a sphere rotating (Dean & O’Neill 1963) and translating (O’Neill 1964,
1967) near a plane wall, respectively, for u0 and û in (2.13). In figure 4(a), the results
from the asymptotic analysis (lines) and numerical simulations (symbols) agree well in
the weakly non-Newtonian regime with a viscosity ratio β = 0.9. The induced translation
still occurs in the forward mode for varying Cu. The shear-thinning effect, which drives a
rotating cylinder to translate in the backward mode, acts only to reduce the translational
speed of a rotating sphere in the forward mode in this weakly nonlinear regime. We
attribute the speed reduction observed here to the same physical mechanism explained
in the 2-D case: compared with the Newtonian velocity (U0 > 0), the non-Newtonian

927 R2-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

77
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.775


Y. Chen, E. Demir, W. Gao, Y.-N. Young and O.S. Pak

10–3 10–1 101 103 105
0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1.0
–0.010

–0.005

0

0.005

0.010

0.015

Forward h = 1.1

h = 1.5

h = 2

U

Asymptotic

Numerical

h

U

1.0 1.5 2.0 2.5
0

0.01

0.02

0.03
(a) (b)

Cu ε = 1 – β
Figure 4. Wall-induced translation of a rotating sphere in a shear-thinning fluid. (a) The induced translational
velocity U (scaled by aΩ) as a function of Cu for different distances h (scaled by a) from the wall. The rotating
sphere translates in the forward mode (U > 0) in this weakly non-Newtonian regime with a viscosity ratio
β = 0.9. Here, n = 0.25. (b) The translational velocity U as a function of ε = 1 − β with a distance h = 1.5
from the wall. Asymptotic and numerical results agree well when ε is relatively small. Inset: U as a function of
h with a viscosity ratio β = 0.5. Here, n = 0.25 and Cu = 1.

contribution acts in the opposite direction (εU1 < 0) but with a smaller magnitude in
this weakly non-Newtonian regime (ε � 1), causing only a speed reduction without
directional change. This leads to the hypothesis that a sufficiently strong shear-thinning
effect could offset the Newtonian speed and ultimately drive the rotating sphere to translate
in the backward mode similar to the 2-D case. Both asymptotic and numerical results in
figure 4(b) show that backward translation can indeed occur for larger values of ε.

We use numerical simulations to further probe the behaviour beyond the weakly
non-Newtonian regime in figure 5. As shown in figure 5(a), when the shear-thinning
effect is more substantial (β = 0.1), the rotating sphere can switch from translating in
the forward mode to the backward mode beyond a critical value of Cu, depending on
the height h above the wall. It is also noteworthy that the maximum backward speed
occurring at the optimal Cu can be comparable to (e.g. when h = 1.1) or even greater
than the forward speed in the Newtonian limit (e.g. when h = 1.5 and h = 2). When Cu
becomes exceedingly large, the Newtonian behaviour is recovered and the rotating sphere
returns to translate in the forward mode. Figure 5(b) indicates the direction of induced
translation for different values of Cu and β. We remark that, similar to the 2-D case, there
is no translation normal to the wall in both Newtonian and shear-thinning fluids.

Based on our results, we provide an estimate of the magnitude of translational speed
induced by this new mechanism in a typical experimental set-up with microrollers
(Driscoll et al. 2017). Consider a spherical microroller of radius a = 0.66 µm rotating with
Ω = 100 s−1 at a height h = 1.0 µm above the wall. With a relative height of h/a ≈ 1.5,
from figure 5(a) we estimate a Newtonian (Cu = 0) forward translational speed, U/aΩ ≈
0.014 or U ≈ 1 µm s−1, consistent with the order of magnitude in previous measurements
in a Newtonian fluid (Driscoll et al. 2017). The corresponding speed in a shear-thinning
fluid depends on specific fluid properties. The shear-thinning time scale λ of biological
fluids can range from a tenth of a second to seconds for blood (Cho & Kensey 1991;
Gijsen et al. 1999) or higher for different mucus (Li et al. 2008; Vélez-Cordero & Lauga
2013); dilute aqueous solutions of xanthan gum (100–1000 p.p.m.) have λ of the order of
seconds (Gagnon et al. 2014). Taking λ = 1 s, we have Cu = λΩ = 100, which leads to a
backward propulsion velocity, U/aΩ ≈ −0.025 or U ≈ −1.65 µm s−1 (even faster than
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Figure 5. (a) The induced translational velocity U of a rotating sphere as a function of Cu for different
distances h, when the shear-thinning effect is more substantial with a viscosity ratio β = 0.1. The rotating
sphere can translate either forward (U > 0) or backward (U < 0) depending on the value of Cu. (b) The
direction of induced translation (forward or backward) is indicated for different values of Cu and β for a
rotating sphere at a distance h = 1.5 from the wall. Here, n = 0.25.

the Newtonian speed) from figure 5(a). We therefore expect the backward speed to be
considerable and call for subsequent experimental investigations.

We also remark on the connection between the physical mechanism in the present work
and those underlying the peculiar motion of a rotating sphere near a plane fluid interface in
a Newtonian fluid (Lee, Chadwick & Leal 1979; Lee & Leal 1980). In the latter case, the
existence of a substantial slip velocity on the fluid interface acts to reduce the velocity
gradients and hence stresses on the side of the sphere closer to the interface. Such a
mechanism can also cause the rotating sphere to translate in the backward mode. In this
work we report a new mechanism of a distinct physical origin (non-Newtonian in nature)
that can cause a similar backward translation but without requiring the presence of a fluid
interface.

Finally, we suggest a potential implication of the current mechanism on the near-wall
motion of swimming bacteria. Swimmer–surface interactions are known to cause
clockwise circular motion of bacteria above a solid wall (Lauga et al. 2006) but
anticlockwise motion below a free surface (Lemelle et al. 2010; Di Leonardo et al. 2011);
more recently, anticlockwise motion was also observed in complex fluids and interfaces
(Lemelle et al. 2013; Morse et al. 2013; Lopez & Lauga 2014). In addition, sign reversal
in the self-mobilities and pair mobilities can occur for particles near elastic membranes
(Daddi-Moussa-Ider et al. 2018a), which was also shown to have interesting implications
on the direction of circular swimming (Daddi-Moussa-Ider et al. 2019).

The present work suggests another plausible mechanism that may change the direction
of circular motion: the modified translation–rotation coupling due to shear-thinning
rheology could, in principle, flip the direction of the wall-induced force couple
on the rotating flagella and the counter-rotating cell body, thereby causing also
anticlockwise circular motion even above a solid wall. Indeed, the bidirectionality of
the translation–rotation coupling and its dependence on Cu as shown in figure 5 allow
a bacterium (or a similar artificial microswimmer) to undergo circular motion in either
direction in a shear-thinning fluid by adjusting the rotational frequency. As a remark,
in addition to the direction of circular motion, the shear-thinning effect may affect the
bacterial swimming speed near a wall. Subsequent studies on the detailed near-wall
dynamics of swimming bacteria in a shear-thinning fluid and its connection to the
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measurement of bacterial motor torque (Giacché, Ishikawa & Yamaguchi 2010; Das &
Lauga 2018) could be interesting directions for future work.

4. Conclusion

In this work, we uncover a new physical mechanism that leads to somewhat
counterintuitive behaviours of a rotating particle near a wall. In two dimensions, the
shear-thinning effect causes a rotating cylinder always to translate in a direction opposite to
what might be intuitively expected for an object rolling on the wall. In three dimensions,
a rotating sphere may propel either forwards or backwards depending on its rotational
frequency and properties of the shear-thinning fluid. Knowledge here is crucial in guiding
the choice of rotational frequency of a microroller in order for it to propel effectively in the
desired direction when used as a micro-propelling device. This non-Newtonian behaviour
also enables more complex manoeuvres of microrollers such as bidirectional translation
by simply varying the rotational frequency, without switching the direction of the external
actuation field. We also discuss a potential implication of the modified translation–rotation
coupling on the circular motion of swimming bacteria near a wall in complex fluids.

Taken together, we expect the present work to not only open up possibilities of
more sophisticated manoeuvres of micromachines but also spur further interests in its
implications on cell locomotion as well as the control of collective motion of active
particles under confinement (Bricard et al. 2015; Driscoll et al. 2017) in complex fluids.
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