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Abstract

The Birkhoff orthogonality has been recently intensively studied in connection with the geometry
of Banach spaces and operator theory. The main aim of this paper is to characterize the Birkhoff

orthogonality in L(X; Y) under the assumption that K(X; Y) is an M-ideal in L(X; Y). Moreover,
we survey the known results, as well as giving some new and more general ones. Furthermore, we
characterize an approximate Birkhoff orthogonality in K(X; Y).
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1. Introduction

Throughout this paper K will denote either the real field, R, or the complex field, C.
Let X be a real or complex Banach space. If the norm is generated by an inner product
〈·|·〉, we consider the standard orthogonality relation: x⊥y :⇔ 〈y|x〉 = 0. In the general
case, we may consider the definition introduced by Birkhoff [6]:

x⊥By :⇔ ∀λ∈K ‖x‖ ≤ ‖x + λy‖.

Let H be a finite-dimensional Hilbert space. Let T, A ∈ L(H). Bhatia and Šemrl [4]
and Bhattacharyya and Grover [5] independently proved that T⊥BA if and only if there
exists x ∈ H with ‖x‖ = 1 such that ‖T x‖ = ‖T‖ and T x⊥Ax. Similar investigations
have been carried out by Grover for the space Mn(C) in [12].

Li and Schneider [15] gave examples of finite-dimensional normed linear spaces X
in which there exist operators T,A ∈ L(X) such that T⊥BA but there exists no x ∈ S (X)
such that ‖T x‖ = ‖T‖ and T x⊥BAx. Benı́tez et al. [3] proved that X is an inner product
space if and only if every T ∈ L(X) satisfies the Bhatia–Šemrl (B–Š) property (that is,
we say that T satisfies the (B–Š) property if for any A ∈ L(X), T⊥BA implies that there
exists x ∈ S (X) such that ‖T x‖ = ‖T‖ and T x⊥BAx).
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Remark 1.1. Let H be an infinite-dimensional Hilbert space. Bhatia and Šemrl [4,
Theorem 1.1 and Remark 3.1] also obtained the following characterization of the
Birkhoff orthogonality for Hilbert space operators: if A, B ∈ L(H), then A⊥BB if and
only if there exists a sequence (xn) of unit vectors ofH such that limn→∞ ‖Axn‖ = ‖A‖
and limn→∞〈Axn|Bxn〉 = 0.

Similar investigations have been carried out by Arambašić and Rajić for the C∗-
modules in [2].

In [20], it was proved that if T is a linear operator on a finite-dimensional real
normed linear space X such that T attains norm only on ±D, where D is a connected
closed subset of S (X), then T satisfies the Bhatia–Šemrl property. Let us quote a result
from [20].

Theorem 1.2 [20]. Let X be a finite-dimensional real normed linear space. Let
T ∈ L(X) be such that T attains its norm at only ±D, where D is a connected subset
of S (X). Then for A ∈ L(X) with T⊥BA there exists x ∈ D such that T x⊥BAx.

The above results motivate this paper. We will extend (in some sense) some of the
above results in the subsequent section. Our results generalize and complement those
in [4, 20] to some extent.

2. Preliminaries

Let X be a real or complex Banach space. The closed unit ball of X is denoted by
B(X). The unit sphere of X is denoted by S (X). Fix x ∈ X \ {0}. We consider the set
J(x) defined as follows:

J(x) := {x∗ ∈ X∗ : ‖x∗‖ = 1, x∗(x) = ‖x‖}.

It is easy to check that the set J(x) is convex and closed, and J(x) ⊂ S (X∗). By the
Hahn–Banach theorem, we get J(x) , ∅ for all x ∈ X \ {0}.

The aim of this paper is to present some results concerning the geometry of Banach
spaces in the case of the space of all linear, continuous mappings from a Banach
space X into a Banach space Y equipped with the operator norm (we will denote it by
L(X; Y), and L(X) if X = Y). The set of compact operators from X into Y is denoted
by K(X; Y), and K(X) := K(X; X).

2.1. M-ideals. Let X be a Banach space. Suppose that V is a closed subspace
of X. The subspace V is said to be an M-ideal in X if X∗ = V∗ ⊕1 V⊥, where
V⊥ := {x∗ ∈ X∗ : V ⊂ ker x∗}, and, if x∗ = x∗1 + x∗2 is the unique decomposition of x∗

in X∗, then ‖x∗‖ = ‖x∗1‖ + ‖x∗2‖.
The aim of this subsection is to recall when K(X; Y) is an M-ideal in L(X; Y).

Hennefeld [14] and Saatkamp [19] have proved that K(lp; lq) are M-ideals when
1 < p ≤ q < ∞. Note that if 1 ≤ q < p < ∞, then K(lp; lq) = L(lp; lq) [18]. Several
authors have observed thatK(X, c0) is an M-ideal for all Banach spaces X [16, 19, 21].
It is known that K(l1; l1) and K(l∞; l∞) are not M-ideals [21]. Many of these topics
can be found in [13].
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2.2. Extreme points. The main tool is a theorem due to Collins and Ruess [9], which
characterizes the extremal points of the unit ball in K(X; Y)∗ in terms of extremal
points of the closed unit balls in Y∗ and X∗ (see also [17]). By Ext V we will denote
the set of all extremal points of a given set V . By the Krein–Milman theorem, the
closed unit ball B(Y∗) has many extreme points. In particular, Ext B(K(X; Y)∗) , ∅.

Theorem 2.1 [9, 17]. If X and Y are Banach spaces, then

Ext B(K(X; Y)∗) = {x∗∗ ⊗ y∗ ∈ K(X; Y)∗ : x∗∗ ∈ Ext B(X∗∗), y∗ ∈ Ext B(Y∗)},

where x∗∗ ⊗ y∗ : K(X; Y)→ K, (x∗∗ ⊗ y∗)(T ) := x∗∗(T ∗y∗) for every T ∈ K(X; Y).

In particular, if X is a reflexive Banach space, then Ext B(X) , ∅. From Theorem 2.1,
we obtain the following result.

Corollary 2.2. If X is a reflexive Banach space, then

Ext B(K(X; Y)∗) = {y∗ ⊗ x ∈ K(X; Y)∗ : x ∈ Ext B(X), y∗ ∈ Ext B(Y∗)},

where y∗ ⊗ x : K(X; Y)→ K, (y∗ ⊗ x)(T ) := y∗(T x) for every T ∈ K(X; Y).

2.3. Norm derivatives. In a real normed linear space (X, ‖·‖), the Gateaux
derivatives of the norm are given for fixed x and y in X by the two expressions
limλ→0± ((‖x + λy‖ − ‖x‖)/λ). Note that instead of considering the above norm
derivatives, it is more convenient to introduce the functionals

ρ′±(x, y) := lim
λ→0±

‖x + λy‖2 − ‖x‖2

2λ
= ‖x‖ · lim

λ→0±

‖x + λy‖ − ‖x‖
λ

, x, y ∈ X,

because when the norm comes from an inner product 〈·|·〉, we obtain ρ′+(x, y) = 〈x|y〉 =

ρ′−(x, y), that is, functionals ρ′+, ρ′− are perfect generalizations of inner products.
Convexity of the norm yields that the above definition is meaningful. The mappings
ρ′+ and ρ′− are called the norm derivatives and their following properties, which will be
useful in the present note, can be found, for example, in [1, 11]:

(ND1) ∀x,y∈X ∀α∈R ρ
′
±(x, αx + y) = α‖x‖2 + ρ′±(x, y);

(ND2) ∀x,y∈X ∀α≥0 ρ
′
±(αx, y) = αρ′±(x, y) = ρ′±(x, αy);

(ND3) ∀x,y∈X ∀α<0 ρ
′
±(αx, y) = αρ′∓(x, y) = ρ′±(x, αy);

(ND4) ∀x,y∈X |ρ
′
±(x, y)| ≤ ‖x‖ · ‖y‖, ρ′±(x, x) = ‖x‖2;

(ND5) ρ′− ≤ ρ
′
+.

Moreover, mappings ρ′+, ρ
′
− are continuous with respect to the second variable,

but not necessarily with respect to the first one. In a real normed space X, we have
(cf. [1, 11])

x⊥By ⇔ ρ′−(x, y) ≤ 0 ≤ ρ′+(x, y). (2.1)

Now we define orthogonality relations related to ρ′± (cf. [1, 11]):

x⊥ρ+
y :⇔ ρ′+(x, y) = 0, x⊥ρ−y :⇔ ρ′−(x, y) = 0.

Let us recall the following result containing a representation of the norm derivatives
ρ′+, ρ′− in terms of supporting functionals.
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Theorem 2.3 [11]. Let X be a real normed space. Then one has the representation

ρ′−(x, y) = ‖x‖ · inf{x∗(y) : x∗ ∈ J(x)} and
ρ′+(x, y) = ‖x‖ · sup{x∗(y) : x∗ ∈ J(x)} for all x, y ∈ X.

So, in particular,

∀x∗ ∈ J(x) ρ′−(x, y) ≤ ‖x‖ · x∗(y) ≤ ρ′+(x, y). (2.2)

Furthermore, the following conditions are equivalent:

(a) X is smooth; (b) ρ′+(x, ·) is linear (for all x in X). (2.3)

Note that J(x) is a weak*-compact convex set and hence it follows from the Krein–
Milman theorem that J(x) is the closed convex hull of its extreme points. As a
consequence of the above results and by properties of J(x), one has an even more
general result.

Theorem 2.4. Let X be a real normed space. Then one has the representation

ρ′−(x, y) = ‖x‖ · inf{x∗(y) : x∗ ∈ Ext J(x)} and
ρ′+(x, y) = ‖x‖ · sup{x∗(y) : x∗ ∈ Ext J(x)} for all x, y ∈ X.

3. Norm derivatives in L(X; Y)

Norm derivatives are important in approximation theory and in the geometry of
Banach spaces. In this section we investigate the norm derivatives in the spaces of
bounded operators. Let MT denote the set of all unit vectors in S (X) at which T
attains norm, that is,

MT := {x ∈ S (X) : ‖T x‖ = ‖T‖}.

It will be shown that MT , ∅ under the additional assumption. This is important in
this work.

Lemma 3.1. Suppose that X is a reflexive Banach space. Suppose that K(X; Y) is
an M-ideal in L(X; Y). Let T ∈ L(X; Y), dist(T,K(X; Y)) < 1, and ‖T‖ = 1. Then
MT ∩ Ext B(X) , ∅ and

Ext J(T ) = {y∗ ⊗ x ∈ K(X; Y)∗ : x ∈ MT ∩ Ext B(X), y∗ ∈ Ext J(T x)}. (3.1)

Proof. By the Hahn–Banach theorem, J(T ) , ∅. Note that J(T ) is a weak*-compact
convex set and hence it is easy to see that Ext J(T ) , ∅. It is not hard to check that
J(T ) is an extremal subset of B(L(X; Y)∗). Hence, Ext J(T ) ⊂ Ext B(L(X; Y)∗). From
the assumption,

L(X; Y)∗ = K(X; Y)∗ ⊕1 K(X; Y)⊥,

whence
Ext J(T ) ⊂ Ext B(K(X; Y)∗ ⊕1 K(X; Y)⊥).
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This implies that extreme points of J(T ) are either extreme in B(K(X; Y)∗) or extreme
in B(K(X; Y)⊥). We want to show that Ext J(T ) ⊂ B(K(X; Y)∗).

Fix γ ∈ Ext J(T ). Now we show that γ ∈ B(K(X; Y)∗). Assume, contrary to
our claim, that γ ∈ B(K(X; Y)⊥). By the inequality dist(T,K(X; Y)) < 1, there is
K ∈ K(X; Y) such that ‖T − K‖ < 1. It follows that 1 = γ(T ) = γ(T ) − 0 = γ(T − K) ≤
‖T − K‖ < 1, which is a contradiction. So, we have γ ∈ B(K(X; Y)∗). We have shown
that Ext J(T ) ⊂ B(K(X; Y)∗). In particular,

Ext J(T ) ⊂ Ext B(K(X; Y)∗). (3.2)

Using this fact and Corollary 2.2,

Ext J(T ) ⊂ {y∗ ⊗ x ∈ K(X; Y)∗ : x ∈ Ext B(X), y∗ ∈ Ext B(Y∗)}. (3.3)

To prove (3.1), suppose that ϕ ∈ Ext J(T ). Then, by (3.3), ϕ = y∗ ⊗ x for some
x ∈ Ext B(X), y∗ ∈ Ext B(Y∗). It follows that ‖T‖ = ϕ(T ) = y∗(T x) ≤ ‖T x‖ ≤ ‖T‖,
whence x ∈ MT . In particular, MT ∩ Ext B(X) , ∅. It is easy to see that J(T x) is
an extremal subset of B(Y∗). Hence, Ext J(T x) ⊂ Ext B(Y∗), so y∗ ∈ Ext J(T x).

We prove the converse inclusion in (3.1). It is easy to show that

J(T ) ⊃ {y∗ ⊗ x ∈ K(X; Y)∗ : x ∈ MT ∩ Ext B(X), y∗ ∈ Ext J(T x)}. (3.4)

Since Ext J(T x) ⊂ Ext B(Y∗), it follows from Corollary 2.2 that

Ext B(K(X; Y)∗) ⊃ {y∗ ⊗ x ∈ K(X; Y)∗ : x ∈ MT ∩ Ext B(X), y∗ ∈ Ext J(T x)}. (3.5)

Combining (3.2), (3.4), and (3.5), we immediately get

Ext J(T ) ⊃ {y∗ ⊗ x ∈ K(X; Y)∗ : x ∈ MT ∩ Ext B(X), y∗ ∈ Ext J(T x)},

which concludes the proof. �

From now on we assume that the considered normed spaces are real.

Theorem 3.2. Suppose that X is a reflexive Banach space. Suppose that K(X; Y) is an
M-ideal in L(X; Y). Let T, A ∈ L(X; Y) and ‖T‖ = 1. Suppose that dist(T,K(X; Y))
< 1. Then the following condition holds:

ρ′+(T, A) = sup{ρ′+(T x, Ax) : x ∈ MT ∩ Ext B(X)}. (3.6)

Proof. Fix t ∈ (0, 1). Fix x ∈ MT ∩ Ext B(X) to obtain

‖T x + tAx‖2 − ‖T x‖2

2t
=
‖T x + tAx‖2 − ‖T‖2

2t
≤
‖T + tA‖2 − ‖T‖2

2t
. (3.7)

Since t was arbitrarily chosen from the interval (0, 1), letting t→ 0+ in (3.7),

ρ′+(T x, Ax) ≤ ρ′+(T, A).

Since x was arbitrarily chosen from the setMT ∩ Ext B(X),

sup{ρ′+(T x, Ax) : x ∈ MT ∩ Ext B(X)} ≤ ρ′+(T, A). (3.8)
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From Theorem 2.4 and Lemma 3.1,

ρ′+(T, A) = sup{ϕ(A) : ϕ ∈ Ext J(T )}
(3.1)
=

= sup{y∗(Ax) : x ∈ MT ∩ Ext B(X), y∗ ∈ Ext J(T x)}
(2.2)
≤ sup{ρ′+(T x, Ax) : x ∈ MT ∩ Ext B(X)}

(3.8)
≤ ρ′+(T, A).

So, we have ρ′+(T, A) = sup{ρ′+(T x, Ax) : x ∈ MT ∩ Ext B(X)}. �

Theorem 3.3. Suppose that X is a reflexive Banach space. Assume that Y is smooth.
Suppose that K(X; Y) is an M-ideal in L(X; Y). Let T, A ∈ L(X; Y) and ‖T‖ = 1.
Suppose that dist(T,K(X; Y)) < 1. Then the following condition holds:

ρ′−(T, A) = inf{ρ′+(T x, Ax) : x ∈ MT ∩ Ext B(X)}. (3.9)

Proof. Since the space Y is smooth, ρ′+(T x, ·) = ρ′−(T x, ·). It follows that

ρ′−(T, A)
(ND3)

= −ρ′+(T,−A)
(3.6)
=

= − sup{ρ′+(T x,−Ax) : x ∈ MT ∩ Ext B(X)}
(ND3)

= − sup{−ρ′−(T x, Ax) : x ∈ MT ∩ Ext B(X)}
= − sup{−ρ′+(T x, Ax) : x ∈ MT ∩ Ext B(X)}
= inf{ρ′+(T x, Ax) : x ∈ MT ∩ Ext B(X)}.

The proof is complete. �

We now proceed to the norm derivatives in K(X; Y).

Theorem 3.4. Suppose that X is a reflexive Banach space. Assume that Y is smooth.
Suppose thatK(X; Y) is an M-ideal inL(X; Y). Let T,A ∈ K(X; Y). Then the following
conditions hold:

ρ′+(T, A) = max{ρ′+(T x, Ax) : x ∈ MT },

ρ′−(T, A) = min{ρ′+(T x, Ax) : x ∈ MT }.
(3.10)

Proof. Since the proofs are similar, we present only one. Without loss of generality, we
may assume that ‖T‖ = 1 (see (ND2)). By (3.6), let us choose a sequence (xn) ⊂MT

such that
ρ′+(T xn, Axn)↗ ρ′+(T, A). (3.11)

Recall that in a reflexive Banach space the closed unit ball B(X) is weak-compact.
By the Gantmaher–Šmul’yan theorem [10, page 58], B(X) is weakly sequentially
compact. Thus, there is a subsequence (xnk ) ⊂ B(X) and there is a vector xo in

B(X) such that xnk

weak
−→ xo. Since T , A are compact operators, T , A are completely

continuous. This means that

T xnk

‖·‖
−→ T xo and Axnk

‖·‖
−→ Axo.
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It is helpful to recall that the mappings ρ′−, ρ
′
+ : Y × Y → R are continuous with

respect to the second variable. Since the space Y is smooth, the mappings ρ′−, ρ
′
+ :

Y × Y → R are also continuous with respect to the first variable. We will show
that ρ′+(T, A) = ρ′+(T xo, Axo). By the condition (3.11), it is enough to show that
ρ′+(T xnk , Axnk ) −→ ρ′+(T xo, Axo). Finally, observe that

|ρ′+(T xnk , Axnk ) − ρ
′
+(T xo, Axo)| ≤ |ρ′+(T xnk , Axnk ) − ρ

′
+(T xnk , Axo)|

+ |ρ′+(T xnk , Axo) − ρ′+(T xo, Axo)|
(2.3)
≤ |ρ′+(T xnk , Axnk − Axo)|

+ |ρ′+(T xnk , Axo) − ρ′+(T xo, Axo)|
≤ ‖T xnk‖ · ‖Axnk − Axo‖

+ |ρ′+(T xnk , Axo) − ρ′+(T xo, Axo)| → 0.

The proof of Theorem 3.4 is complete. �

4. Birkhoff orthogonality in L(X; Y)

Using the notion of norm derivatives, we apply our previous results to characterize
orthogonality in the sense of Birkhoff in L(X; Y). We still assume that the considered
normed spaces are real. Our next results generalize and complement those in [4, 20]
to some extent.

Theorem 4.1. Suppose that X is a reflexive Banach space. Assume that Y is smooth.
Suppose thatK(X; Y) is an M-ideal inL(X; Y). Let T ∈ L(X; Y) be such that T attains
its norm at only ±D (that is,MT = D ∪ −D), where D is a connected subset of S (X).
Suppose that dist(T,K(X; Y)) < ‖T‖. Then the following conditions are equivalent:

(a) T⊥BA;
(b) there exists x ∈ D such that T x⊥BAx, or T⊥ρ+

A, or T⊥ρ−A.

Proof. The Birkhoff orthogonality ⊥B is homogeneous (that is, if x⊥By, then αx⊥Bβy
for all α, β in R). From the assumption, we have that dist(T/‖T‖,K(X; Y)) < 1.
Without loss of generality, we may assume that ‖T‖ = 1, and then dist(T,K(X; Y)) < 1.
For the proof of (a)⇒(b), suppose that T⊥BA. Combining (2.1), (3.6), and (3.9), we
immediately get

inf{ρ′+(T x, Ax) : x ∈ MT } ≤ 0 ≤ sup{ρ′+(T x, Ax) : x ∈ MT }.

Let us distinguish three cases.

Case 1. If 0 = sup{ρ′+(T x, Ax) : x ∈ MT } = ρ′+(T, A), then T⊥ρ+
A.

Case 2. If 0 = inf{ρ′+(T x, Ax) : x ∈ MT } = ρ′−(T, A), then T⊥ρ−A.

Case 3. Let us now consider the following chain of inequalities:

inf{ρ′+(T x, Ax) : x ∈ MT } < 0 < sup{ρ′+(T x, Ax) : x ∈ MT }. (4.1)
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Then we define a mapping ϕ :MT → R by ϕ(·) := ρ′+(T (·),A(·)). In a similar way as in
the proof of Theorem 3.4, we can prove that the function ϕ is continuous. By (ND3), it
is easy to see that ϕ(x) = ϕ(−x). Moreover, the set D is connected andMT = D ∪ −D.
Now the condition (4.1) becomes

inf{ϕ(x) : x ∈ D} < 0 < sup{ϕ(x) : x ∈ D}.

Using the Darboux property, we get ϕ(xo) = 0 for some xo ∈ D. Thus, for the vector
xo, we have 0 = ϕ(xo) = ρ′+(T (xo), A(xo)). Next, from (2.1) and (ND5), we have
T (xo)⊥BA(xo).

The converse implication has a trivial verification. �

There is a simple observation that can be made here. It can be shown that ifH is a
Hilbert space, then the setMT is connected for all T in L(H) (wheneverMT , ∅). In
fact, the setMT is arcwise connected.

In some circumstances, Theorem 4.1 can be strengthened as follows.

Theorem 4.2. Suppose that X is a reflexive Banach space. Assume that Y is smooth.
Suppose that K(X; Y) is an M-ideal in L(X; Y). Let T, A ∈ K(X; Y), MT = D ∪ −D,
where D is a connected subset of S (X). Then the following conditions are equivalent:

(a) T⊥BA;
(b) there exists x ∈ D such that T x⊥BAx.

Proof. This result can be obtained similarly. In the above proof, one should consider
Theorem 3.4 instead of (3.6) and (3.9). �

Careful reading of the proof of Theorem 4.1 shows that in fact we have the
following. (Compare this with Remark 1.1.)

Corollary 4.3. Let X, Y, T, A be as in Theorem 4.1. Then T⊥BA if and only if there
exists a sequence (xn) of unit vectors of X such that ‖T xn‖ = ‖T‖ (for all n) and
limn→∞ ρ

′
+(T xn, Axn) = 0.

5. Approximate Birkhoff orthogonality

In an inner product space an approximate orthogonality (ε-orthogonality, with
ε ∈ [0, 1)) of vectors x and y is naturally defined by

x⊥εy :⇔ |〈x|y〉| ≤ ε‖x‖ · ‖y‖.

For an approximate B-orthogonality, we will follow the definition from [7]:

x⊥εBy :⇔ ∀λ∈R ‖x‖2 ≤ ‖x + λy‖2 + 2ε‖x‖ · ‖λy‖.

The next result (cf. [8]) establishes the connection between ⊥εB and ρ′±.

Theorem 5.1 [8, Theorem 3.1]. Let X be a real normed space and let ε ∈ [0, 1). Then

x⊥εBy ⇔ ρ′−(x, y) − ε‖x‖ · ‖y‖ ≤ 0 ≤ ρ′+(x, y) + ε‖x‖ · ‖y‖. (5.1)
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Now we state and prove the main result of this section.

Theorem 5.2. Suppose that X is a reflexive Banach space. Assume that Y is smooth.
Suppose that K(X; Y) is an M-ideal in L(X; Y). Let T, A ∈ K(X; Y). Assume that
MT = D ∪ −D, where D is a connected subset of S (X). Suppose that MT ⊂ MA.
Then the following conditions are equivalent:

(a) T⊥εBA;
(b) there exists x ∈ D such that T x⊥εBAx.

Proof. We start with proving (a)⇒(b). Suppose that T⊥εBA. Combining (5.1) and
(3.10), we immediately get

min{ρ′+(T x, Ax) : x ∈ MT }

− ε‖T‖ · ‖A‖ ≤ 0 ≤ max{ρ′+(T x, Ax) : x ∈ MT } + ε‖T‖ · ‖A‖.

Using the Darboux property again, we get, for some xo ∈ D,

−ε‖T‖ · ‖A‖ ≤ ρ′+(T xo, Axo) ≤ ε‖T‖ · ‖A‖. (5.2)

Since the space Y is smooth, ρ′−(T xo, Axo) = ρ′+(T xo, Axo). Since MT ⊂ MA, ‖T‖ ·
‖A‖ = ‖T xo‖ · ‖Axo‖. Now the condition (5.2) becomes

ρ′−(T xo, Axo) − ε‖T xo‖ · ‖Axo‖ ≤ 0 ≤ ρ′+(T xo, Axo) + ε‖T xo‖ · ‖Axo‖.

Then (5.1) yields T xo⊥
ε
BAxo.

We prove the converse implication. Fix an arbitrary λ ∈ R. From (b),

‖T‖2 = ‖T x‖2 ≤ ‖T x + λAx‖2 + 2ε‖T x‖ · ‖λAx‖
≤ ‖T + λA‖2 + 2ε‖T‖ · ‖λA‖

and thus finally we get T⊥εBA. �
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[8] J. Chmieliński and P. Wójcik, ‘ρ-orthogonality and its preservation – revisited’, Banach Center

Publ. 99 (2013), 17–30.

https://doi.org/10.1017/S1446788716000537 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000537


288 P. Wójcik [10]
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