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ON THE JOINT BEHAVIOR OF TYPES OF COUPONS
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Abstract

The ‘coupon collection problem’ refers to a class of occupancy problems in which j

identical items are distributed, independently and at random, to n cells, with no restrictions
on multiple occupancy. Identifying the cells as coupons, a coupon is ‘collected’ if the
cell is occupied by one or more of the distributed items; thus, some coupons may never
be collected, whereas others may be collected once or twice or more. We call the number
of coupons collected exactly r times coupons of type r . The coupon collection model
we consider is general, in that a random number of purchases occurs at each stage of
collecting a large number of coupons; the sample sizes at each stage are independent
and identically distributed according to a sampling distribution. The joint behavior of
the various types is an intricate problem. In fact, there is a variety of joint central limit
theorems (and other limit laws) that arise according to the interrelation between the mean,
variance, and range of the sampling distribution, and of course the phase (how far we
are in the collection processes). According to an appropriate combination of the mean
of the sampling distribution and the number of available coupons, the phase is sublinear,
linear, or superlinear. In the sublinear phase, the normalization that produces a Gaussian
limit law for uncollected coupons can be used to obtain a multivariate central limit law
for at most two other types—depending on the rates of growth of the mean and variance
of the sampling distribution, we may have a joint central limit theorem between types 0
and 1, or between types 0, 1, and 2. In the linear phase we have a multivariate central
limit theorem among the types 0, 1, . . . , k for any fixed k.
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1. Coupon collection

The most basic form of the ‘coupon collection problem’ concerns the distribution of j items,
independently and at random, to n cells (thought of as coupons), where a coupon is ‘collected’ if
the cell is occupied. Questions of interest then include the following. (i) What is the distribution
of the number of uncollected coupons (or the number collected exactly once, etc.)? (ii) What is
the expected number of items that must be placed in order that all cells be occupied (all coupons
collected)?

There are many variations of this problem, going back at least to de Moivre (1718) and
Laplace (1774). The problem gained popularity in the 1930s, when the Dixie Cup Company
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sold ice cream cups with a cardboard cover that had hidden on the underside a coupon (carrying
likeable items such as cute animals, movie stars, and Major League baseball players). This
marketing strategy is meant to encourage fans of such items to complete sets of their favorites,
and, thus, increase the sales. Many companies followed suit and there has been a myriad of
such schemes; many are now obsolete.

A generalized form of the classical coupon collector’s problem assumes that the consumer
purchases a random number, S ≥ 1, of items each time and that the promoting company
guarantees that the S associated coupons are distinct. The collector obtains S coupons at each
stage, of which some or all may already be in his/her possession. The company promises that
all sold collections of size S are equally likely. Ideally, when one such collection is sold, it is
immediately replaced in the market to maintain the uniformity of all subsets of any feasible
size. In the Dixie Cup scheme S ≡ 1. Kobza et al. (2007) and Stadje (1990) provided surveys.

While collecting coupons, some may never be obtained, others may be collected once or
twice or more. We call the number of coupons collected exactly r times coupons of type r . We
investigate in this paper the joint behavior of coupons of different types across the phases of
collection.

2. Setup as an urn scheme

Consider the following setup for coupon collection with random sampling. At the start we
have n coupons to be collected, where n may be large. Let Sj be an independent, identically
distributed sequence of random variables, all distributed like a generic random variable S =
S(n) ∈ {1, 2, . . . , sn}, with sn ≤ n. For technical reasons that will become evident later on,
we keep the range of S small, relative to n. Specifically, we work with sn = o(

√
n). So, the

mean µS(n) and standard deviation σS(n) of S(n) are also o(
√

n). At the j th stage the collector
purchases a random number, Sj , of coupons.

Let X
(n)
j,r be the number of coupons that have been collected exactly r times after j samples

have been purchased. For fixed k ≥ 0, let

X
(n)
j =

⎛
⎜⎜⎜⎜⎜⎜⎝

X
(n)
j,0

X
(n)
j,1

...

X
(n)
j,k

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Represent the coupons as balls of k + 2 different colors (labeled 0, 1, . . . , k + 1) in an urn.
Coupons that have been collected r times are balls of color r for r = 0, . . . , k. Color k + 1 is
special—it represents all the balls that have been drawn more than k times. There is no need
to study the number of balls of color k + 1, as it is determined by the number of balls of all the
other colors. Specifically,

X
(n)
j,k+1 = n −

k∑
r=0

X
(n)
j,r .

3. Organization

The rest of the paper is organized in sections as follows. We introduce the notation in
Section 4, and state the results in Section 5. In Section 6 we formulate the basic stochastic
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recurrence, which gives a matrix recurrence for the mean and covariance. We present an
exact solution to the mean recurrence in Subsection 6.1, and we present exact and asymptotic
solutions to the covariance recurrence in Subsection 6.2. The multivariate martingale underlying
the process is derived in Section 7, and the analysis in the sublinear and linear phases is given
in Sections 8 and 9, respectively. We conclude in Section 10 with some illustrating examples.

4. Notation and setup

The notation Bin(n, p) stands for a binomial random variable on n trials with rate of
success p per trial, and N k(0, �) stands for a multivariate normal vector of k components
with mean 0 (of k components) and k × k covariance matrix �. In this investigation some of
the multivariate normal distributions refer to what some books call singular multivariate normal
distributions, where � is a singular matrix, but a number of linear combinations together define
a proper multivariate normal distribution of lower dimension. Let Hypergeo(n, m, w) be a
hypergeometric random variable that represents the number of white balls in a sample of size
m balls taken without replacement at random (all subsets of size m being equally likely) from
an urn containing a total of n white and red balls, of which w are white. The mean and variance
for this standard distribution are well known; see Stuart and Ord (1987, Article 5.14).

The transpose of a matrix W is denoted by W . We will use the matrix norm ‖ · ‖, defined
as the square root of the sum of the squares of the matrix components, or, equivalently, the
square root of the sum of the squares of its eigenvalues. We use the notation o(bn) and O(bn)

for matrices in which each component is respectively o(bn) and O(bn) in the usual scalar
sense. The probabilistic versions oL1(bn) and oP(bn) will stand for a sequence of random
matrices where each component is o(bn) respectively in the L1 norm and in probability. We
will use the notation ‘

d−→’ to denote convergence in distribution and ‘
p−→’ to denote convergence

in probability. In the sequel all matrix convergence, be it deterministic or probabilistic (in L1
and in probability), is considered componentwise. We let Fj be the sigma-field generated by
the first j draws. Note that the sequence {Fj }∞j=0 of sigma-fields is increasing. Thus, it can be
the filtration of a martingale sequence. Unless otherwise stated, all asymptotic equivalents and
bounds are taken as n → ∞.

The following special matrices will be used:

B :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0 0
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

M := µS(n)

n
B +

(
1 − µS(n)

n

)
I = I + µS(n)

n
(B − I ),

F =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎜⎜⎝

−1
1
0
...

0

⎞
⎟⎟⎟⎟⎟⎠ ;

the matrices B and M are of dimension (k + 1)× (k + 1), and F and G are (k + 1)-component
vectors. Note that high powers of B vanish. Specifically, Bi is the zero matrix for i ≥ k + 1.
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For 0 ≤ i ≤ k, Bi is a matrix of 0s, except for the entries on the forward minor diagonal starting
at position (i, 0) and ending at position (k, k − i), which are all 1.

In what follows we will use the functions

gn = (σ 2
S (n) − µS(n))n + µ2

S(n)

n2(n − 1)
, hn = µS(n)n − σ 2

S (n) − µ2
S(n)

n(n − 1)
,

and the functions f�,m(y), which are the coefficients of linearity in the covariance between
coupons of types � and m in the usual coupon collection (S ≡ 1). They appear in the work of
Kolchin et al. (1978, p. 38). The first few are

[f�,m]0≤�,m≤2

= e−2λ

⎛
⎜⎜⎜⎜⎜⎜⎝

eλ − 1 − λ −λ2 −λ3

2
+ λ2

2

−λ2 λeλ − λ + λ2 − λ3 −λ4

2
+ λ3 − λ2

−λ3

2
+ λ2

2
−λ4

2
+ λ3 − λ2 eλ(λ2 + 1 − λ) − λ5

4
+ 3λ4

4
− λ3 − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We denote the matrix [f�,m]0≤�,m≤k by Jk+1. We also need the matrix

J ′
k+1 = e−2λ

[
λ�+m−1

�! m! (λ − �)(λ − m)

]
0≤�,m≤k

.

The vector

νk+1 =
(

1, λ,
λ2

2
, . . . ,

λk

k!
)

appears as the coefficient of linearity of E[X(n)
j ] in the linear phase.

We let 1E denote the indicator of event E , that is, a function that assumes the value 1 if E
occurs and the value 0 otherwise. We will use the backward operator ∇ai = ai − ai−1.

5. The results

Central to all the analysis is a careful handling of the covariance structure of the process.
We present an exact formula for the covariance in Proposition 1. We do not deal with the
case where 0 = lim infn→∞ σ 2

S (n) < lim supn→∞ σ 2
S (n). Up to O(1) draws nothing much of

interest happens. We investigate the joint behavior of balls after j draws for j in two phases.

(a) The growing sublinear phase, where j = jn grows to ∞ with n, but jn = o(n/µS(n)).

(b) The linear phase,
µS(n)jn ∼ λnn

for some positive λn that is bounded away from 0 and ∞. That is, for positive constants
Q1 and Q2 and all n ≥ 1,

0 < Q1 ≤ λn ≤ Q2 < ∞.

Theorem 1. Consider coupon collection with a sampling distribution having range in {1, 2,

. . . , sn}, where sn = o(
√

n), with mean µS(n) and variance σ 2
S (n). Let X

(n)
j,r be the number
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of balls of type r, 0 ≤ r ≤ k, and let X
(n)
j be the vector with components X

(n)
j,r , r = 0, . . . , k.

Assume that we are in the growing sublinear phase, where jn → ∞ and jn = o(n/µS(n)). Let

αn := µ2
S(n)j2

n/2n

µ2
S(n)j2

n/2n + σ 2
S (n)jn

.

Suppose that we are in the upper sublinear phase,

s2
n = o

(
µ2

S(n)j2
n

2n
+ σ 2

S (n)jn

)
.

The following statements hold.

(a) If αn → α ∈ (0, 1], for k = 2,

⎛
⎜⎜⎝X

(n)
jn

−
(

1 − µS(n)

n

)jn

⎛
⎜⎜⎝

n

µS(n)jn

µ2
S(n)j2

n

2n

⎞
⎟⎟⎠
⎞
⎟⎟⎠
(√

µ2
S(n)j2

n

2n
+ σ 2

S (n)jn

)−1

d−→ N3

⎛
⎝0,

⎛
⎝ 1 −(α + 1) α

−(α + 1) 3α + 1 −2α

α −2α α

⎞
⎠
⎞
⎠ ,

subject to the additional condition that µ2
S(n)j2

n/2n + σ 2
S (n)jn grows to ∞.

(b) If αn → 0, for k = 1,

X
(n)
jn

− (1 − µS(n)/n)jn

(
n

µS(n)jn

)
σS(n)

√
jn

d−→ N2

(
0,

(
1 −1

−1 1

))
,

subject to the additional condition that 1/σ 2
S (n) = o(jn).

Remark. In Theorem 1(b) the covariance matrix is singular. In this case each of X
(n)
jn,0 and X

(n)
jn,1

(shifted by its mean and scaled by σS(n)
√

jn) satisfies a univariate central limit theorem with
variances and covariances coinciding with those in the limiting bivariate normal distribution.
The same can be said about X

(n)
jn,0, X

(n)
jn,1, and X

(n)
jn,2 in the α = 1 case of Theorem 1(a):

each (appropriately normalized) satisfies a univariate central limit theorem with variances and
covariances coinciding with those in the limiting trivariate normal distribution.

Theorem 2. Consider coupon collection with a sampling distribution having range in {1, 2,

. . . , sn}, where sn = o(
√

n), with mean µS(n) and variance σ 2
S (n). Let X

(n)
j,r be the number

of balls of type r, 0 ≤ r ≤ k, and let X
(n)
j be the vector with components X

(n)
j,r , r = 0, . . . , k.

Assume that we are in the linear phase, where jn ∼ λnn/µS(n) for 0 < Q1 ≤ λn ≤
Q2 < ∞. Let

βn := µS(n)

µS(n) + σ 2
S (n)

.
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If λn → λ > 0, the following statements hold.

(a) If βn → β ∈ (0, 1],

X
(n)
jn

− ne−λνk+1√
n

d−→ Nk+1

(
0, Jk+1 + 1 − β

β
J ′

k+1

)
.

(b) If βn → 0, and λ is not a positive integer r ≤ k,

X
(n)
jn

− ne−λνk+1

σS(n)
√

n/µS(n)

d−→ Nk+1(0, J ′
k+1).

If λ = r ≤ k then (X
(n)
jn,r − λre−λn/r!)/√n is asymptotically normal with variance

given by the rth diagonal entry of Jk+1.

The alert reader must have noticed that the case of superlinear growth (when µS(n)jn grows
faster than n) has not been considered in this work. For the case of X

(n)
j,0 (uncollected coupons),

some asymptotic results appear in Smythe (2011). It turns out that in the superlinear phase,
the asymptotic variance of each X

(n)
j,r , r = 0, 1, . . . , k, is of a different order, so there is no

multivariate central limit theorem of the type considered in the present paper. Some results in
this case will appear elsewhere.

6. Stochastic recurrence and moments

When the collector purchases a sample of size Sj coupons, any coupon appearing in that
sample is acquired one more time. That is, if the corresponding ball in the urn is of color r (for
r = 0, . . . , k), its color is upgraded to r +1; the number of balls of color r +1 goes up by 1, and
the number of balls of color r goes down by 1. Let H

(n)
j,r be the number of balls of color r in the

j th sample (which is of size Sj ). So, H
(n)
j,r has the distribution of the Hypergeo(n, Sj , X

(n)
j−1,r )

random variable. We have the recurrence system

X
(n)
j,r = X

(n)
j−1,r + H

(n)
j,r−1 − H

(n)
j,r for r = 0, . . . , k, (1)

interpreting H
(n)
j,−1 ≡ 0. From this stochastic recurrence we can find moments. We illustrate

this only on the first two moments. As we will see, it is quite tedious to obtain the second
moment; exact higher moments would be a real challenge to find by such direct methods, and
we later find their asymptotics by alternative means.

6.1. The mean

The counts X
(n)
j,r (interpreting X

(n)
j,−1 ≡ 0) have averages

E[X(n)
j,r ] = E[X(n)

j−1,r ] + 1

n
E[X(n)

j−1,r−1Sj ] − 1

n
E[X(n)

j−1,rSj ]

= E[X(n)
j−1,r ] + 1

n
E[X(n)

j−1,r−1] E[Sj ] − 1

n
E[X(n)

j−1,r ] E[Sj ]

=
(

1 − µS(n)

n

)
E[X(n)

j−1,r ] + µS(n)

n
E[X(n)

j−1,r−1].
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This can be represented in matrix form:

E[X(n)
j ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − µS(n)

n
0 0 0 · · · 0 0

µS(n)

n
1 − µS(n)

n
0 0 · · · 0 0

0
µS(n)

n
1 − µS(n)

n
0 · · · 0 0

...
...

. . .
...

...

0 0 0 0 · · · µS(n)

n
1 − µS(n)

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E[X(n)
j−1]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − µS(n)

n
0 0 0 · · · 0 0

µS(n)

n
1 − µS(n)

n
0 0 · · · 0 0

0
µS(n)

n
1 − µS(n)

n
0 · · · 0 0

...
...

. . .
...

...

0 0 0 0 · · · µS(n)

n
1 − µS(n)

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

j⎛
⎜⎜⎜⎜⎜⎝

n

0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠ .

The rows and columns of these (k + 1) × (k + 1) matrices are indexed by the coupon types
0, 1, . . . , k. A matrix decomposition will help us asymptotically simplify this matrix expression.
We can write the average vector as

E[X(n)
j ] =

(
µS(n)

n
B +

(
1 − µS(n)

n

)
I

)j

⎛
⎜⎜⎜⎜⎜⎝

n

0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠ =

k∑
i=0

µi
S(n)

ni

(
1 − µS(n)

n

)j−i(
j

i

)
Bi

⎛
⎜⎜⎜⎜⎜⎝

n

0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠

for j ≥ k. Note that we stopped the sum at k, because all higher powers of B are identically 0.
Thus,

E[X(n)
j ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

(
1 − µS(n)

n

)j

jµS(n)

(
1 − µS(n)

n

)j−1

j (j − 1)µ2
S(n)

2n

(
1 − µS(n)

n

)j−2

...

µk
S(n)

nk−1

(
j

k

)(
1 − µS(n)

n

)j−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

6.2. The covariance structure

Toward the covariance calculation, let us take the conditional expectation of the cross
products of the counts, i.e.

E[X(n)
j,�X

(n)
j,m | Fj−1] = (X

(n)
j−1,� + H

(n)
j,�−1 − H

(n)
j,� )(X

(n)
j−1,m + H

(n)
j,m−1 − H

(n)
j,m),
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yielding the expectation

A
(n)
j (�, m) := E[X(n)

j,�X
(n)
j,m]

= E[X(n)
j−1,�X

(n)
j−1,m]

+ (E[X(n)
j−1,�X

(n)
j−1,m−1] − 2 E[X(n)

j−1,�X
(n)
j−1,m] + E[X(n)

j−1,�−1X
(n)
j−1,m])E[Sj ]

n

+ E[H(n)
j,�−1X

(n)
j,m−1 − H

(n)
j,�−1X

(n)
j,m − H

(n)
j,� X

(n)
j,m−1 + H

(n)
j,� X

(n)
j,m].

We use the known expressions for the mean and covariance of the multihypergeometric distribu-
tion (see Stuart and Ord (1987, Article 5.14)). Let us now construct the matrix E[X(n)

j X
(n)

j ] =:
A

(n)
j = [A(n)

j (�, m)]0≤�,m,≤k . After some rather lengthy algebraic operations we reach the
recurrence

A
(n)
j = A

(n)
j−1 + µS(n)

n
(BA

(n)
j−1 + A

(n)
j−1B) + BA

(n)
j−1B + hnK̃

(n)
j ,

where K̃
(n)
j is the diagonal matrix diag(E[X(n)

j−1,0], . . . , E[X(n)
j−1,k]). The recurrence in this

form is not easy to iterate. Nonetheless, a reorganization in the form

A
(n)
j = gnGA

(n)
j−1G + CA

(n)
j−1C + hnK

(n)
j ,

where G = B − I , C = I + µS(n)G/n, and K
(n)
j = (B − I )K̃

(n)
j (B − I ), helps us iterate

the recurrence.
A few steps of iteration reveal a pattern, which can then be proved by induction. The

recurrence has the exact solution

E[X(n)
j X

(n)

j ] = hn

j−1∑
i=0

i∑
r=0

gi−r
n

(
i

r

)
CrGi−rK

(n)
j−iG

i−r
C

r

+
j∑

r=0

g
j−r
n

(
j

r

)
CrGj−rA

(n)
0 G

j−r
C

r
.

It can be shown (by induction for example) that

Cp := 1

np

[(
p

� − m

)
µS(n)�−m(n − µS(n))p−�+m

]
0≤�,m≤k

and

Gq :=
[
(−1)�−m+q

(
q

� − m

)]
0≤�,m≤k

;

interpret
(
y
x

)
as 0 whenever x is negative or y < x. Multiplying out, we obtain

[CrGj−rA
(n)
0 G

j−r
C

r ]�,m

= 1

n2r−2

( �∑
p=0

(−1)p
(

r

� − p

)(
j − r

p

)
µ

�−p
S (n)(n − µS(n))r−�+p

)

×
( m∑

q=0

(−1)q
(

r

m − q

)(
j − r

q

)
µ

m−q
S (n)(n − µS(n))r−m+q

)
.
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These calculations are facilitated by a symbolic algebra system such as MATHEMATICA® or
MAPLE®. Similarly, we have

[CrGi−rKj−iG
i−r

C
r ]�,m

= 1

n2r

k∑
ν=0

( k∑
p=0

(−1)p−ν

(
r

� − p

)(
i − r + 1

p − ν

)
µS(n)�−p(n − µS(n))r−�+p

)

× µν
S(n)

nν−1

(
j

ν

)(
1 − µS(n)

n

)j−i−1−ν

×
( k∑

q=0

(−1)q−ν

(
r

m − q

)(
i − r + 1

q − ν

)
µS(n)m−q(n − µS(n))r−m+q

)
.

Putting these calculations together, we obtain an exact expression for the covariance.

Proposition 1. We have

cov[X(n)
j,�, X

(n)
j,m] = µS(n)n − σ 2

S (n) − µ2
S(n)

n(n − 1)

×
[j−1∑

i=0

i∑
r=0

(
(σ 2

S (n) − µS(n))n + µ2
S(n)

n2(n − 1)

)i−r(
i

r

)
1

n2r−2

×
k∑

ν=0

( k∑
p=0

(−1)p−ν

(
r

� − p

)(
i − r + 1

p − ν

)
µ

�−p
S (n)

× (n − µS(n))r−�+p

)

× µν
S(n)

nν−1

(
j

ν

)(
1 − µS(n)

n

)j−i−1−ν

×
( k∑

q=0

(−1)q−ν

(
r

m − q

)(
i − r + 1

q − ν

)
µ

m−q
S (n)

× (n − µS(n))r−m+q)

)]

+ n2
[ j∑

r=0

(
(σ 2

S (n) − µS(n))n + µ2
S(n)

n2(n − 1)

)j−r(
j

r

)

×
( �∑

p=0

(−1)p
(

r

� − p

)(
j − r

p

)
µ

�−p
S (n)(n − µS(n))r−�+p

)

×
( m∑

q=0

(−1)q
(

r

m − q

)(
j − r

q

)
µ

m−q
S (n)(n − µS(n))r−m+q

)]

− µ�+m
S (n)

n�+m−2

(
j

�

)(
j

m

)(
1 − µS(n)

n

)2j−�−m

.
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7. The underlying multivariate martingale

Condition recurrence (1) on Fj−1 to obtain

E[X(n)
j,r | Fj−1] =

(
1 − µS(n)

n

)
X

(n)
j−1,r + µS(n)

n
X

(n)
j−1,r−1.

Putting the recurrences for different colors together in one matrix form, we have

E[X(n)
j | Fj−1] =

(
µS(n)

n
B +

(
1 − µS(n)

n

)
I

)
X

(n)
j−1.

Therefore,
E[X(n)

j | Fj−1] := MX
(n)
j−1,

and Y
(n)
j := M−jX

(n)
j is a martingale and Ỹ

(n)
j = M−jX

(n)
j − X

(n)
0 is a centered martingale.

For suitable scale factors ξn for each phase, we will check Lindeberg’s conditional condition,
that is,

Un :=
jn∑

i=1

E

[∥∥∥∥ 1

ξn

∇Ỹ
(n)
i

∥∥∥∥
2

1{‖∇Ỹ
(n)
i /ξn‖>ε}

∣∣∣∣ Fi−1

]
p−→ 0,

and the conditional variance condition, that is,

Vn :=
jn∑

i=1

cov

[
1

ξn

∇Ỹ
(n)
i

∣∣∣∣ Fi−1

]
p−→ �

for a covariance matrix �.
When both conditions hold, the sum

∑jn

j=1 ξ−1
n ∇Ỹ

(n)
j = ξ−1

n (M−jnX
(n)
jn

− X
(n)
0 ) converges

to the multinormally distributed random vector Nk+1(0, �); this follows from an appropriate
extension of the univariate martingale central limit theorem in Hall and Heyde (1980, p. 58),
via, for example, the Cramér–Wold device. Some of the limiting covariance matrices that
appear in this work are singular, with fewer linear combinations that have a proper nonsingular
multivariate normal distribution (with a positive definite covariance matrix). The following
lemma gives an exact computation of Vn, and will be helpful in all the phases via an appropriate
asymptotic analysis.

Lemma 1. We have

Vn = 1

ξ2
n

jn∑
i=1

[gnM
−i (X

(n)
i−1X

(n)

i−1 − BX
(n)
i−1X

(n)

i−1 − X
(n)
i−1X

(n)

i−1BBX
(n)
i−1X

(n)

i−1B)M
−i

+ hnM
−i (D

(n)
i − BD

(n)
i − D

(n)
i B + BD

(n)
i B)M

−i],
where D

(n)
i is the diagonal matrix diag(X

(n)
i−1,0, X

(n)
i−1,1, . . . , X

(n)
i−1,k).

Proof. Start with the definition of conditional covariance to obtain

cov[∇Ỹ
(n)
i | Fi−1] = cov[∇(M−iX

(n)
i − X

(n)
0 ) | Fi−1]

= E[(M−iX
(n)
i − M−i+1X

(n)
i−1)(X

(n)

i M
−i − X

(n)

i−1M
−i+1

) | Fi−1].
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Using the stochastic recurrence (1), we expand the products in the covariance and write it as

cov[∇Ỹ
(n)
i | Fi−1]

= gnM
−i (X

(n)
i−1X

(n)

i−1 − BX
(n)
i−1X

(n)

i−1 − X
(n)
i−1X

(n)

i−1B + BX
(n)
i−1X

(n)

i−1B)M
−i

+ hnM
−i (D

(n)
i − BD

(n)
i − D

(n)
i B + BD

(n)
i B)M

−i
.

We now sum these terms to obtain an exact expression for Vn.

8. The sublinear phase

We are in the sublinear phase when j = jn = o(n/µS(n)). In this phase we take

ξn =
√

µ2
S(n)j2

n

2n
+ σ 2

S (n)jn.

Lemma 2. For j = o(n/µS(n)) in the sublinear phase,

‖∇Ỹ
(n)
j ‖ ≤ 4(k + 1)

√
2k + 1sn.

Proof. Set

H
(n)

j = (H
(n)
j,0 , H

(n)
j,1 , . . . , H

(n)
j,k ),

so as to write (1) in the form

X
(n)
j = X

(n)
j−1 + BH

(n)
j − H

(n)
j . (3)

We bound each component of X
(n)
j−1 by n, and it follows that, for large n,

‖∇Ỹ
(n)
j ‖ = ‖Y (n)

j − Y
(n)
j−1‖

= ‖M−jX
(n)
j − M−j+1X

(n)
j−1‖

= ‖M−j‖‖X(n)
j − MX

(n)
j−1‖

=
∥∥∥∥
(

I + O

(
µS(n)

n

))∥∥∥∥‖(X(n)
j−1 + BH

(n)
j − H

(n)
j ) − MX

(n)
j−1‖

≤ 2
√

k + 1

(∥∥∥∥µS(n)

n
(I − B)

∥∥∥∥‖X(n)
j−1‖ + ‖B − I‖‖H (n)

j ‖
)

= 2
√

k + 1‖B − I‖
(

µS(n)

n
‖X(n)

j−1‖ + ‖H (n)
j ‖

)

≤ 2
√

(k + 1)(2k + 1)

(
µS(n)

n
(
√

k + 1)n + sn
√

k + 1

)
≤ 2(k + 1)

√
2k + 1(µS(n) + sn)

≤ 2(k + 1)(
√

2k + 1)2sn.

Lemma 3. If jn is sublinear but restricted to the upper sublinear phase where

sn = o(ξn) = o

(√
µ2

S(n)j2
n

2n
+ σ 2

S (n)jn

)
,
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and if ξn → ∞, we then have

Un :=
jn∑

i=1

E

[∥∥∥∥ 1

ξn

∇Ỹ
(n)
i

∥∥∥∥
2

1{‖∇Ỹ
(n)
i /ξn‖>ε}

∣∣∣∣ Fi−1

]
p−→ 0.

Proof. For any given ε > 0, according to Lemma 2, the sets{∥∥∥∥ 1√
µ2

S(n)j2
n/2n + σ 2

S (n)jn

∇Ỹ
(n)
i

∥∥∥∥ > ε

}

are empty for all n greater than some positive integer n0(ε). For n ≥ n0(ε), in view of the
restriction of jn in an upper sublinear phase, we have

Un ≤
n0(ε)∑
j=1

16(k + 1)2(2k + 1)s2
n

µ2
S(n)j2

n/2n + σ 2
S (n)jn

= 16(k + 1)2(2k + 1)n0(ε)
s2
n

µ2
S(n)j2

n/2n + σ 2
S (n)jn

→ 0 as n → ∞.

It was shown in Mahmoud (2010) that in the sublinear phase most of the draws produce
type-0 balls, which are converted into type-1 balls. That is, for any 0 ≤ i ≤ jn,

X
(n)
i,0 = n − iµS(n) + oP(snjn), X

(n)
i,1 = iµS(n) + oP(snjn),

and

X
(n)
i,r = oP(snjn) for 2 ≤ r ≤ k + 1.

We can represent this as

X
(n)
i = n

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠+ iµS(n)

⎛
⎜⎜⎜⎜⎜⎝

−1
1
0
...

0

⎞
⎟⎟⎟⎟⎟⎠+ oP(snjn),

so that X
(n)
i = nF + iµS(n)G + oP(snjn) and X

(n)
i X

(n)

i = n2FF + inµS(n)(FG + GF ) +
oP(nsnjn). We shall also need the diagonal matrix D = diag(−1, 1, 0, . . . , 0). In the entire
sublinear phase, M−i = I + O(µS(n)/n). By Lemma 1 we can develop asymptotics:

Vn = gn

ξ2
n

jn∑
i=1

(
I + O

(
µS(n)

n

))

× [(n2FF + inµS(n)(FG + GF ) + oP(nsnjn))

− B(n2FF + inµS(n)(FG + GF ) + oP(nsnjn))

− (n2FF + inµS(n)(FG + GF ) + oP(nsnjn))B

+ B(n2FF + inµS(n)(FG + GF ) + oP(nsnjn))B]
(

I + O

(
µS(n)

n

))
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+ hn

ξn

jn∑
i=1

(
I + O

(
µS(n)

n

))

× [(nFF + inµS(n)D + oP(nsnjn))

− B(nFF + inµS(n)D + oP(nsnjn))

− (nFF + inµS(n)D + oP(nsnjn))B

+ B(nFF + inµS(n)D + oP(nsnjn))B]
(

I + O

(
µS(n)

n

))
.

Let R := FG + GF . Collecting the like terms, after a lengthy calculation we obtain

Vn = σ 2
S (n)jn

ξ2
n

(FF − BFF − FFB + BFFB)

+ µS(n)j2
n

2ξ2
nn(n − 1)

(((σ 2
S (n) − µS(n))n + µ2

S(n))(R − BR − RB + BRB)

+ (µS(n)n − σ 2
S (n) − µ2

S(n))(D − BD − DB + BDB)) + oP(1)

= σ 2
S (n)jn

ξ2
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 · · · 0
−1 1 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ µS(n)j2
n

2ξ2
nn(n − 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

nσ 2
S (n)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 3 −1 0 · · · 0
3 −4 1 0 · · · 0

−1 1 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ (nµS(n) − µ2
S(n))

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1 0 · · · 0
−2 4 −2 0 · · · 0
1 −2 1 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+σ 2
S (n)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 · · · 0
−1 0 1 0 · · · 0
0 1 −1 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ oP(1).
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Curiously, this expression can give many different asymptotics according to the interplay
between the factors µS(n), σ 2

S (n), the range sn, and the phase of jn. In all cases ξn → ∞ is
required for convergence, and we consistently used the range condition sn = o(

√
n). When the

term σ 2
S (n)jn is dominant in ξn, i.e. when µS(n)jn/

√
n = o(σS(n)

√
jn), and, thus, αn → 0,

we obtain the convergence

Vn
p−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 · · · 0
−1 1 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Under this scaling, Theorem 1(b) follows. However, when

µS(n)jn/
√

2n√
µ2

S(n)j2
n/2n + σ 2

S (n)j (n)

→ α ∈ (0, 1],

we obtain Theorem 1(a).
As noted previously, when α = 1, the matrix in part (a) of Theorem 1 is singular. The reason

for this singularity can be most easily seen in the standard case of µS(n) ≡ 1 and σS(n) ≡ 0 (a
special case of α = 1). In this case we have, for example (for large n),

X
(n)
jn,0

d≈ N

(
ne−jn/n,

j2
n

2n

)
, X

(n)
jn,1

d≈ N

(
jne−jn/n,

2j2
n

n

)

(cf. Kolchin et al. (1978, p. 38)); here the notation ‘
d≈’ means approximate equality in distribu-

tion. The correlation between X
(n)
jn,0 and X

(n)
jn,1 is approximately (−j2

n/n)e−2jn/n/(j2
n/n) → −1

as n → ∞, so the bivariate limit distribution is degenerate; the same result holds for types 0 and
2, and for types 1 and 2, and for more general values of µS(n) and σS(n) that result in α = 1.
In other words, noting that, for α = 1, the rank of the covariance matrix in Theorem 1(a)
is 1, there is a ‘proper’ multivariate central limit theorem for one combination of the three
random variables—in fact, X

(n)
jn,0 is asymptotically normal, and X

(n)
jn,1 and X

(n)
jn,2 are both linear

combinations of X
(n)
jn,0.

For r > 2, the variables X
(n)
jn,r have asymptotically normal distributions in part (a) of

Theorem 1, but the variances can be of smaller order than µ2
nj

2
n/n, as is the case in standard

coupon collection, with µS(n) ≡ 1 and σS(n) ≡ 0.
In Theorem 1(b), a univariate central limit theorem holds for r ≥ 2, but with variances of

lower order than σ 2
n jn. As the covariance matrix indicates, X

(n)
jn,0 and X

(n)
jn,1 have correlation

−1, but the reason in this case is different from that in part (a). In this case, the term involving
σ 2

S (n) dominates the variances of X
(n)
jn,0 and X

(n)
jn,1, and, asymptotically, the randomness in both

variables is due to {Si(n)}, the random sequence of draws, causing the degeneracy.

9. The linear phase

We are in the linear phase when j = jn ∼ λnn/µS(n). In this phase we take

ξn =
√

n

(
1 + σ 2

S (n)

µS(n)

)
.
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We show next that in the linear phase both X
(n)
j and X

(n)

j can be approximated by the leading
term of the mean with ignorable errors.

Lemma 4. For j ∼ λnn/µS(n) and every r ∈ {0, 1, . . . , k}, we have

X
(n)
j,r = λnne−λn + oL1(n).

Proof. This proof involves extensive computation, and we only highlight its salient points.
Let j = jn be in the linear phase, i.e. j ∼ λnn/µS(n). The exact covariance, as given in
Proposition 1, has three parts: the first part is a double sum on r = 0, . . . , i and i = 0, . . . , j−1;
the middle part is a sum on r = 0, . . . , j ; and the third part is the negative of the product of the
means of X

(n)
j,� and X

(n)
j,m. By direct inspection of the exact mean (2) we see that in the linear

phase

E[X(n)
j,r ] = λr

nn

r! e−λn + O(µS(n)).

Therefore, the third part is −λ2r
n n2e−2λn/�! m! + o(n2). The middle part is also asymptotically

λ2r
n n2e−2λn/�! m! + o(n2). We thus obtain an exact cancellation of the n2 term between the

second and third parts, leaving o(n2).
In the first part, the term µν

S(n)n−ν+1
(
j
ν

)
(1 − µS(n)/n)j−i−1−ν is the mean of the number

of balls of type ν after j − i − 1 draws. As we vary i and r (each up to the linear phase), this
term remains O(n). Combined with all other elements, the first part is o(n2). The three parts
combined give o(n2) covariance between types � and m (for 0 ≤ �, m ≤ k).

Consequently, we have

E

[(
X

(n)
j,r − λr

n

r! ne−λn

)2]
= var[X(n)

j,r ] +
(

E[X(n)
j,r ] − λr

n

r! ne−λn

)2

= o(n2).

So, by Jensen’s inequality,

E

[∣∣∣∣X(n)
j,r − λr

n

r! e−λnn

∣∣∣∣
]

≤
√

E

[(
X

(n)
j,r − λr

n

r! e−λnn

)2]
= o(n),

which implies that

X
(n)
j,r = λr

n

r! e−λnn + oL1(n).

Lemma 5. For j ∼ λnn/µS(n) in the linear phase,

‖∇Ỹ
(n)
j ‖ = 4(k + 1)5/2

√
2k + 1sn.

Proof. It follows from the stochastic recurrence (3) that

‖∇Ỹ
(n)
j ‖ = ‖Y (n)

j − Y
(n)
j−1‖

= ‖M−jX
(n)
j − M−j+1X

(n)
j−1‖

= ‖M−j‖‖X(n)
j − MX

(n)
j−1‖

=
∥∥∥∥e(B−I )λn

(
I + O

(
µS(n)

n

))∥∥∥∥‖(X(n)
j−1 + BH

(n)
j − H

(n)
j ) − MX

(n)
j−1‖

≤ 2‖e(B−I )λn‖
(∥∥∥∥µS(n)

n
(I − B)

∥∥∥∥‖X(n)
j−1‖ + ‖B − I‖‖H (n)

j ‖
)
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= 2e−λn(k + 1)‖eλnB‖‖B − I‖
(

µS(n)

n
‖X(n)

j−1‖ + ‖H (n)
j ‖

)
≤ 2e−λn(k + 1)‖eλnB‖√2k + 1(sn

√
k + 1 + sn

√
k + 1).

Note that

eλnB =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
λn 1 0 · · · 0
...

...
...

. . .
...

λk
n

k!
λk−1

n

(k − 1)!
λk−2

n

(k − 2)! · · · 1

⎞
⎟⎟⎟⎟⎟⎠ ,

with norm less than (k + 1)eλn .

Lemma 6. For j ∼ λnn/µS(n) in the linear phase,

Un :=
jn∑

i=1

E

[∥∥∥∥ 1

ξn

∇Ỹ
(n)
i

∥∥∥∥
2

1{‖∇Ỹ
(n)
i /ξn‖>ε}

∣∣∣∣ Fi−1

]
p−→ 0.

Proof. For any given ε > 0, according to Lemma 5 and the constraint sn = o(
√

n), the sets
{‖∇Ỹ

(n)
i /ξn‖ > ε} are empty for all n greater than some positive integer n0(ε). For n ≥ n0,

we have

Un ≤
n0(ε)∑
j=1

16(k + 1)5(2k + 1)s2
n

n(1 + σ 2
S (n)/µS(n))

≤ 16(k + 1)5(2k + 1)n0(ε)s
2
n

n(1 + σ 2
S (n)/µS(n))

→ 0 as n → ∞.

To handle the conditional variance condition, we break up the sum over 1 to jn ∼ λnn/µS(n)

at some point near the beginning of the linear phase. More precisely, choose a small positive
ε < Q1 and break up the sum in Vn into a sum going from 1 to �εn/µS(n)� − 1 and a sum
starting at �εn/µS(n)� and ending at jn. For large n, we write Vn in the form

Vn = 1

ξ2
n

jn∑
i=1

[gnM
−i (X

(n)
i−1X

(n)

i−1 − BX
(n)
i−1X

(n)

i−1 − X
(n)
i−1X

(n)

i−1B + BX
(n)
i−1X

(n)

i−1B)M
−i

+ hnM
−i (D

(n)
i − BD

(n)
i − D

(n)
i B + BD

(n)
i B)M

−i]

=
(

1

ξ2
n

�εn/µS(n)�−1∑
i=1

+ 1

ξ2
n

jn∑
i=�εn/µS(n)�

)

× [gnM
−i (X

(n)
i−1X

(n)

i−1 − BX
(n)
i−1X

(n)

i−1 − X
(n)
i−1X

(n)

i−1B + BX
(n)
i−1X

(n)

i−1B)M
−i

+ hnM
−i (D

(n)
i − BD

(n)
i − D

(n)
i B + BD

(n)
i B)M

−i]
=: a′

n + a′′
n.

According to the restriction sn = o(
√

n ), we obtain

a′
n = gn

n(1 + σ 2
S (n)/µS(n))

�εn/µS(n)�−1∑
i=1

O(n2) + hn

n(1 + σ 2
S (n)/µS(n))

�εn/µS(n)�−1∑
i=1

O(n)

= o(ε) as ε → 0.
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Let

N
(n)

i = e−iµS(n)/n

(
n, iµS(n),

i2µ2
S(n)

2n
, . . . ,

ikµk
S(n)

k! nk−1

)
.

According to Lemma 4, for i ≤ j in the linear phase,

X
(n)
i−1 = N

(n)
i + oL1(n),

and, subsequently,

X
(n)
i−1X

(n)

i−1 = N
(n)
i N

(n)

i + oL1(n
2).

Let

L
(n)
i = e−iµS(n)/ndiag

(
n, iµS(n), . . . ,

ikµk
S(n)

k! nk−1

)
,

and go further with the computation:

a′′
n = gn

ξ2
n

jn∑
i=�εn�

e−iµS(n)(B−I )/n

(
I + O

(
µS(n)

n

))

× [(N (n)
i N

(n)

i + oL1(n
2)) − B(N

(n)
i N

(n)

i + oL1(n
2))

− (N
(n)
i N

(n)

i + oL1(n
2))B + B(N

(n)
i N

(n)

i + oL1(n
2))B]

× e−iµS(n)(B−I )/n

(
I + O

(
µS(n)

n

))

+ hn

jn∑
i=�εn�

e−iµS(n)(B−I )/n

(
I + O

(
µS(n)

n

))

× [(L(n)
i + oL1(n)) − B(L

(n)
i + o(n))

− (L
(n)
i + oL1(n))B + B(L

(n)
i + oL1(n))B]

× e−iµS(n)(B−I )/n

(
I + O

(
µS(n)

n

))
.

To be able to go through this computation, we first simplify the matrix exponentiation, i.e.

e−iµS(n)(B−I )/n = eiµS(n)/n

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

− iµS(n)

n
1 0 · · · 0

i2µ2
S(n)

2n2 − iµS(n)

n
1 · · · 0

...
...

. . .
...

(−i)kµk
S(n)

k! nk

(−i)k−1µk−1
S (n)

(k − 1)! nk−1

(−i)k−2µk−2
S (n)

(k − 2)! nk−2 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and e−iµS(n)(B−I )/n is, of course, its transpose. Multiplying out, we obtain the second sum

a′′
n = gn

n(1 + σ 2
S (n)/µS(n))

jn∑
i=�εn/µS(n)�

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0 · · · 0
...

...
. . .

...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ (n2 + o(n2))

+ hn

n(1 + σ 2
S (n)/µS(n))

jn∑
i=�εn/µS(n)�

(eiµS(n)/n + o(1))ci,n,

where ci,n is an effectively computable matrix, for example, for 0 ≤ r ≤ k, we have

ci,n(0, r) = (−1)r ir−1µr−1
S (n)

r! nr−1 (iµS(n) + rn)

and

ci,n(1, 1) = 1

n
(i2µ2

S(n) + 3inµS(n) + n2),

etc.
When we put everything together, many cancellations take place, and a tremendous amount

of calculation is needed. We only hint to how one covariance may be obtained to give an
indication of the work involved. Let us take the (0, 0) entry (which is one of the simplest).
Mahmoud (2010) gave this calculation in detail for the case of a bounded range, sn = O(1), in
which βn → β ∈ (0, 1]. Let us take here the opposite case, when the variance dominates the
mean, i.e. when µS(n) = o(σ 2

S (n)), a case where βn → 0. We obtain

Vn(0, 0) = a′
n(0, 0) + a′′

n(0, 0)

= O(ε) +
(

gn

nσ 2
S (n)/µS(n)

jn∑
i=�εn/µS(n)�

n2

+ hn

nσ 2
S (n)/µS(n)

jn∑
i=�εn/µS(n)�

neiµS(n)/n

)
(1 + o(1))

= O(ε) +
(

nµS(n)gn

σ 2
S (n)

(
jn −

⌊
εn

µS(n)

⌋
+ 1

)

+ µS(n)hn

σ 2
S (n)

[(
e(jn+1)µS(n)/n − 1

eµS(n)/n − 1

)
−
(

e�εn/µS(n)� − 1

eµS(n)/n − 1

)])
(1 + o(1)).

Let ε approach 0, and write the limit

Vn(0, 0) =
(

nµS(n)gn

σ 2
S (n)

(jn + 1) + µS(n)hn

σ 2
S (n)

(
e(jn+1)µS(n)/n − 1

eµS(n)/n − 1

))
(1 + o(1)).

We are in a phase where jn ∼ λnn/µS(n), and the latter expression is asymptotically

Vn(0, 0) ∼ nµS(n)((σ 2
S (n) − µS(n))n + µ2

S(n))

n2(n − 1)σ 2
S (n)

(
λnn

µS(n)

)

+ µS(n)(µS(n)n − σ 2
S (n) − µ2

S(n))

n(n − 1)σ 2
S (n)

(
eλn − 1

µS(n)/n

)
.
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We now use the assumptions that the mean and variance are small relative to n, and the
dominance of the variance to arrive at

Vn(0, 0) ∼ λn + µS(n)

σ 2
S (n)

(eλn − 1) = λn + o(1).

So, if λn → λ > 0, we have Vn(0, 0) → λ. In a like manner we can obtain the other entries of
the limit of Vn, and find that they are all 0, except the entries (�, m) for 0 ≤ �, m ≤ 1, which
are (−1)�+mλ.

For β > 0, an application of the martingale central limit theorem gives

1√
n

⎛
⎜⎜⎜⎝M−jnX

(n)
jn

−

⎛
⎜⎜⎜⎝

n

0
...

0

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ d−→ eλe−λBNk+1

(
0, Jk+1 + 1 − β

β
J ′

k+1

)
.

As we assumed that λn → λ > 0, we have M−jn → eλe−λB . By an application of the
(multivariate) Slutsky theorem, we obtain the statement of Theorem 2(a).

For β = 0, further cancellations occur, obliterating the terms of order n in n(1 +
σ 2

S (n)/µS(n))Vn, leaving behind terms of the order nσ 2
S (n)/µS(n). Calculations (not shown)

similar to those highlighted in the case of β > 0 give

1

σS(n)
√

n/µS(n)

⎛
⎜⎜⎜⎝M−jnX

(n)
jn

−

⎛
⎜⎜⎜⎝

n

0
...

0

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ d−→ Nk+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0, λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 · · · 0
−1 1 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Again, as we assumed that λn → λ > 0, we have M−jn → eλe−λB , and an application of the
multivariate Slutsky theorem yields

X
(n)
jn

− ne−λνk+1

σS(n)
√

n/µS(n)

d−→ Nk+1(0, J ′
k+1),

provided that λ is not a positive integer that is at most k. When λ is an integer that is at most
k, the covariance matrix J ′

k+1 is degenerate (if λ = r, the rth row and column are all 0s) and
only the term from Jk+1 is present in the variance.

10. Illustrating examples

The covariance formula in Proposition 1 is not easy to reduce, however, we can manage to
obtain compact forms for small � and m. For example, extracting the (0, 1) entry from this
form, we obtain

E[X(n)
j,0X

(n)
j,1] = hn

j−1∑
i=0

i∑
r=0

gi−r
n

(
i

r

)
(n − µS(n))j−i+2r−2

nj−i+2r−2 ((i + 1)µS(n) − (i + 1 − r)n)

+ n2
j∑

r=0

g
j−r
n

(
j

r

)
(n − µS(n))2r−1(jµS(n) − (j − r)n)

n2r
.
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Reducing these sums we obtain

E[X(n)
j,0, X

(n)
j,1] = j (µS(n)n − σ 2

S (n) − µ2
S(n))

(
(n − µ(n))(n − µ2

S(n) − 1) + σ 2
S (n)

n(n − 1)

)j−1

.

Subtracting E[X(n)
j,0] E[X(n)

j,1], we obtain the covariance

cov[X(n)
j,0X

(n)
j,1] = j (µS(n)n − σ 2

S (n) − µ2
S(n))

(
(n − µ(n))(n − µ2

S(n) − 1) + σ 2
S (n)

n(n − 1)

)j−1

− jnµS(n)

(
1 − µS(n)

n

)2j−1

.

Likewise,

var[X(n)
j,0] = n

[
(n − 1)

(
(n − nµS(n))(n − µS(n) − 1) + σ 2

S (n)

n(n − 1)

)j−1

+
(

n − µS(n)

n

)j]

− n2
(

n − µS(n)

n

)2j

and

var[X(n)
j,1] = jµS(n)

(
n − µS(n)

n

)j−1

− j2µ2
S(n)

(
n − µS(n)

n

)2j−2

+ j [j (σ 2
S (n) + µ2

S(n) − µS(n)n)2 + (n − 1)(σ 2
S (n)n − µS(n)(n − µS(n)))]

× ((n − µS(n))(n − µS(n) − 1) + σ 2
S (n))j−2

(
1

n(n − 1)

)j−1

.

10.1. Standard coupon collection

Consider the standard Dixie Cup problem, where S ≡ 1. We illustrate the covariance
computation at the beginning of this section on coupons of types 0 and 1. Here we have the
covariances

cov[X(n)
j,0, X

(n)
j,1] = j (n − 1)

(
n − 2

n

)j−1

− jn

(
n − 1

n

)2j−1

∼ −e−2λλ2n,

var[X(n)
j,0] = n

[
(n − 1)

(
n − 2

n

)j

+
(

n − 1

n

)j]
− n2

(
n − 1

n

)2j

∼ e−2λ(λeλ − λ − 1)n,

var[X(n)
j,1] = j

(
n − 1

n

)j

− j2
(

n − 1

n

)2j−2

+ j (j − 1)(n − 1)

n

(
n − 2

n

)j−2

∼ e−2λ(λeλ − λ + λ2 − λ3)n.

Thus, in the linear phase (when µS(n)jn = jn ∼ λnn for λn convergent to a fixed λ > 0), the
asymptotic covariance matrix of types 0 and 1 is

cov[X(n)
j ] = J2n + o(n) = e−2λ

(
eλ − 1 − λ −λ2

−λ2 λeλ − λ + λ2 − λ3

)
n + o(n),

as in Kolchin et al. (1978, p. 38).
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In this example √
µ2

S(n)j2
n

2n
+ σ 2

S (n)jn =
√

j2
n

2n
,

and so sn = 1 = o(
√

j2
n/n) is only satisfied in the upper sublinear phase

√
n = o(jn). Here

αn ≡ 1, and Theorem 1(a) gives

1

jn/
√

n

⎛
⎜⎜⎝X

(n)
jn

−
(

1 − 1

n

)jn

⎛
⎜⎜⎝

n

jn

j2
n

2n

⎞
⎟⎟⎠
⎞
⎟⎟⎠ d−→ N3

⎛
⎝0,

1

2

⎛
⎝ 1 −2 1

−2 4 1
1 −2 1

⎞
⎠
⎞
⎠ ,

starting at the phase jn/
√

n → ∞ and going all the way to the end of the sublinear phase at
jn = o(n). (The limiting covariance matrix is singular, but each of the types 0, 1, and 2 satisfies
a univariate central limit theorem.)

In the linear phase, when jn ∼ λnn (for λn convergent to a fixed λ > 0), we have βn ≡ 1 in
Theorem 2(a), giving

X
(n)
jn

− ne−λνk+1√
n

d−→ Nk+1(0, Jk+1).

The results are not very different if a fixed number, S ≡ s, is acquired in each purchase.
Essentially, all the results above stay the same, with the rth component of the shift factor
(asymptotic mean of the sampling distribution) scaled by sr for r = 0, 1, 2, and the limiting
covariance matrix multiplied by s2.

10.2. An example with a sampling distribution of fixed range

Suppose that the sampling distribution has distribution 1 + Bin(s, 1
2 ), with fixed s. Here,

µS(n) = 1 + 1
2 s and σ 2

S (n) = 1
4 s. In this example,

sn = s + 1 = o

(√
µ2

S(n)j2
n

2n
+ σ 2

S (n)jn

)
.

So, sn = o(jn) throughout the entire growing sublinear phase. Subsequently, αn → 0 in
Theorem 1(b), and we obtain the central limit result

1√
jn

(
X

(n)
jn

−
(

1 − s + 2

2n

)jn
(

n
(s + 2)jn

2

))
d−→ N2

(
0,

s2

16

(
1 −1

−1 1

))
,

applying in the entire growing sublinear phase, where jn → ∞ and jn = o(n). (Again, the
matrix is singular.)

In the linear phase, when jn ∼ 2λnn/(s + 2) for λn convergent to a fixed λ > 0, we obtain
β = (2s + 4)/(3s + 4) > 0 and Theorem 2(a) gives

X
(n)
jn

− ne−λνk+1√
n

d−→ Nk+1

(
0, Jk+1 + s

2s + 4
J ′

k+1

)
.
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10.3. An example with a nearly degenerate sampling distribution on a two-point set

Suppose that the sampling distribution is the two-point distribution

P(Sj = k) =

⎧⎪⎨
⎪⎩

5

ln n
if k = �ln n� − 1,

1 − 5

ln n
if k = �ln n�,

for n ≥ 149. Here, we have

µS(n) = 5

ln n
(�ln n� − 1) +

(
1 − 5

ln n

)
�ln n� = �ln n� − 5

ln n
∼ ln n,

σ 2
S (n) = 5

ln n
(�ln n� − 1)2 +

(
1 − 5

ln n

)
�ln n�2 − µ2

S(n) = 5

ln n
− 25

ln2 n
→ 0.

The sampling distribution is concentrated at the point �ln n�; in fact, S(n) − �ln n� p−→ 0. In
this example,

sn = �ln n� = o

(√
j2
n ln2 n

2n
+ 5jn

ln n

)
for any jn in the phase ln n = o(jn). The term j2

n ln2 n/2n does not begin to dominate 5jn/ln n

until jn is at least of the order n/ ln3 n, which is very close to the linear phase (which begins at
the order n/ln n). So, we have three sublinear phases. In the early sublinear phase, beginning at
ln n = o(jn) and going up to o(n/ln3 n), the term 5jn/ln n is dominant. In this phase αn → 0,
and by Theorem 1(b) we obtain (for types 0 and 1)

1√
jn/ ln n

(
X

(n)
jn

−
(

1 − �ln n�
n

)jn
(

n
jn ln n

n

))
d−→ N2

(
0, 5

(
1 −1

−1 1

))
.

Then comes the middle sublinear phase, where j2
n ln2 n/2n ∼ q5jn/ln n for some q > 0.

Theorem 1(a) applies with α = q/(q + 1). In the upper sublinear phase, n/ln3 n = o(jn), but
jn remains sublinear, i.e. jn = o(n/ln n). Theorem 1(a) applies with α = 1. Hence, only in
the middle sublinear phase do we obtain a nondegenerate trivariate central limit theorem for
this example.

In the linear phase, when jn ∼ λnn/ln n (for λn convergent to a fixed λ > 0) and βn → 1,
for types 0, 1, . . . , k, we obtain

X
(n)
jn

− ne−λνk+1√
n

d−→ Nk+1(0, Jk+1).

10.4. An example with a uniform sampling distribution on a growing range

Consider coupon collection where at each purchase a uniformly distributed number on the
set {1, 2, . . . , 12�n1/8�} is acquired. In this example,

µS(n) ∼ 6n1/8 and σ 2
S (n) = 12n1/4.

With these rates of growth we have the condition

sn = 12�n1/8� = o

(√
µ2

S(n)j2
n

2n
+ σ 2

S (n)jn

)
,
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which means that sn = o(
√

18j2
n/n3/4 + 12jnn1/4) is automatically satisfied in the growing

sublinear phase. In the growing sublinear phase, where jn = o(n7/8), σ 2
S (n)jn dominates

µ2
S(n)j2

n/(2n) in the upper sublinear phase n1/4 = o(jn). So, Theorem 1(b) applies, giving

1

n1/8
√

jn

(
X

(n)
jn

−
(

1 − 12�n1/8� + 1

2n

)jn
(

n

6jnn
1/8

))
d−→ N2

(
0, 12

(
1 −1

−1 1

))
,

holding throughout the entire sublinear phase (ending at o(j
7/8
n )).

For Theorem 2, we compute µS(n)/(µS(n) + σ 2
S (n)) → 0. In the linear phase, when jn ∼

1
6λnn

7/8 (for λn convergent to a fixed λ > 0), by Theorem 2(b), X(n)
jn

(properly normalized) has
limiting covariance matrix J ′

k+1, provided that λ is not a positive integer, and, for r = 0, 1, . . . k,

each type satisfies a univariate central limit theorem.
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