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Let H be a complex Hilbert space. For any operator (bounded linear transformation)
T on H, we denote the spectrum of T by <r(T). Let T = (Tlt..., TJ be an n-tuple of
commuting operators on H. Let Sp(T) be the Taylor joint spectrum of T. We refer the
reader to [8] for the definition of Sp(T). A point v = (vu..., vn) of C" is in the joint
approximate point spectrum cr^(T) of T if there exists a sequence {xk} of unit vectors in H
such that

||(T,—i^xJ^O as fc^oo for j=l,...,n.

A point v = (yx,..., vn) of C" is in the joint approximate compression spectrum o-s{T) of
T if there exists a sequence {xfc} of unit vectors in H such that

||(T,-v,.)*xJ-*0 as k^cc for j = l,...,n.

A point v - (vx,..., vn) of C" is in the joint point spectrum crp(T) of T if there exists a
non-zero vector x in H such that {Ti-vi)x = Q for all /, l=s/s£n.

Consult [4] for further details regarding the notions of crT(T), crs(T) and ap(T). It is
well known that o-1T(T)Ucrs(T)cSp(T).

LEMMA 1 (S. K. Berberian [1]). Let B(H) be the *-algebra of all bounded operators on
H. Then there exists an extension space K of H and a faithful *-homomorphism of B(H)
into B(K):S-*S° such that

O V ( S ) = OV(S 0 ) = CTP(S0).

Furthermore, if T=(TU ..., TJ is an n-tuple of commuting operators on H then

a^(Tu ..., T J = cr^Tl ...,T°n) = <r p (T? , . . . , T°J.

See [2] or [5, Proposition 3.2] for a proof.

An n-tuple T = (TU ..., TJ of operators is said to be hyponormal if T^Ty-T,7^3=0
for j = 1 , . . . , n. We say that T = (Tr,..., TJ is semi-normal if each T, is semi-normal (Ty

or T* is hyponormal) for j , l=s/s£n.

LEMMA 2 [3, Corollary 3.8]. Let T = (T 1 ; . . . , Tn) be a doubly commuting n-tuple
of hyponormal operators (i.e. T;Tj = TfT; for all i, j and TjT^TfTi for all i£j, and

t). Then
= o-s(T). (1)

Furthermore, if T = (Ti, T2) is a doubly commuting pair of operators with Tx and T* being
hyponormal then

(vu v2)€Sp(T1, T2) ifandonly if (vu v^eSpiT,, T|) = as(T1, T*). (2)
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The following result was proved by Putman [6]. See also [7].

LEMMA 3. Let T be a semi-normal operator with T = A + iB.
(i) If ke cr(A), there exists a real number jx and a sequence {xk} of unit vectors such

that
||(A-A)xJ-*0 and

that is, A + jjx e cr(T). Similarly, if /x e o-(B) then there exists a real number A and {xk} in H
with \\xk\\= 1 such that

IKA-AKU^O and \\(B-v)xk)\\^0.
(ii) Let A and /x be real numbers. If A + i/x e o-(T) then A e o-(A) and /x e cr(B).

We generalize this result to doubly commuting n-tuples of semi-normal operators.

THEOREM. Let T=(TU ..., TJ be a doubly commuting n-tuple of semi-normal
operators with T) = A, + JB,, j = 1 , . . . , n. Write A = ( A 1 ; . . . , An) and B = (Bu ..., Bn).

(i) If A = ( A l 5 . . . , An) e Sp(A) then there exists /x = (/x1; . . . , /x,,) e IRn and a sequence
{xk} of unit vectors in H such that

I K A J - A J O X J - X ) and WiB,-^)xk\\^0, j = l,...,n,

that is, v = A + t/x = (Ax + i /x1 ? . . . , An + ijxn) e Sp(T).
An analogous result holds for Sp(B).
(ii) Let A, and fi, be real numbers for j , j = 1 , . . . , n. If A + i/x =

(A1+i(Al,...,An + ifOeSp(T) ^en A = (A1 ; . . . , An) e Sp(A) and fA = ( ^ , . . . , ^tn)e
Sp(B).

Proof. It is clear from Lemma 2 (2) and the proof of the theorem given below that
there is no loss of generality in assuming that T = (T 1 ; . . . , TJ is hyponormal.

(i) Here we give the proof for Sp(A). The proof for Sp(B) is similar. Furthermore,
since A is an n-tuple of commuting self-adjoint operators, it is well known that
Sp(A) = a^(A). (Consult [4] or Lemma 2.) Thus Ae<rir(A). By Lemma 1, we have

d^(A°) = <TP(A°). Hence A = (A1 ; . . . , An) e <TP(A°). Set

We show that M is a reducing subspace for B ? , . . . , B°. Since Tf is hyponormal, we have
To*To_ToTo* = 2 . ( A o B o _ B o A o ) > 0 S e t Q = i(A°B°-B°A°). Thus Cy>0. But
( A J ' - A ^ - B ^ A ? -A,) = -iQ. Therefore, for feM, -i(Cj/,/) = ((A°-A,)B]

0/,/)-
(BJ°(A°-A])/,/) = 0. Since C,5=0, it follows that Qf = 0. This implies that (A°-Aj)B°/ =
0. If i + j , (A° - Ai)B° = B°(A° - A,). Thus (A° - Aj)B°/ = 0 for / e M. Hence M is a reduc-
ing subspace for J3?,. . . , B°. Thus there exists JA = (/xj, . . . , (xj e o-w(B?|M,..., B°u) =
orp(B°|M,..., B°|M). This implies that there exists a non-zero vector feM such that Bff =
tijf, j = 1 , . . . , n. Hence (A, /x) e orp(A°, B°) = ^ ( A , B). Therefore, there exists {xk} in H
with ||xk|| = 1 such that

A^XklHO and
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(ii) We will prove this part of the theorem by the method of induction. For n = 1, see
Lemma 3(ii). However, we give here a simple proof. If v = A + ifj. e <x(T), where T is
hyponormal, then there exists a real number fi' such that v' = X. + i/x' e dcr(T). Here do-(T)
denotes the boundary of tr(T). But do-(T)c.o-^(T). This means that there exists a
sequence {xk} of unit vectors in H such that ((T — v')*(T— v')xk, xk)—»0. But
(T-v')*(T-v') = (A-\)2 + (B-lji)

2+C. Since C3=0, this implies that ||(A-A)xfc||-»O.
Thus A e cr(A). Next we assume that the theorem is true for (n — l)-tuples (T 1 ; . . . , Tn_i).
Moreover, if we denote the complex conjugate of a complex number v by v*, then
Sp(T) = as(T) = cr^T*)* = <rjT*0)* = o-p(T*0)*. Thus v* = ( i /? , . . . , v*n)eo-p(T*°). Hence
there exists feK such that (T*°-vf)f = O for j = l,...,n. Let E =
{f<=K:(T*°- v*)/ = 0}. Since T ? , . . . , T°_t are doubly commuting, it is clear that E is a
reducing subspace of T ° , . . . , T°_a. Thus (v*,..., vt-i)eap(Ttt •••, TtUQ. This im-
plies that {vu ..., vn_1)eSp(T°|E,..., T°^J. Note that (T°I E, . . . , T°_1[E)_ is a doubly
commuting (n - l)-tuple of hyponormal operators. Thus by the assumption, it follows that
(A1 ; . . . , An_i) e cr^(A?|E,..., A°_nE) = o-p(A?,E,..., A°_ 1 | E ) . Therefore, there exists a non-
zero vector f0 such that

A?/o = Vo (j=l,...,n-l) and T*°/o = v*/0. (3)

Let N = {feK:A°f=\jf, j = 1 , . . . , n -1} . Thus, by equation (3), we have vneor(T°J.
Set vre = An + ifi.n. Clearly T°,N is hyponormal. But 3CT(T°IN) S <TW(T°L). Thus there exists a
real number /a^ such that v'n = An + i|u.^€ao-(T"|N)co-^(T"|N) = a-p(T"|N). This means that
there exists / e N such that ( T ° - < ) / = 0. But T°]N is hyponormal and hence T°llN-v'n is
hyponormal. Thus 0 = (T^ | N -^* (T^ l N -^ /= (A° N -A n ) 2 /+B° l N - / x0 2 /+CJ . Since
Cn > 0, this implies that (A°,N- An)/ = 0. Therefore, we have (A° - A,)/ = 0, for / = 1 , . . . , n.
Hence A GCTP(A°, ..., A(^) = a7v(A1,..., An). Similarly, one shows that {fxu ..., f O e

cr^iB-i,..., Bn). This proves the theorem.

Thus we have shown:
Sp(A) = {Rev:veSp(T)}

and
Sp(B)={Imv:veSp(T)},

where T = (T 1 ; . . . , TJ is an n-tuple of doubly commuting semi-normal operators, and
Re v = (Re vx,..., Re vn) and Im v = (Im vx,..., Im vn).

COROLLARY. Let T=(T1,..., Tn) be a commuting n-tuple of semi-normal operators. If
Sp(T)cR" then Tj is self-adjoint for each j , j = 1 , . . . , n.

Proof. Suppose that 7]=A, + jB,, Bj^O for some /. Then there exists a real number
fty^O such that JOI,-e o-(B,-). Then by the above theorem, there exists A,elR such that
Ay + i/x, e o-(Tj). See also [5]. But, by the projection property of Taylor's joint spectra, we
have P,(Sp(T)) = <r(T,), where P, is the projection onto the /th co-ordinate. Thus we have
A, + ifA, e <r(7}) = P,(Sp(T)). This contradicts the fact that Sp(T) c |Rn. Thus Tj is self-adjoint
for each / , / = ! , . . . , n.
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In the passing, we remark that our proof of the theorem also gives a simpler proof of
Putman's theorem [Lemma 3].
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