A THEOREM ON DIVISION RINGS

IRVING KAPLANSKY

The object of this note is to prove the following theorem.
Theorem. Let A be a division ring with centre Z, and suppose that for every x in A, some power (depending on x) is in $Z: x^{n(x)} \in Z$. Then A is commutative.

This theorem contains as special cases three previously known results.

1. It includes Wedderburn's theorem that any finite division ring is commutative, and the generalization by Jacobson [3, Theorem 8] asserting that any algebraic division algebra over a finite field is commutative; for in such an algebra every non-zero element has some power equal to 1 .
2. It includes a theorem of Emmy Noether, as generalized by Jacobson [3, Lemma 2], stating that any non-commutative algebraic division algebra contains an element separable over the centre; for otherwise a suitable p^{m} th power of every element would lie in the centre.
3. Hua [1, Theorem 7] has proved the special case of the theorem where the power n is independent of x, and the characteristic is at least n.

Although our theorem generalizes the two cited theorems of Jacobson, we are not giving a new proof of these theorems. In fact, we shall prove a preliminary lemma on fields which reduces the problem precisely to these two theorems.

Lemma. Let K be a field and L an extension of $K, L \neq K$, with the property that for every x in L, some power (the power depending on x) lies in K. Then L has prime characteristic, and it is either purely inseparable over K, or algebraic over its prime subfield.

Proof. If L is indeed purely inseparable over K, there is of course nothing to prove. So suppose L contains an element y, y non $\in K$, which is separable over K. By a suitable isomorphism leaving K elementwise fixed, y can be sent into an element $z \neq y$ (of course z need not be in L). We have, say, $y^{r} \in K$ and and so $z^{r}=y^{r}$, whence $z=\epsilon y$ with $\epsilon^{r}=1$. Suppose $(1+y)^{s} \in K$; then similarly $1+z=\eta(1+y)$ with $\eta^{s}=1$. We cannot have $\epsilon=\eta$, for then $\epsilon=1, z=y$. So we may solve for y :

$$
\begin{equation*}
y=(1-\eta)(\eta-\epsilon)^{-1} \tag{1}
\end{equation*}
$$

We see that y is algebraic over the prime subfield P of K. If k is any element of K, we can repeat this argument with $k+y$ instead of y, and thus deduce

Received September 26, 1950.
that $k+y$, and hence k, is algebraic over P. In short, K is algebraic over P. If P has prime characteristic, we have reached the other possibility stated in the conclusion of the lemma, so it remains only to exclude the possibility that P has characteristic 0 (which means that it is the field of rational numbers). This we do as follows. For any integer i we have an expression like (1) for $y+i$:

$$
\begin{equation*}
y+i=\left(1-\eta_{i}\right)\left(\eta_{i}-\epsilon_{i}\right)^{-1} \tag{2}
\end{equation*}
$$

Moreover, the definition of η_{i} and ϵ_{i} shows that they lie in the normal field, say Q, generated by y over P. But Q, being a finite-dimensional extension of P, contains only a finite number of roots of unity. This leaves us powerless to account for the infinite number of elements in (2).

Proof of the theorem. If $A \neq Z$, choose any element x not in Z, and let L be the field generated by Z and x. Then the hypothesis of the lemma is fulfilled (with Z playing the role of K). The possibility that Z has prime characteristic and is algebraic over its prime subfield is ruled out by the first theorem of Jacobson cited above. So it must be true that L is purely inseparable over Z. This is the case for every x, and we contradict the second theorem of Jacobson.

Theorem 7 of [1] actually states that a non-commutative division ring is generated by its nth powers. Our theorem can be given a corresponding extension as follows. For every x of a non-commutative division ring A, let there be given a positive integer $n(x)$ such that $n(x)=n\left(a^{-1} x a\right)$ for all $a \neq 0$; let B be the division subring generated by the elements $x^{n(x)}$; then $B=A$. For B is invariant under all inner automorphisms, and if $B \neq A$ then by the theorem of Cartan-Brauer-Hua [1, Theorem 2] B is contained in the centre of A, contradicting the above theorem.

In conclusion we discuss two possibilities of generalization. In the first place we might consider relaxing the requirement that A be a division ring. In fact, our theorem remains correct if we merely assume that A is semisimple in the sense of Jacobson [2]. The manœuvre for proving this has become fairly standard since the appearance of Jacobson's paper. If P is a primitive ideal in A, our hypothesis is inherited by A / P; if we prove that each A / P is commutative we will know that A is commutative, and so we need only consider the case where A is primitive. We represent A as a dense ring of linear transformations in a vector space V over a division ring. We now in effect check our theorem for two-by-two matrices. In detail: if V is more than one-dimensional, let a and β be linearly independent vectors, and let x be an element of A sending a into itself and annihilating β. It is impossible for any power of x to be in the centre. So V is one-dimensional, and we are back to the division ring case of the theorem.

Another path along which to proceed is to have a polynomial more general than x^{n}. We shall not attempt more than the case where n is independent of
x, although it would be interesting to invent plausible "one-parameter families" generalizing $\left\{x^{n}\right\}$. We assume then that there exists a polynomial f with coefficients in Z (we can suppose it has no constant term) such that $f(x) \in Z$ for every x. Since A then satisfies the identity $f(x) y-y f(x)=0$, it follows forthwith from [4, Theorem 1] that A is finite-dimensional over Z. But as a matter of fact it is again true that A is commutative. For suppose f has smallest possible degree among polynomials with $f(x) \in Z$. We can suppose there is an element u in Z no power of which is 1 (otherwise Z would be of prime characteristic and algebraic over its prime field, etc.). Consider the polynomial $g(x)=f(x)-u^{n} f\left(x u^{-1}\right), n$ being the degree of f; the degree of g is less than n, and it again has the property $g(x) \in Z$ for every x. The only way out is for g to be identically zero, which means $f(x)=x^{n}$, and we are back to the old case.

One must step cautiously in attempting to generalize this last result beyond division rings: observe that the ring of two-by-two matrices over $G F(2)$ satisfies the identity $x^{8}=x^{2}$.

References

[1] L. K. Hua, Some properties of a sfield, Proc. Nat. Acad. Sci. USA, vol. 35 (1949), 533-537.
[2] N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. of Math., vol. 67 (1945), 300-320.
[3] - Structure theory for algebraic algebras of bounded degree, Ann. of Math., vol. 46 (1945), 695-707.
[4] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc., vol. 54 (1948), 575-580.

University of Chicago

