Bull. Austral. Math. Soc. Vol. 56 (1997) [263-272]

COMPARABLE DIFFERENTIABILITY CHARACTERISATIONS OF TWO CLASSES OF BANACH SPACES

J.R. GILES

We characterise Banach spaces not containing ℓ_1 by a differentiability property of each equivalent norm and show that a slightly stronger differentiability property characterises Asplund spaces.

A continuous convex function ϕ on an open convex subset A of a normed linear space X is Gâteaux differentiable at $x \in A$ in the direction $y \in X$ if

$$\phi'(x)(y) \equiv \lim_{\lambda \to 0} \ rac{\phi(x+\lambda y) - \phi(x)}{\lambda}$$

exists, and is Gâteaux differentiable at x if $\phi'(x)(y)$ exists for all $y \in X$. Further ϕ is Fréchet differentiable at x if the limit $\phi'(x)(y)$ is approached uniformly for all $y \in X$, ||y|| = 1

An Asplund space is a Banach space X where every continuous convex function ϕ on an open convex subset A of X is Fréchet differentiable on a dense G_{δ} subset of A. The theory of Asplund spaces is by now well established, (see [6]). Our first interest is in the following characterisations.

PROPOSITION 1. For a Banach space X, the following are equivalent.

- (i) X is an Asplund space,
- (ii) every nonempty bounded subset K of X^* has weak* slices of arbitrarily small diameter, [6, p.31],
- (iii) every continuous weak* lower semi-continuous convex function ϕ on an open convex subset A of X^{**} is Fréchet differentiable at the points of a dense G_{δ} subset of A, [6, p.94],
- (iv) every equivalent norm p on X is Fréchet differentiable at some point of X, [6, p.33].

We note that given a nonempty bounded subset K of X^* , a weak* slice of K is a nonempty subset of K of the form

$$S(K, \widehat{x}, \delta) \equiv \{f \in K : f(x) > \sup \widehat{x}(K) - \delta\}$$

Received 13th November, 1996

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

for some $x \in X \setminus \{0\}$ and $\delta > 0$.

The study of Banach spaces not containing ℓ_1 is also well established, (see [8]). However, a fascinating characterisation for such spaces was given in [7, p.422].

PROPOSITION 2. A Banach space X does not contain a subspace topologically isomorphic to ℓ_1 if and only if, given $F \in X^{**}$, every nonempty bounded subset K of X^* has weak* slices over which the oscillation of F is arbitrarily small.

We recall that, given $F \in X^{**}$ and a nonempty bounded set K in X^* , the oscillation of F over K is

$$\omega\left(F(K)\right) \equiv \sup\left\{\left|F(f-g)\right| : f,g \in K\right\}.$$

Because the characterisation in Proposition 2 is comparable to that given in Proposition 1 (i) \iff (ii), it suggests that we investigate a differentiability characterisation comparable to Proposition 1 (i) \iff (iii) \iff (iv).

A set-valued mapping Φ from a topological space A into subsets of the dual X^* of a Banach space X is said to be *minimal* if given any open set $U \subseteq A$ and a weak^{*} open half-space W in X^* such that $\Phi(U) \cap W \neq \emptyset$ there exists a nonempty open set $V \subseteq U$ such that $\Phi(V) \subseteq W$. Further Φ is said to be *locally bounded* if for every $x \in A$ there exists a neighbourhood U of x such that $\Phi(U)$ is bounded in X^* .

Given a continuous convex function ϕ on an open convex subset A of a Banach space X, the subdifferential of ϕ at $x \in A$ is the set

$$\partial \phi(x) \equiv \left\{ f \in X^* : f(y) \leqslant \phi_+^{+}(x)(y) \text{ for all } y \in X
ight\}.$$

Given a separated locally convex topology τ on the dual X^* , the subdifferential mapping $x \mapsto \partial \phi(x)$ is τ -upper semi-continuous at $x \in A$ if given W a τ -open subset of X^* such that $\partial \phi(x) \subseteq W$ there exists a $\delta > 0$ such that $\partial \phi(y) \subseteq W$ for all $y \in A$, $||x - y|| < \delta$. The subdifferential mapping $x \mapsto \partial \phi(x)$ is a minimal weak* cusco on A; that is, given $x \in A$, $\partial \phi(x)$ is nonempty, weak* compact and convex and the mapping is weak* upper semi-continuous and minimal on A. It is also locally bounded. Now ϕ is Gâteaux differentiable at $x \in A$ if and only if $\partial \phi(x)$ is singleton and is Fréchet differentiable at x if and only if $\partial \phi(x)$ is singleton and the subdifferential mapping $x \mapsto \partial \phi(x)$ is norm upper semi-continuous at x, [6, p.19].

Given a continuous convex function ϕ on an open convex subset A of a Banach space X we can extend ϕ as a lower semi-continuous convex function $\overline{\phi}$ on X by defining

$$\overline{\phi}(x) = \begin{cases} \liminf_{y \to x} \phi(y) & \text{for } x \in \overline{A} \\ +\infty & \text{otherwise} \end{cases}$$

The subdifferential of $\overline{\phi}$ at $x \in A$ is the set $\partial \phi(x)$. The lower semi-continuous convex function ϕ^* on X^* , the Fenchel conjugate of ϕ on A is defined by

$$\phi^*(f) = \sup \left\{ f(x) - \overline{\phi}(x) : x \in \overline{A} \right\}.$$

Now $f \in \partial \phi(x)$ if and only if $\widehat{x} \in \partial \phi^*(f)$. Also $\phi^{**}|_{\widehat{A}} = \phi$, [6. p.42].

THEOREM 1. For a Banach space X, the following are equivalent.

- (i) X does not contain a subspace topologically isomorphic to ℓ_1 ,
- (ii) for every nonempty bounded subset K of X^* , given $\varepsilon > 0$ and $F \in X^{**}$ there exists $x \in X \setminus \{0\}$ and $\delta(\varepsilon, F, x) > 0$ such that

$$\omega\left(F\left(S(K,\widehat{x},\delta)\right)\right)<\varepsilon$$

- (iii) for every continuous convex function ϕ on an open convex subset A of X, given $F \in X^{**}$ the real set-valued mapping $x \mapsto F(\partial \phi(x))$ is single-valued and upper semi-continuous at the points of a dense G_{δ} subset D_F of A.
- (iv) for every continuous convex function ϕ on an open convex subset A of X, given $F \in X^{**} \setminus \{0\}$, ϕ^{**} , the second Fenchel conjugate of ϕ on X^{**} , is Gâteaux differentiable in the direction F at the points of a dense G_{δ} subset D_F of \hat{A} .
- (v) for every equivalent norm p on X, given $F \in X^{**} \setminus \{0\}$ the norm p^{**} on X^{**} induced by p is Gâteaux differentiable in the direction F at some point of \hat{X} .

Proof:

(i)
$$\iff$$
 (ii) is Proposition 2.

(ii) \implies (iii) Given $F \in X^{**}$ and $\varepsilon > 0$ consider the set

$$O_{\varepsilon} \equiv \bigcup \{ \text{ open } U \subseteq A : \omega \left(F(\partial \phi(U)) \right) < \varepsilon \}.$$

Now O_{ε} is open in A; we show that it is dense in A. Consider open $U \subseteq A$ such that $\partial \phi(U)$ is bounded. By (ii) there exists a weak* slice S of $\partial \phi(U)$ such that $\omega(F(S)) < \varepsilon$. Since the subdifferential mapping $x \mapsto \partial \phi(x)$ is a minimal weak* cusco on A, there exists a nonempty open set $V \subseteq U$ such that $\partial \phi(V) \subseteq S$. But then $\omega(F(\partial \phi(V))) < \varepsilon$. We conclude that $D_F \equiv \bigcap_{\varepsilon > 0} O_{\varepsilon}$, the set where the mapping $x \mapsto F(\partial \phi(x))$ is single-valued and upper semi-continuous, is a dense G_{δ} subset of A.

(iii) \implies (iv) Suppose that ϕ^{**} is not Gâteaux differentiable in the direction F at $\hat{x}_0 \in \hat{A}$.

Then there exist $\widehat{f}_0, \mathfrak{F} \in \partial \phi^{**}(\widehat{x}_0), \ \mathfrak{F} \neq \widehat{f}_0 \text{ and } r > 0 \text{ such that } (\mathfrak{F} - \widehat{f}_0)(F) > r$. Since $B(\widehat{X}^*)$ is weak* dense in $B(X^{***})$, for each $n \in \mathbb{N}$ there exists $g_n \in \widehat{X}^*$, $||g_n|| \leq ||\mathcal{F}||$ such that Since

$$\mathfrak{F}(F) - \mathfrak{F}(\widehat{x}_0) \leqslant \phi^{**}(F) - \phi^{**}(\widehat{x}_0) ext{ for all } F \in \widehat{A}$$

 $g_n(x) - g_n(x_0) \leqslant \phi(x) - \phi(x_0) + rac{2}{n} ext{ for all } x \in A.$

 $|(\mathcal{F}-\widehat{q}_n)(F)| < \frac{1}{2}$ and $|(\mathcal{F}-\widehat{q}_n)(\widehat{x}_0)| < \frac{1}{2}$.

then

By the Brøndsted-Rockafeller Theorem, [6, p.48] there exists $x_n \in A$ and $f_n \in \partial \phi(x_n)$ such that

$$||x_0 - x_n|| < rac{2}{\sqrt{n}}$$
 and $||g_n - f_n|| < rac{1}{\sqrt{n}}.$

Now $|F(g_n - f_0)| > r - 1/n$ so $||x_0 - x_n|| < 2/\sqrt{n}$ but $|F(f_n - f_0)| > r - 1/n - 1/\sqrt{n}$. We conclude that the mapping $x \mapsto F(\partial \phi(x))$ cannot be both singleton and upper semi-continuous at x_0 .

 $(iv) \implies (v)$ is obvious.

(v) \implies (ii) Suppose that there exists a nonempty bounded set A in X^* and $F \in X^{**}$ and r > 0 such that every weak* slice S of A has $\omega(F(S)) > r$. Write $C \equiv co(A \cup (-A))$ and $K \equiv C + B(X^*)$. Now every weak* slice S of K has $\omega(F(S)) > r$. The functional p on X defined by

$$p(x) = \sup \left\{ f(x) : f \in K \right\}$$

is an equivalent norm on X. Given $x \in X \setminus \{0\}$, for all $n \in \mathbb{N}$

$$\omega \left(F\left(\{ f \in X^* : f(x) > p(x) - r/3n \} \right) \right) > r$$

so there exist $f_n, g_n \in K$ such that

$$f_n(x) > p(x) - rac{r}{3n} \;,\; g_n(x) > p(x) - rac{r}{3n} \; \; ext{and} \; \; |F(f_n - g_n)| > r - rac{1}{n}.$$

Therefore for p^{**} on X^{**} where $p^{**}(F) = \sup \{F(f) : f \in K\}$ we have

$$p^{**}\left(\widehat{x} + \frac{1}{n} F\right) + p^{**}\left(\widehat{x} - \frac{1}{n} F\right) - 2p^{**}(\widehat{x})$$

$$\geqslant \widehat{f}_n\left(\widehat{x} + \frac{1}{n} F\right) + \widehat{g}_n\left(\widehat{x} - \frac{1}{n} F\right) - (f_n + g_n)(x) - \frac{2r}{3n}$$

$$= \frac{1}{n} F(f_n - g_n) - \frac{2r}{3n}$$

$$> \frac{r}{3n} - \frac{1}{n^2}.$$

$$n \left\{ p^{**}(\widehat{x} + (1/n) F) + p^{**}(\widehat{x} - (1/n) F) - 2p^{**}(\widehat{x}) \right\} > r/3 - 1/n$$

Then

and so p^{**} is not Gâteaux differentiable at \hat{x} in the direction F. We conclude that if, given $F \in X^{**} \setminus \{0\}$, p^{**} is Gâteaux differentiable at some $\hat{x} \in \hat{X}$ in the direction F, then (ii) holds.

We note that a similar characterisation was proved by Gilles Godefroy [3, p.8] It is clear that the proof of Theorem 1 (i) \iff (iii) can be generalised.

COROLLARY 1. A Banach space X does not contain a subspace topologically isomorphic to ℓ_1 , if and only if for every locally bounded minimal set-valued mapping Φ from a Baire space A into subsets of the dual X^{*} with its weak^{*} topology, given $F \in X^{**}$ the mapping $t \mapsto F(\Phi(t))$ is single-valued and upper semi-continuous at the points of a dense G_{δ} subset D_F of A.

Proposition 1 (i) \iff (iv) implies that a Banach space which is not an Asplund space has an equivalent norm which is nowhere Fréchet differentiable. Similarly, Theorem 1 (i) \Leftrightarrow (v) implies that a Banach space which contains a subspace topologically isomorphic to ℓ_1 has an equivalent norm and $F \in X^{**} \setminus \{0\}$ such that the norm on X^{**} is nowhere Gâteaux differentiable in the direction F. On $(\ell_1, \|\cdot\|_1)$, the norm $\|\cdot\|_1$ is nowhere Fréchet differentiable, [6, p.8], but also the norm on ℓ_1^{**} exhibits this other property.

PROOF: The norm $\|\cdot\|_1$ is Gâteaux differentiable only at those points $f \equiv \{\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots\}$ where $\lambda_n \neq 0$ for all $n \in \mathbb{N}$, [6, p.3]. So it is sufficient to consider the differentiability of the norm $\|\cdot\|$ on ℓ_1^{**} at such points \hat{f} in $\hat{\ell}_1$. The norm $\|\cdot\|$ on ℓ_1^{**} is

$$\|\mathfrak{F}\| = \|\widehat{g}\| + \left\|x^{\perp}\right\| \ \, \text{where} \ \mathfrak{F} = \widehat{g} + x^{\perp} \in \ell_1^{**} \ \, \text{and} \ x \in c_0 \ \, \text{and} \ g \in \ell_1.$$

Now

$$\frac{\|\widehat{f} + \lambda \mathcal{F}\| - \|\widehat{f}\|}{\lambda} = \frac{\|\widehat{f} + \lambda(\widehat{g} + x^{\perp})\| - \|\widehat{f}\|}{\lambda}$$
$$= \frac{\|f + \lambda g\| - \|f\|}{\lambda} + \frac{|\lambda| \|x^{\perp}\|}{\lambda} \to \|f\|'(g) \pm \|x^{\perp}\| \text{ as } \lambda \to 0$$

So we conclude that for any $x^{\perp} \in c_0^{\perp} \setminus \{0\}$ the norm on ℓ_1^{**} is nowhere Gâteaux differentiable on $\hat{\ell}_1$ in the direction x^{\perp} .

We should note that Theorem 1 (i) \iff (v) implies that ℓ_{∞} has an equivalent norm which is nowhere Gâteaux differentiable. For if every equivalent norm on ℓ_{∞} had a point of Gâteaux differentiability then the fact that weak* convergent sequences are weakly convergent in ℓ_{∞}^* would imply that Theorem 1(v) would be satisfied. But that would contradict the fact that ℓ_{∞} contains a subspace isometrically isomorphic to ℓ_1 .

J.R. Giles

It is known that any Banach space X which contains a subspace topologically isomorphic to ℓ_1 has the property that there exists $F \in X^{**} \setminus \{0\}$ and an equivalent norm p on X such that

$$p^{**}(\hat{x}+F) = p^{**}(\hat{x}) + p^{**}(F)$$
 for all $x \in X$,

[1, p.107]. So Theorem 1 (v) \implies (i) could be deduced from this renorming property.

Using the Bishop-Phelps Theorem, [6, p.49], it is not difficult to show that given $F \in X^{**}$ and an equivalent norm p on X with closed unit ball $B_p(X)$, the mapping $x \mapsto F(\partial p(x))$ is single-valued and upper semi-continuous at $x \in X, p(x) = 1$ if and only if given $\varepsilon > 0$ there exists a $\delta(\varepsilon, F) > 0$ such that $\omega \left(F\left(S(B_p^*(X), \hat{x}, \delta) \right) \right) < \varepsilon$. So using this and the previous comment we can deduce a result similar to that given in [1, p.112].

COROLLARY 2. A Banach space X does not contain a subspace topologically isomorphic to ℓ_1 if and only if given $F \in X^{**}$ and an equivalent norm p on X there exists a point in $B_p^*(X)$ where F restricted to $B_p^*(X)$ is weak* continuous.

It is interesting to compare the characterisations given in Theorem 1 with a generalisation of the characterisations given in Proposition 1.

THEOREM 2. For a Banach space X the following are equivalent.

- (i) X is an Asplund space,
- (ii) for every nonempty bounded subset K of X^* , there exists $x \in X \setminus \{0\}$ such that, given $\varepsilon > 0$ and $F \in X^{**}$ there exists $\delta(\varepsilon, F) > 0$ such that

$$\omega\left(F\left(S(K,\widehat{x},\delta)\right)\right)<\varepsilon.$$

- (iii) for every continuous convex function ϕ on an open convex subset A of X, the subdifferential mapping $x \mapsto \partial \phi(x)$ is single-valued and weak upper semi-continuous at the points of a dense G_{δ} subset of A,
- (iv) for every continuous convex function ϕ on on an open convex subset A of X, ϕ^{**} , the second Fenchel conjugate of ϕ on X^{**} , is Gâteaux differentiable at the points of a dense G_{δ} subset of \hat{A} .
- (v) for every equivalent norm p on X, the norm p^{**} on X^{**} induced by p is Gâteaux differentiable at some point of \widehat{X} .

Proof:

(i) \implies (ii) follows from Proposition 1 (i) \implies (ii).

(i) \implies (iii) and (iv) \implies (v) are obvious.

(iii) \implies (iv) follows as in Theorem 1 (iii) \implies (iv).

 $(\mathbf{v}) \Longrightarrow$ (ii). Suppose that there exists a nonempty bounded set A in X^* such that given $x \in X \setminus \{0\}$ there exists $F \in X^{**}$ and r > 0 such that every weak* slice S of A

generated by x has $\omega(F(S)) > r$. Writing $C \equiv \text{ co } (A \cup (-A))$ and $K \equiv C + B(X^*)$ and considering the equivalent norm p on X defined by $p(x) = \sup \{f(x) : f \in K\}$, we have as in Theorem 1 (v) \Longrightarrow (ii) that p^{**} on X^{**} where $p^{**}(F) = \sup \{F(f) : f \in K\}$, is not Gâteaux differentiable at \hat{x} in the direction F. We conclude that if p^{**} is Gâteaux differentiable at some point of \hat{X} , then (ii) holds.

(ii) \implies (i). Consider a nonempty closed bounded convex set K in X^* . From (ii) there exists $x \in X \setminus \{0\}$ such that given $\varepsilon > 0$ and $F \in X^{**}$ there exists $\delta(\varepsilon, F) > 0$ such that $\omega(F(S(\overline{K}^{w^*}, \widehat{x}, \delta))) < \varepsilon$. So for $C \equiv \{f \in \overline{K}^{w^*} : f(x) = \sup \widehat{x}(\overline{K}^{w^*})\} = \bigcap_{\delta > 0} S(\overline{K}^{w^*}, \widehat{x}, \delta)$ we have $\omega(F(C)) = 0$ for all $F \in X^{**}$. But this implies that C is a singleton and an extreme point of \overline{K}^{w^*} . Write $C \equiv \{f_0\}$. However, (ii) implies that given $\varepsilon > 0$ and $F \in X^{**}$ there exists $\delta(\varepsilon, F) > 0$ such that

$$|F(f-f_0)| < \varepsilon$$
 when $f \in S(\overline{K}^{w^*}, \widehat{x}, \delta)$.

But $S(\overline{K}^{w^*}, \widehat{x}, \delta) \cap K \neq \emptyset$ for all $\delta > 0$ and we deduce that $f_0 \in \overline{K}^w = K$. Therefore f_0 is an extreme point of K. This is sufficient to prove that X^* has the Krein-Milman property, $[\mathbf{2}, p.190]$, which in turn implies that X is an Asplund space, $[\mathbf{4}]$.

We note that the proof (ii) \implies (i) is due to Isaac Namioka, [private communication].

We are able to use Theorem 2 to deduce the following condition for a Banach space to be Asplund.

COROLLARY 3. [5, p.501]. A Banach space X where X^{**}/\hat{X} is separable is an Asplund space.

PROOF: If $X \supseteq \ell_1$ then $\ell_1^{**}/\hat{\ell_1}$ is topologically isomorphic to a subspace of X^{**}/\hat{X} , but then X^{**}/\hat{X} is not separable. So $X \not\supseteq \ell_1$. Given an equivalent norm p on X and $x \in X$, $p_+^{**'}(\hat{x})(F)$ is continuous in F so from Theorem 1 we have that p^{**} is Gâteaux differentiable at the points of a dense G_{δ} subset D of \hat{X} in all directions $X^{**}\setminus\hat{X}$ and since $X^{**}\setminus\hat{X}$ is dense in X^{**} we deduce that p^{**} is Gâteaux differentiable at each point of D. We conclude that X is an Asplund space.

An Asplund space is also characterised by the structure of the weak^{*} compact convex subsets in its dual, [6, p.86].

Given a nonempty weak^{*} closed convex subset K of the dual X^* of a Banach space X, we say that $f \in K$ is a weak^{*} exposed point of K if there exists an $x \in X \setminus \{0\}$ such that

$$f(x) = \sup \widehat{x}(K) > g(x) \text{ for all } g \in K, f \neq g.$$

We say that x weak^{*} exposes K at f. If, when $g_n(x) \to f(x)$ as $n \to \infty$ for $\{g_n\} \subseteq K$ we have that $\{g_n\}$ is norm convergent to f, then we say that f is a weak^{*} strongly exposed point of K.

PROPOSITION 3. For a Banach space X the following are equivalent.

- (i) X is an Asplund space,
- (ii) every nonempty weak* closed convex subset of X* is the weak* closed convex hull of its weak* strongly exposed points,
- (iii) every nonempty weak* closed convex subset of X^* has at least one weak* strongly exposed point.

A comparable characterisation can be given for a Banach space which does not contain a subspace topologically isomorphic to ℓ_1 .

For a nonempty subset A of the dual X^* of a Banach space X we say that, given $F \in X^{**} \setminus \{0\}$, an element $x \in X$ weak^{*} F-exposes A if given $\varepsilon > 0$ there exists $\delta > 0$ such that $\omega (F(S(A, \hat{x}, \delta))) < \varepsilon$ and in this case if $\bigcap_{\delta > 0} S(A, \hat{x}, \delta)$ is nonempty we call this set a weak^{*} F-exposed face of A.

LEMMA. Consider a continuous positive sublinear functional p on a Banach space X and the set $C \equiv \{x \in X : p(x) \leq 1\}$. Given $F \in X^{**} \setminus \{0\}$, the real set-valued mapping $x \mapsto F(\partial p(x))$ is single-valued and upper semi-continuous at $x_0 \in X$ if and only if $\partial p(x_0)$ is a weak* F-exposed face of $C^0 \equiv \{f \in X^* : f(x) \leq 1 \text{ for all } x \in C\}$.

PROOF: Suppose that given $\varepsilon > 0$ there exists $\delta > 0$ such that $\omega \left(F\left(S(C^0, \hat{x}_0, \delta)\right) \right) < \varepsilon$. Recall that $\partial p(x) \subseteq C^0$ for all $x \in X$. Now

$$\partial p(x_0) \subseteq W \equiv \{f \in X^* : f(x_0) > p(x_0) - \delta\}.$$

Since the subdifferential mapping $x \mapsto \partial p(x)$ is weak^{*} upper semi-continuous at x_0 there exists a neighbourhood N of x_0 such that

$$\partial p(x) \subseteq W \cap C^0 = S(C^0, \hat{x}_0, \delta)$$
 for all $x \in N$.

So then $\omega(F(\partial p(N))) < \varepsilon$ implying that the mapping $x \mapsto F(\partial p(x_0))$ is single-valued and upper semi-continuous at x_0 .

For the converse, we may assume that ||F|| = 1. Consider the mapping $x \mapsto F(\partial p(x))$ single-valued at x_0 . Suppose that there exists a sequence $\{f_n\}$ in C^0 and r > 0 such that

but
$$f_n(x_0) \to \partial p(x_0)(x_0) = p(x_0) \text{ as } n \to \infty$$

 $F(f_n - \partial p(x_0)) > r \text{ for all } n \in \mathbb{N}.$

Then there exists a subsequence $\{f_{n_k}\}$ such that

$$f_{n_k}(x-x_0)\leqslant p(x)-p(x_0)+rac{1}{k^2} \ \ {\rm for \ all} \ x\in X \ \ {\rm and} \ k\in \mathbb{N}.$$

Then by the Brøndsted-Rockafeller Theorem, [6, p.48], for each $k \in \mathbb{N}$ there exist $x_k \in X$ and $f_k \in \partial p(x_k)$ such that $||x_k - x_0|| \leq 1/k$ and $||f_{n_k} - f_k|| < 1/k$. So $x_k \to x_0$ as $k \to \infty$ but

$$F\left(f_k - \partial p(x_0)\right) > rac{r}{2} ext{ for all } k > rac{2}{r}$$

and we conclude that the mapping $x \mapsto F(\partial p(x))$ is not upper semi-continuous at x_0 .

THEOREM 3. For a Banach space X, the following are equivalent.

- (i) X does not contain a subspace topologically isomorphic to ℓ_1 ,
- (ii) given F ∈ X^{**}\{0}, every nonempty weak* compact convex subset of X* is the weak* closed convex hull of its weak* F-exposed faces,
- (iii) given F ∈ X^{**}\{0}, every nonempty weak* compact convex subset of X* has at least one weak* F-exposed face.

Proof:

(iii) \Rightarrow (i). Given any nonempty bounded set K in X^{*}, the weak^{*} closed convex hull of K has weak^{*} F-exposed faces. So K has weak^{*} slices over which the oscillation of F is arbitrarily small. By Proposition 2 we have that X does not contain a subspace topologically isomorphic to ℓ_1 .

(i) \Rightarrow (ii). Consider A a nonempty weak* compact convex subset of X^* . We may assume that $0 \in A$ and we define

$$p(x) = \sup \{f(x) : x \in A\} \equiv M(x, A).$$

Then p is a continuous positive sublinear functional on X and is the gauge of $C \equiv \{x \in X : p(x) \leq 1\}$ and $C^0 = A$. Consider K, the weak* closed convex hull of the weak* F-exposed faces of A, and suppose that $K \neq A$. Then there exists $x \in X$ such that M(x,K) < M(x,A). Since both M(x,K) and M(x,A) are continuous on X then $\{x \in X : M(x,K) < M(x,A)\}$ is open in X. By Theorem 1 (i) \Leftrightarrow (iii), this set contains a point x_0 where the real set-valued mapping $x \mapsto F(\partial p(x))$ is single-valued and upper semi-continuous. Then by the Lemma, $\partial p(x_0)$ is a weak* F-exposed face of $C^0 = A$. Then $\partial p(x_0)(x_0) = M(x_0, A)$. But this contradicts our supposition about K.

(ii)
$$\Rightarrow$$
 (iii) is obvious.

0

[10]

Again it is interesting to compare the characterisation given in Theorem 3 with a generalisation of the characterisation given in Proposition 3.

For a nonempty weak* closed convex subset K of the dual X* of a Banach space X and $x \in X$ where x weak* exposes K at $f \in K$, we say that f is a weak* weak exposed point of K if given $\varepsilon > 0$ and $F \in X^{**} \setminus \{0\}$ there exists a $\delta(\varepsilon, F) > 0$ such that $\omega(F(S(A, \hat{x}, \delta))) < \varepsilon$. Clearly $f \in K$ is a weak* weak exposed point of K if and only if x weak* F exposes K at f for every $F \in X^{**}$.

From Theorem 2 and the Lemma we have the following characterisation.

THEOREM 4. For a Banach space X the following are equivalent.

- (i) X is an Asplund space,
- (ii) every nonempty weak* compact convex subset of X* is the weak* closed convex hull of its weak* weak exposed points,
- (iii) every nonempty weak* compact convex subset of X^* has at least one weak* weak exposed point.

References

- R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman monographs 64 (Longman, Essex, New York, 1993).
- [2] J. Diestel and J.J. Uhl, Vector measures, Math. Surveys 15 (American Mathematical Society, Providence, R.I., 1977).
- [3] G. Godefroy, 'Metric characterisation of first Baire class linear forms and octahedral norms', Studia Math. 95 (1989), 1-15.
- [4] R.E. Huff and P.D. Morris, 'Dual spaces with the Krein-Milman property have the Radon-Nikodym property', Proc. Amer. Math. Soc. 49 (1975), 104-108.
- [5] T-H Kuo, 'On conjugate Banach spaces with the Radon-Nikodym Property', Pacific J. Math. 59 (1975), 497-503.
- [6] R.R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math. 1364, (2nd ed.) (Springer-Verlag, Berlin, Heidelberg, New York, 1993).
- [7] E. Saab and P. Saab, 'A dual geometric characterization of Banach spaces not containing ℓ_1 ', *Pacific J. Math.* 105 (1983), 415-425.
- [8] D. van Dulst, Characterizations of Banach spaces not containing ℓ_1 (Centrum voor Wiskunde en Informatica Tract 59, Amsterdam, 1989).

Department of Mathematics The University of Newcastle New South Wales 2308 Australia