Generalization of Hall planes of odd order

P. B. Kirkpatrick

Abstract

Some properties of projective planes having a certain type of collineation group are proved, and a class of these planes which properly contains the class of all Hall planes of odd order is explicitly constructed.

1. Introduction

The Hall plane satisfies the condition:
(1) Π is a translation plane, and it has a Baer subplane Π_{0} fixed pointwise by a collineation group which is simply transitive on those points of the line at infinity which do not lie in Π_{0}. The line at infinity belongs to Π_{0}.

We call planes satisfying (1) 'generalized Hall planes'. We will show (among other things) that when such a plane has odd or zero characteristic then the subplane Π_{0} is desarguesian; and we will construct a class of these planes which appears, to the author, to include some new finite planes.

2. Properties of generalized Hall planes

Let Π be a generalized Hall plane. Then Π may be coordinatized by a (right distributive) V.-W. system F which contains a subsystem F_{0} corresponding to $\Pi_{0},\left(\Pi_{0}\right.$ is a translation plane since it contains
the line at infinity of Π. We choose the coordinate quadrangle to lie in Π_{0}.)

We shall use Greek letters to denote elements of F_{o}.
THEOREM 1. If II is a plane of odd or zero characteristic satisfying (1), then F_{0} is a skew field and F is a right vector space of dimension 2 over F_{0}.

COROLLARY. Π_{0} is desarguesian.
Proof of Theorem 1. Choose an element z of $F \backslash F_{\circ}$. Let w be any other element of F. Then, since Π_{0} is a Baer subplane, the point (z, w) lies on some line $y=x \alpha+\beta$ of Π_{0}, that is $\omega=z \alpha+\beta$ for some $\alpha, \beta \in F$.

The collineations fixing Π_{0} pointwise correspond to automorphisms of F which fix F_{0} elementwise. So $(z \rho) \sigma=z \alpha+\beta$ for some α and β which depend only on ρ and σ. Also $((z+1) \rho) \sigma=(z+1) \alpha+\beta$, so $\alpha=\rho \sigma$ and $(z \rho) \sigma=z(\rho \sigma)+B$. Furthermore $((2 z) \rho) \sigma=(2 z)(\rho \sigma)+\beta$ and $2 \in \operatorname{Kern} F$, so $\beta=0$. Thus $(z \rho) \sigma=z(\rho \sigma)$ for all $\rho, \sigma \in F_{0}$. Similarly $z(\rho+\sigma)=z \rho+z \sigma \cdot[$ Start with $z \rho+z \sigma=z \lambda+\mu$.

For any $\rho, \sigma, \tau \in F_{0}$, we have:

$$
((z \rho) \sigma) \tau=(z \rho)(\sigma \tau)=z(\rho(\sigma \tau)),
$$

and

$$
((z \rho) \sigma) \tau=(z(\rho \sigma)) \tau=z((\rho \sigma) \tau) .
$$

Thus $\rho(\sigma \tau)=(\rho \sigma) \tau$; similarly $\rho(\sigma+\tau)=\rho \sigma+\rho \tau$. This completes the proof of the theorem.

From the multiplication operation in F we obtain two mappings f and g of $F_{\mathrm{O}} \times F_{\mathrm{O}}$ onto F_{O}, defined by:

$$
(z \alpha+\beta) z=z f(\alpha, \beta)+g(\alpha, \beta)
$$

The V.-W. system F may be described as follows:
(2) F is a right vector space of dimension 2 over a skew field F_{0} embedded in it in the usual way, with a multiplication operation

$$
\begin{aligned}
& x . \alpha=x \alpha \text { (multiplication by a scalar) } \forall x \in F, \alpha \in F_{0}, \\
& (z \alpha+\beta) \cdot z=z f(\alpha, \beta)+g(\alpha, \beta), \forall z \in F \backslash F_{0} ; \alpha, \beta \in F_{0},
\end{aligned}
$$

where f and g are mappings of $F_{0} \times F_{0}$ onto F_{0}.
The mappings f and g in (2) are of course not arbitrary.
THEOREM 2. A finite system ($F,+, \cdot$) satisfying (2) is a V.-W. system if and only if
(a) f and g are additive homomorphisms with $f(0,1)=1$ and $g(0,1)=0$,
(b) for any given γ and δ, the equation $(f(\alpha, \beta), g(\alpha, \beta))=(\gamma, \delta)$ has exactly one solution (α, β), and
(c) the equation $(f(\alpha, \beta), g(\alpha, \beta))=(\alpha \gamma, \beta \gamma+\delta)$ has exactily one solution (α, β), given γ and δ; also, for this solution, $\alpha=0$ if and only if $\delta=0$.

Proof. The necessity of (a) and (b) follows immediately from the right distributivity of F and the requirement that be a loop operation on F^{*}. This loop requirement also implies (c). For consider the equation $z(z \alpha+\beta)=z \gamma+\delta$. Now, if $\alpha \neq 0$,

$$
\begin{aligned}
z(z \alpha+\beta) & =\left[(z \alpha+\beta)\left(\alpha^{-1}\right)-\beta \alpha^{-1}\right](z \alpha+\beta) \\
& =(z \alpha+\beta) f\left(\alpha^{-1},-\beta \alpha^{-1}\right)+g\left(\alpha^{-1},-\beta \alpha^{-1}\right)
\end{aligned}
$$

If we replace α^{-1} by α and $-\beta \alpha^{-1}$ by β, the requirement that $z \omega=t$ has exactly one solution ω yields condition (c).

The sufficiency of (a), (b), (c) is now evident, since, F being finite, we merely need to show that these imply that F is right distributive and that . is a loop operation on F^{*}.

A more complicated necessary and sufficient condition that F be a (planar) V.-W. system is easily calculated for the case where F is allowed to be infinite.

We note that a V.-W. system satisfying (2) necessarily possesses a group of automorphisms which is transitive on $F \backslash F_{0}$ while fixing F_{0} elementwise.

3. A construction

We start with an arbitrary finite field F_{0} of odd order. Let V be any non-square in F_{0} and let θ and φ be any two (possibly trivial, and possibly equal) automorphisms of F_{0}. We now construct a V.-W. system $(F,+, \cdot)$ from F_{0}, v, θ and φ.

Let F be a right vector space of dimension 2 over F_{0}. Suppose F_{0} is embedded in F in the usual way. Addition is to be the same as vector addition, and multiplication to be given by the rules stated in (2) above, with the mappings f and g defined by:

$$
\begin{equation*}
f(\alpha, \beta)=\beta^{\theta} \quad g(\alpha, \beta)=\alpha^{\varphi} \nu \tag{3}
\end{equation*}
$$

Conditions (a) , (b), (c) are easily verified, so that ($F,+, \cdot$) is a V.-W. system. The plane Π over F is a generalized Hall plane.

When $\theta=\varphi=1, F$ is the Hall system determined by F_{0} and the polynomial $x^{2}-v$. Since Hall systems of the same order coordinatize isomorphic planes [5], the generalized Hall planes we have constructed include all Hall planes of odd order.

As in the Hall system for F_{0} and v, we have for all F : $z^{2}=v, \forall z \in F \backslash F_{0}$. But $\alpha z=z \alpha^{\theta}$ and $(z \alpha) z=\alpha^{\varphi} \nu$ when $z \in F \backslash F_{0}$ and $\alpha \in F_{0}$.

In the case where $F_{0}=G F(9), \theta=1$ and φ equals the non-trivial automorphism of $G F(9)$, it is readily verified that KernF is the subfield of order 3 in GF(9). Since the Kern of any Hall system of order 81 is $G F(9)$, the plane over F is not a Hall plane. By comparing the collineation group of the plane over F with that of each of the Foulser generalized André planes of order 81 , it is not difficult
to show that our class of planes is not a subclass of Foulser's: the Foulser planes of order 81 with Kern of order 3 all have a group of 10 ($X, O Y$)-homologies, whereas our plane has no such group (of order 10), no matter how X and Y be chosen on the line at infinity.

References

[1] P. Dembowski, Finite geometries (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, Berlin, Heidelberg, New York, 1968).
[2] David A. Foulser, "A generalization of André's systems", Math. 2. 100 (1967), 380-395.
[3] Marshall Hall, "Projective planes", Trans. Amer. Math. Soc. 54 (1943), 229-277.
[4] Marshall Hall, Jr, The theory of groups (The Macmillan Company, New York, 1959).
[5] D.R. Hughes, "Collineation groups of non-desarguesian planes, I. The Hall-Veblen-Wedderburn systems", Amer. J. Math. 81 (1959), 921-938.

University of Sydney, Sydney,

New South Wales.

