VOL. 4 (1971), 205-209.

Generalization of Hall planes of odd order

P.B. Kirkpatrick

Some properties of projective planes having a certain type of collineation group are proved, and a class of these planes which properly contains the class of all Hall planes of odd order is explicitly constructed.

1. Introduction

The Hall plane satisfies the condition:

(1) Π is a translation plane, and it has a Baer subplane Π_O fixed pointwise by a collineation group which is simply transitive on those points of the line at infinity which do not lie in Π_O . The line at infinity belongs to Π_O .

We call planes satisfying (1) 'generalized Hall planes'. We will show (among other things) that when such a plane has odd or zero characteristic then the subplane $\Pi_{\rm O}$ is desarguesian; and we will construct a class of these planes which appears, to the author, to include some new finite planes.

2. Properties of generalized Hall planes

Let Π be a generalized Hall plane. Then Π may be coordinatized by a (right distributive) V.-W. system F which contains a subsystem F_0 corresponding to Π_0 . (Π_0 is a translation plane since it contains

Received 26 October 1970.

the line at infinity of $\ensuremath{\,\mathrm{II}}$. We choose the coordinate quadrangle to lie in $\ensuremath{\,\mathrm{II}}_{\scriptscriptstyle O}$.)

We shall use Greek letters to denote elements of F_{\circ} .

THEOREM 1. If II is a plane of odd or zero characteristic satisfying (1), then F_0 is a skew field and F is a right vector space of dimension 2 over F_0 .

COROLLARY. II is desarguesian.

Proof of Theorem 1. Choose an element z of $F \backslash F_0$. Let w be any other element of F. Then, since Π_0 is a Baer subplane, the point (z,w) lies on some line $y=x\alpha+\beta$ of Π_0 , that is $w=z\alpha+\beta$ for some $\alpha,\beta\in F$.

The collineations fixing Π_{0} pointwise correspond to automorphisms of F which fix F_{0} elementwise. So $(z\rho)\sigma=z\alpha+\beta$ for some α and β which depend only on ρ and σ . Also $((z+1)\rho)\sigma=(z+1)\alpha+\beta$, so $\alpha=\rho\sigma$ and $(z\rho)\sigma=z(\rho\sigma)+\beta$. Furthermore $((2z)\rho)\sigma=(2z)(\rho\sigma)+\beta$ and $2\in \mathrm{Kern} F$, so $\beta=0$. Thus $(z\rho)\sigma=z(\rho\sigma)$ for all ρ , $\sigma\in F_{0}$. Similarly $z(\rho+\sigma)=z\rho+z\sigma$. [Start with $z\rho+z\sigma=z\lambda+\mu$.]

For any ρ , σ , $\tau \in F_{\rho}$, we have:

$$((z\rho)\sigma)\tau = (z\rho)(\sigma\tau) = z(\rho(\sigma\tau)) ,$$

and

$$((z\rho)\sigma)\tau = (z(\rho\sigma))\tau = z((\rho\sigma)\tau).$$

Thus $\rho(\sigma\tau)=(\rho\sigma)\tau$; similarly $\rho(\sigma+\tau)=\rho\sigma+\rho\tau$. This completes the proof of the theorem.

From the multiplication operation in F we obtain two mappings f and g of $F_O \times F_O$ onto F_O , defined by:

$$(z\alpha+\beta)z = zf(\alpha, \beta) + g(\alpha, \beta)$$
.

The V.-W. system F may be described as follows:

(2) F is a right vector space of dimension 2 over a skew field $F_{\rm O}$ embedded in it in the usual way, with a multiplication operation

$$x.\alpha = x\alpha$$
 (multiplication by a scalar) $\forall x \in F$, $\alpha \in F_0$,

$$(z\alpha+\beta).z = zf(\alpha, \beta) + g(\alpha, \beta)$$
, $\forall z \in F \setminus F_0$; $\alpha, \beta \in F_0$,

where f and g are mappings of $F_0 \times F_0$ onto F_0 .

The mappings f and g in (2) are of course not arbitrary.

THEOREM 2. A finite system $(F, +, \cdot)$ satisfying (2) is a V.-W. system if and only if

- (a) f and g are additive homomorphisms with f(0, 1) = 1 and g(0, 1) = 0,
- (b) for any given γ and δ , the equation $\left\{ f(\alpha, \, \beta), \, g(\alpha, \, \beta) \right\} = (\gamma, \, \delta) \ \ \text{has exactly one solution} \ \ (\alpha, \, \beta) \ ,$ and
- (c) the equation $(f(\alpha, \beta), g(\alpha, \beta)) = (\alpha \gamma, \beta \gamma + \delta)$ has exactly one solution (α, β) , given γ and δ ; also, for this solution, $\alpha = 0$ if and only if $\delta = 0$.

Proof. The necessity of (a) and (b) follows immediately from the right distributivity of F and the requirement that \cdot be a loop operation on F^* . This loop requirement also implies (c). For consider the equation $z(z\alpha+\beta)=z\gamma+\delta$. Now, if $\alpha\neq 0$,

$$\begin{split} z(z\alpha+\beta) &= \left[(z\alpha+\beta) \left(\alpha^{-1} \right) - \beta \alpha^{-1} \right] (z\alpha+\beta) \\ &= (z\alpha+\beta) f(\alpha^{-1}, -\beta \alpha^{-1}) + g(\alpha^{-1}, -\beta \alpha^{-1}) \ . \end{split}$$

If we replace α^{-1} by α and $-\beta\alpha^{-1}$ by β , the requirement that zw=t has exactly one solution w yields condition (c).

The sufficiency of (a), (b), (c) is now evident, since, F being finite, we merely need to show that these imply that F is right distributive and that \cdot is a loop operation on F^* .

A more complicated necessary and sufficient condition that F be a (planar) V.-W. system is easily calculated for the case where F is allowed to be infinite.

We note that a V.-W. system satisfying (2) necessarily possesses a group of automorphisms which is transitive on $F\backslash F_0$ while fixing F_0 elementwise.

3. A construction

We start with an arbitrary finite field F_0 of odd order. Let ν be any non-square in F_0 and let θ and ϕ be any two (possibly trivial, and possibly equal) automorphisms of F_0 . We now construct a V.-W. system $(F,+,\cdot)$ from F_0 , ν , θ and ϕ .

Let F be a right vector space of dimension 2 over F_0 . Suppose F_0 is embedded in F in the usual way. Addition is to be the same as vector addition, and multiplication to be given by the rules stated in (2) above, with the mappings f and g defined by:

(3)
$$f(\alpha, \beta) = \beta^{\theta} \quad g(\alpha, \beta) = \alpha^{\varphi} \nu.$$

Conditions (a), (b), (c) are easily verified, so that $(F, +, \cdot)$ is a V.-W. system. The plane $\mathbb R$ over F is a generalized Hall plane.

When $\theta=\phi=1$, F is the Hall system determined by F_0 and the polynomial $x^2-\nu$. Since Hall systems of the same order coordinatize isomorphic planes [5], the generalized Hall planes we have constructed include all Hall planes of odd order.

As in the Hall system for $F_{\rm O}$ and ν , we have for all F: $z^2=\nu\ , \quad \forall \ z\in F\backslash F_{\rm O}\ . \quad {\rm But} \quad \alpha z=z\alpha^\theta \quad {\rm and} \quad (z\alpha)z=\alpha^\phi \nu \quad {\rm when} \quad z\in F\backslash F_{\rm O}$ and $\alpha\in F_{\rm O}$.

In the case where F_0 = GF(9), θ = 1 and ϕ equals the non-trivial automorphism of GF(9), it is readily verified that KernF is the subfield of order 3 in GF(9). Since the Kern of any Hall system of order 81 is GF(9), the plane over F is not a Hall plane. By comparing the collineation group of the plane over F with that of each of the Foulser generalized André planes of order 81, it is not difficult

to show that our class of planes is not a subclass of Foulser's: the Foulser planes of order 81 with Kern of order 3 all have a group of (X, OY)-homologies, whereas our plane has no such group (of order 10), no matter how X and Y be chosen on the line at infinity.

References

- [1] P. Dembowski, *Finite geometries* (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, Berlin, Heidelberg, New York, 1968).
- [2] David A. Foulser, "A generalization of André's systems", Math. Z. 100 (1967), 380-395.
- [3] Marshall Hall, "Projective planes", Trans. Amer. Math. Soc. 54 (1943), 229-277.
- [4] Marshall Hall, Jr, The theory of groups (The Macmillan Company, New York, 1959).
- [5] D.R. Hughes, "Collineation groups of non-desarguesian planes, I. The Hall-Veblen-Wedderburn systems", Amer. J. Math. 81 (1959), 921-938.

University of Sydney, Sydney, New South Wales.