ON UPCROSSING PROBABILITIES

DAVID R. McDONALD

1. Introduction. In [1] a simple but ingenious technique was developed for calculating hitting probabilities for submartingales (or martingales or supermartingales) subject to various constraints. This technique is extended here in order to find sharp bounds on upcrossing probabilities for submartingales subject to constraints. The general results in Section 2 are applied to submartingales $\left\{X_{n}\right\}_{n=1}^{\infty}$ such that $E\left[\left(X_{n}-a\right)^{+}\right]^{p} \leqq L$ (a constant) for all $n, p \geqq 1$ and we find the probability of at least k upcrossings of $[a, b]$ is at most

$$
\frac{L-\left[(m-a)^{+}\right]^{p}}{(b-a)^{p}} \frac{(p-1)^{p-1}}{\left(k+\frac{(m-a)^{+}}{b-a}-(p-1)-1\right)^{p}+(p-1)^{p-1}},
$$

where $m=E X_{1}$. For $p=1$ this bound collapses to $\left(L-(m-a)^{+}\right) /((b-a) k)$ (taking $(p-1)^{p-1}=1$ when $p=1$). A simple corollary is that Doob's upcrossing inequality is sharp. A second example gives Dubins' sharp bounds on upcrossing probabilities for bounded martingales.
2. General Results. Keeping the notation established in $[\mathbf{1}]$ let R be the set of real numbers; B be the Borel subsets of $R ; R^{\infty}=R \times R \times \ldots$; and $B^{\infty}=$ $B \times B \times \ldots$ Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be the coordinate process on R^{∞}. A submartingale (or martingale or supermartingale) may be regarded as a probability measure P on B^{∞}. $\left\{X_{n}\right\}_{n=1}^{\infty}$ defined on $\left\{R^{\infty}, B^{\infty}, P\right\}$ is a submartingale in the usual sense.

Let μ be a probability measure on (R, B); we define the following classification:

Definition 1a.) μ satisfies a condition of type ($\phi, \underline{r}, \bar{r}$) if there is a family ϕ of convex, increasing, Borel functions from R to R and mappings \underline{r} and \bar{r} of ϕ to $R \cup\{-\infty, \infty\}$ such that for all $\theta \in \phi$,

$$
\underline{r}(\theta) \leqq \int \theta(x) \mu(d x) \leqq \bar{r}(\theta)
$$

((ϕ, \bar{r}) means $\underline{r}(\theta)=-\infty$ for all $\theta \in \phi$.
1.b) μ satisfies a condition of type (L, U) if there exist two constants $L<U$ such that $\mu\{[L, U]\}=1$.

Definition 2.a) A probability measure Q on $\left(R^{\infty}, B^{\infty}\right)$ satisfies a condition of

[^0] Cornell University under a post-doctoral scholarship from the Government of Quebec.
type $(\phi, \underline{r}, \bar{r})$ if for all $\theta \in \phi$ and all n,
$$
\underline{r}(\theta) \leqq \int \theta\left(X_{n}\right) d Q \leqq \bar{r}(\theta)
$$
2.b) Q satisfies a condition of type (L, U) if $Q\left\{L \leqq X_{n} \leqq U\right\}=1$ for all n.

Lemma 1. Let M be the collection of all submartingales satisfying conditions of type $(\phi, \underline{r}, \bar{r})$ and/or type (L, U) (that is certain conditions of these types are satisfied). If $\tau_{1} \leqq \tau_{2} \leqq \ldots \leqq \tau_{m}$ are bounded stopping times and $P \in M$, then the measure Q on B^{∞} defined by

$$
\begin{align*}
& Q\left\{X_{1} \in B_{1}, X_{2} \in B_{2}, \ldots, X_{m} \in B_{m}, X_{m+1} \in B_{n+1}, \ldots, X_{m+l} \in B_{m+l}\right\} \tag{1}\\
& \quad P\left\{X_{\tau_{1}} \in B_{1}, X_{\tau_{2}} \in B_{2}, \ldots, X_{\tau_{m}} \in B_{m}, X_{\tau_{m}} \in B_{m+1}, \ldots, X_{\tau_{m}} \in B_{m+l}\right\}
\end{align*}
$$

belongs to M.
Proof. Q is well defined since the stopping times are bounded. Next consider any cylinder set measurable with respect to $X_{1}, X_{2}, \ldots, X_{k}$; say

$$
C=\left\{X_{1} \in B_{1}, X_{2} \in B_{2}, \ldots, X_{k} \in B_{k}\right\} .
$$

(2) $\int_{C} E_{Q}\left\{X_{k+1} \mid X_{k}, \ldots, X_{1}\right\} d Q=\int_{C} X_{k+1} d Q=\int_{C^{\prime}} X_{\tau_{k+1}} d P$ by (1),
where $C^{\prime}=\left\{X_{\tau_{1}} \in B_{1}, X_{\tau_{2}} \in B_{2}, \ldots, X_{\tau_{k}} \in B_{k}\right\}$. Since P is a submartingale,

$$
\int_{C^{\prime}} X_{\tau_{k+1}} d P \geqq \int_{C^{\prime}} X_{\tau_{k}} d P=\int_{C} X_{k} d Q
$$

Since the σ-algebra of sets measurable with respect to $X_{1}, X_{2}, \ldots, X_{k}$ $\left(\sigma\left(X_{1}, \ldots, X_{k}\right)\right)$ is generated by sets of the form C, we have

$$
\int_{A} E_{Q}\left\{X_{k+1} \mid X_{k}, \ldots, X_{1}\right\} d Q \geqq \int_{A} X_{k} d Q,
$$

where $A \in \sigma\left(X_{1}, \ldots, X_{k}\right)$. Therefore Q is a submartingale. If $\theta \in \phi$ then $\left\{\theta\left(X_{n}\right)\right\}_{n=1}^{\infty}$ defined on $\left\{R^{\infty}, B^{\infty}, P\right\}$ is a submartingale. Hence

$$
\underline{r}(\theta) \leqq \int \theta\left(X_{1}\right) d P \leqq \int \theta\left(X_{\tau_{k}}\right) d P=\int \theta\left(X_{k}\right) d Q \quad \text { for all } k .
$$

Moreover if l is an integer such that $\tau_{m} \leqq l$ then

$$
\int \theta\left(X_{k}\right) d Q=\int \theta\left(X_{\tau_{k}}\right) d P \leqq \int \theta\left(X_{\imath}\right) d P \leqq \bar{r}(\theta) .
$$

Therefore Q satisfies condition ($\phi, \underline{r}, \bar{r}$). Condition (L, U) follows trivially. Therefore $Q \in M$. This completes the proof.

Let $B_{1}, B_{2}, \ldots, B_{m}$ be Borel sets. Let

$$
\begin{aligned}
& T=\left\{X_{n_{1}} \in B_{1} \text { for some } n_{1}, X_{n_{2}} \in B_{2} \text { for some } n_{2} \geqq n_{1}, \ldots,\right. \\
& \left.\qquad X_{n_{m}} \in P_{m} \text { for some } n_{m} \geqq n_{m-1}\right\} .
\end{aligned}
$$

Theorem 1. Let M be the collection of all submartingales satisfying ceriain conditions of type $(\phi, \underline{r}, \bar{r})$ and/or type (L, U). Then

$$
\begin{gathered}
\sup _{P \in M} P\{T\}=\sup _{P \in M} P\left\{X_{1} \in B_{1}, \ldots, X_{m} \in B_{m}\right\} . \\
\text { Proof. For } \omega=\left(x_{1}, x_{2}, \ldots\right) \in R^{\infty}, \text { let } \\
\tau_{1}= \begin{cases}\text { least } n_{1} \text { (if any) such that } x_{n_{1}} \in B_{1}, \\
\infty & \text { if there is no such } n_{1} ;\end{cases} \\
\tau_{2}= \begin{cases}\text { least } n_{2} \geqq n_{1} \text { (if any) such that } x_{n_{2}} \in B_{2}, \\
\infty & \text { if there is no such } n_{2} ;\end{cases} \\
\tau_{m}= \begin{cases}\text { least } n_{m} \geqq n_{m-1} \text { (if any) such that } x_{n_{m}} \in B m, \\
\infty & \text { if there is no such } n_{m} .\end{cases}
\end{gathered}
$$

Therefore $\tau_{1} \leqq \tau_{2} \leqq \ldots \leqq \tau_{m}$ and

$$
\begin{aligned}
P\{T\} & =P\left\{\tau_{m}<\infty\right\}=\lim _{n \rightarrow \infty} P\left\{\tau_{m} \leqslant n\right\} \\
& =\lim _{n \rightarrow \infty} P\left\{X_{\tau_{1} \wedge n} \in B_{1}, \ldots, X_{\tau_{m} \wedge n} \in B_{m}\right.
\end{aligned}
$$

However, by Lemma 1.a),

$$
P\left\{X_{\tau_{1} \wedge n} \in B_{1}, \ldots, X_{\tau_{m} \wedge n} \in B_{m}\right\}=Q\left\{X_{1} \in B_{1}, \ldots, X_{m} \in B_{m}\right\}
$$

for some $Q \in M$. Hence

$$
\lim _{n \rightarrow \infty} P\left\{X_{r_{1} \wedge n} \in B_{1}, \ldots, X_{\tau_{m} \wedge n} \in B_{m}\right\} \leqq \sup _{P \in M} P\left\{X_{1} \in B_{1}, \ldots, X_{m} \in B_{m}\right\}
$$

and we have

$$
\sup _{P \in M} P\{T\} \leqq \sup _{P \in M} P\left\{X_{1} \in B_{1}, \ldots, X_{m} \in B_{m}\right\}
$$

The reverse inequality is immediate, completing the proof.
Theorem 1 provides a prescription for obtaining sharp bounds for upcrossing probabilities. Essentially it says stopping times are unnecessary.

For any pair of real numbers $a<b$ and any $\omega=\left(x_{1}, x_{2}, \ldots\right) \in R^{\infty}$ define $\gamma_{a b}$ to be the number of upcrossings of the interval $[a, b]$. Define

$$
\begin{aligned}
& S_{n}=\left\{X_{1} \leqq a, X_{2} \geqq b, \ldots, X_{2 n-1} \leqq a\right\} \text { and } \\
& \qquad T_{n}=\left\{X_{1} \leqq a, X_{2} \geqq b, \ldots, X_{2_{n-1}} \leqq a, X_{2_{n}} \geqq b\right\}
\end{aligned}
$$

for all n.

Lemma 2.a. Let a, c, r and W be reals such that $a<c$ and $W \in[0,1)$; let $l \in R$ be defined by $W a+(1-W) l=c$ and let β be the two point probability $\beta=W \delta_{a}+(1-W) \delta_{l}\left(\delta_{a}\right.$ and δ_{l} are point probabilities at a and l respectively). Then among all probabilities μ on R such that $\mu((-\infty, a]) \geqq W$ and $\int x \mu(d x) \geqq$ c, β minimizes

$$
\theta(r) \cdot \mu(-\infty, r]+\int_{x>r} \theta(x) \mu(d x)=\int \theta(r) \vee \theta(x) \mu(d x)
$$

whatever convex, increasing function θ may be.
Proof. Let \mathscr{C} be the class of convex, increasing polygonal functions with a finite number of vertices. It is clear that for any convex increasing function θ,

$$
\int \theta(r) \vee \theta(d x)=\sup _{\substack{g \in \mathscr{E} \\ g \leq \theta}} \int \theta(r) \vee g(x) \mu(d x) .
$$

Thus to show $\int \theta(r) \vee \theta(x) \mu(d x) \geqq \int \theta(r) \vee \theta(x) \beta(d x)$ it suffices to show $\int \theta(r) \vee g(x) \mu(d x) \geqq \int \theta(r) \vee g(x) \beta(d x)$ for all $g \in \mathscr{C}$. Now if $g \in \mathscr{C}$, then $\theta(r) \vee g$ may be represented in the following form:

$$
\begin{aligned}
\theta(r) \vee g(x)=\theta(r)+d_{1}(x \vee r-r)+\left(d_{2}\right. & \left.-d_{1}\right)\left(x \vee x_{1}-x_{1}\right)+\ldots \\
& +\left(d_{n}-d_{n-1}\right)\left(x \vee x_{n}-x_{n}\right),
\end{aligned}
$$

where $\left\{(r, \theta(r)),\left(x_{1}, g\left(x_{1}\right)\right), \ldots,\left(x_{n}, g\left(x_{n}\right)\right)\right\}$ are the vertices of $\theta(r) \vee g$ and $0<d_{1}<d_{2} \ldots<d_{n}$. By linearity then, to show $\int \theta(r) \vee g(x) \mu(d x) \geqq$ $\int \theta(r) \vee g(x) \beta(d x)$ it is enough to show $\int y \vee x \mu(d x) \geqq \int y \vee x \beta(d x)$ for all $y \in R$.

When $y \in[a, l]$,

$$
\begin{aligned}
\int x & \vee y \mu(d x) \geqq \int x \mu(d x)+(y-a) \mu((-\infty, a]) \\
& \geqq c+(y-a) W \\
& =y W+l(1-W)=\int x \vee y \beta(d y)
\end{aligned}
$$

When $y \leqq a$,

$$
\int x \vee y \mu(d x) \geqq \int x \mu(d x) \geqq c=\int x \vee y \beta(d x)
$$

When $y \geqq l$,

$$
\int x \vee y \mu(d x) \geqq y \geqq l=\int x \vee y \beta(d x)
$$

Lemma 2.b. With a, c, W, l, μ and β as in Lemma 2.a we have

$$
\int_{a^{+}}^{\infty} \theta(x) \mu(d x) \geqq \int_{a^{+}}^{\infty} \theta(x) \beta(d x)
$$

for all convex, increasing functions θ.

Proof. Let $\mu((-\infty, a])=\tilde{W}$. Define \tilde{l} by $\tilde{W} a+(1-\tilde{W}) \tilde{l}=c$ and let $\tilde{\beta}=\tilde{W} \delta_{a}+(1-\widetilde{W}) \delta_{\tilde{i}}=c$. By Lemma 2.a, taking $r=a$

$$
\theta(a) \mu(-\infty, a]+\int_{a^{+}}^{\infty} \theta(x) \mu(d x) \geqq \theta(a) \tilde{\beta}(-\infty, a]+\int_{a^{+}}^{\infty} \theta(x) \tilde{\beta}(d x)
$$

for all convex, increasing functions θ. However $\mu(-\infty, a]=\tilde{\beta}(-\infty, a]$, hence

$$
\begin{aligned}
\int_{a^{+}}^{\infty} \theta(x) \mu(d x) \geqq & \int_{a^{+}}^{\infty} \theta(x) \widetilde{\beta}(d x)=\theta(\tilde{l})(1-\widetilde{W}) \\
& =(1-\widetilde{W}) \theta\left(\frac{c-\widetilde{W}(a)}{1-\tilde{W}}\right)=(1-\widetilde{W}) \theta\left(\frac{c-a}{1-\widetilde{W}}+a\right) .
\end{aligned}
$$

However, $(1-s) \theta((c-a) /(1-s)+a)$ is an increasing function in $s \in$ $[0,1]$ (by a supporting hyperplane argument), and $\widetilde{W} \geqq W$ by Lemma 2.a. Therefore,

$$
\begin{aligned}
& \int_{a^{+}}^{\infty} \theta(x) \mu(d x) \geqq(1-\tilde{W}) \theta\left(\frac{c-a}{1-\widetilde{W}}+a\right) \\
& \quad \geqq(1-W) \theta\left(\frac{c-a}{1-W}+a\right) \\
& \quad=\int_{a^{+}}^{\infty} \theta(x) \beta(d x) .
\end{aligned}
$$

Theorem 2. Let P be a submartingale satisfying a condition of type (ϕ, \bar{r}) and such that

$$
\int X_{1} d P \geqq m
$$

Let the submartingale Q^{n} on $\left(R^{\infty}, B^{\infty}\right)$ be defined by:

$$
\left.\begin{array}{c}
Q^{n}\left\{X_{1}=m\right\}=1-q_{0} \\
Q^{n}\left\{X_{1}=a\right\}=q_{0}-q_{1} \\
Q^{n}\left\{X_{1}=l_{1}\right\}=q_{1} \\
Q^{n}\left\{X_{2}=X_{1} \mid X_{1} \neq a\right\}=1 \\
Q^{n}\left\{X_{2}=b \mid X_{1}=a\right\}=1
\end{array}\right] \begin{aligned}
& \text { (A) }\left\{\begin{array}{l}
Q^{n}\left\{X_{3}=X_{2} \mid X_{2} \neq b\right\}=1 \\
Q^{n}\left\{X_{3}=a \mid X_{2}=b\right\}=1-q_{2} \\
Q^{n}\left\{X_{3}=l_{2} \mid X_{2}=b\right\}=q_{2}
\end{array}\right. \\
& \text { (B) }\left\{\begin{array}{l}
Q^{n}\left\{X_{4}=X_{3} \mid X_{3} \neq a\right\}=1 \\
Q^{n}\left\{X_{4}=b \mid X_{3}=a\right\}=1
\end{array}\right.
\end{aligned}
$$

and so on repeating (A) and (B) for $X_{5}, X_{6}, X_{7}, X_{8}, \ldots, X_{2 n-1}, X_{2 n}$. $X_{k+1}=X_{k}$ for $k \geqq 2 n$. There exist $0 \leqq q_{0}, q_{1}, \ldots, q_{n} \leqq 1$ and $b \leqq l_{1}, \ldots, l_{n}$ such that
(a) $q_{1}=0$
if $m \leqq a$

$$
q_{1} l_{1}+\left(1-q_{1}\right) a=m, q_{0}=1 \quad \text { if } m>a
$$

$$
q_{k} l_{k}+\left(1-q_{k}\right) a=b \quad \text { if } 1<k \leqq n ;
$$

(b) Q satisfies (ϕ, \bar{r});
(c) $\int X_{1} d Q \geqq m$; and
(d) $P\left\{T_{n}\right\}=Q\left\{T_{n}\right\}$.
(We remark that the trajectories are a.s. $-Q$ of the form (if $m \geqq a$):

$$
\begin{aligned}
& \left(l_{1}, l_{1}, l_{1}, \ldots\right) \quad \text { w.p. } \quad q_{1} ; \\
& \left(a, b, a, b, \ldots a, b, l_{k}, l_{k}, \ldots\right) \quad \text { w.p. } \quad\left(1-q_{1}\right)\left(1-q_{2}\right) \ldots\left(1-q_{k-1}\right) q_{k}
\end{aligned}
$$

for $1 \leqq k \leqq n$; and

$$
(a, b, a, b, \ldots a, b, a, b, b, \ldots) \quad \text { w.p. } \quad\left(1-q_{1}\right) \ldots\left(1-q_{n}\right) .
$$

If $m<a$, the trajectory $\left(l_{1}, l_{1}, \ldots\right)$ is replaced by the trajectory (m, m, \ldots) having probability $1-q_{0}$).

Proof. We proceed by induction. Suppose the theorem is true for $k \leqq n-1$. Then there exists a submartingale Q^{n-1} of the above form (along with q_{0}, q_{1}, \ldots, q_{n-1} and $\left.l_{1}, l_{2}, \ldots, l_{n-1}\right)$ such that $\int \theta\left(X_{k}\right) d Q^{n-1} \leqq \int \theta\left(X_{k}\right) d P$ for $1 \leqq k \leqq 2 n-$ 2, and $Q^{n-1}\left\{T_{n-1}\right\}=P\left\{T_{n-1}\right\}$. Now define $1-q_{n}=P\left\{T_{n} \mid T_{n-1}\right\}$ and l_{n} by $q_{n} l_{n}+\left(1-q_{n}\right) a=b$. Define Q^{n} using $q_{0}, q_{1}, \ldots q_{n}$ and $l_{1}, l_{2}, \ldots, l_{n}$. Now consider the probability $\mu(d x)=P\left\{X_{2_{n-1}} \in d x \mid T_{n-1}\right\}$. By Lemma 2.a taking $r=$ $-\infty$, the two point probability $\beta=q_{n} \delta_{l_{n}}+\left(1-q_{n}\right) \delta_{a}$ satisfies

$$
\begin{aligned}
\frac{1}{P\left\{T_{n-1}\right\}} \int_{T_{n-1}} \theta\left(X_{2 n-1}\right) d P=\int \theta(x) \mu(d x) & \geqq \int \theta(x) \beta(d x) \\
& =\frac{1}{P\left\{T_{n}\right\}} \int_{T_{n-1}} \theta\left(X_{2 n-1}\right) d Q^{n} .
\end{aligned}
$$

Hence
(1) $\int_{T_{n-1}} \theta\left(X_{2 n-1}\right) d P \geqq \int_{T_{n-1}} \theta\left(X_{2 n-1}\right) d Q^{n}$.

Next,

$$
\begin{align*}
& \int_{T_{n-1}^{\mathrm{c}}} \theta\left(X_{2 n-1}\right) d P \geqq \int_{T_{n-1}^{c}} \theta\left(X_{2 n-2}\right) d P \geqq \int_{T_{n-1}^{c}} \theta\left(X_{2 n-2}\right) d Q^{n-1} \\
&=\int_{T_{n-1}^{c}} \theta\left(X_{2 n-1}\right) d Q^{n} \tag{2}
\end{align*}
$$

So

$$
\int \theta\left(X_{2 n-1}\right) d P=\int_{T_{n-1}} \theta\left(X_{2 n-1}\right) d P+\int_{T_{n-1}^{c}} \theta\left(X_{2 n-1}\right) d P
$$

$$
\geqq \int \theta\left(X_{2 n-1}\right) d Q^{n}
$$

by (1) and (2).

Next,

$$
\begin{gathered}
\int \theta\left(X_{2 n}\right) d P=\int_{T_{n}} \theta\left(X_{2 n}\right) d P+\int_{S_{n}-T_{n}} \theta\left(X_{2 n}\right) d P+\int_{T_{n-1}-S_{n}} \theta\left(X_{2 n}\right) d P \\
{ }^{(3)}+\int_{T_{n-1}^{c}} \theta\left(X_{2 n}\right) d P \geqq b P\left\{T_{n}\right\}+\int_{T_{n-1}-S_{n}} \theta\left(X_{2 n-1}\right) d P+\int_{T_{n-1}^{c}} \theta\left(X_{2 n-2}\right) d P .
\end{gathered}
$$

Again defining $\mu(d x)=P\left\{X_{2_{n-1}} \in d x \mid T_{n-1}\right\}$,

$$
\begin{aligned}
& \int_{T_{n-1}-S_{n}} \theta\left(X_{2 n-1}\right) d P=P\left\{T_{n-1}\right\} \int_{a^{+}}^{\infty} \theta(x) \mu(d x) \\
& \geqq P\left\{T_{n-1}\right\}\left(\int_{a^{+}}^{\infty} \theta(x) \beta(d x)\right)=\int_{T_{n-1}-S_{n}} \theta\left(X_{2 n-1}\right) d Q^{n} \quad \text { (by Lemma 2.b). }
\end{aligned}
$$

Hence from (3),

$$
\begin{aligned}
\int \theta\left(X_{2 n}\right) d P \geqq b P\left\{T_{n}\right\}+\int_{T_{n-1}-S_{n}} \theta\left(X_{2 n-1}\right) d Q^{n}+\int_{T_{n-1}^{c}} & \theta\left(X_{2 n-2}\right) d Q^{n} \\
& =\int \theta\left(X_{2 n}\right) d Q^{n}
\end{aligned}
$$

Therefore, $\int \theta\left(X_{k}\right) d Q^{n} \leqq \int \theta\left(X_{k}\right) d P$ for $1 \leqq k \leqq 2 n ; Q^{n}\left\{T_{n}\right\}=P\left\{T_{n}\right\}$, and by construction, Q^{n} is a submartingale.
3. Applications. Theorems 1 and 2 provide an algorithm for obtaining sharp upcrossing probabilities. Denote $\left(x^{+}\right)^{p}$ by $[x]_{+}^{p}$.

Proposition 1. If M is the collection of submartingales such that

$$
\begin{aligned}
& \int\left[X_{n}-a\right]_{+}^{p} d P \leqq L \text { for all } n \text {, and } \\
& \int X_{1} d P \geqq m, \text { where } p \geqq 1 \text {, and if } \\
& B_{a b}(k)=\frac{L-[m-a]_{+}^{p}}{(b-a)^{p}} \cdot \frac{(p-1)^{p-1}}{\left\{k+\frac{(m-a)^{+}}{b-a}(p-1)-1\right\}^{p}+(p-1)^{p-1}}
\end{aligned}
$$

(if $p=1$, set $(p-1)^{p-1}=1$), then

$$
\begin{aligned}
& \sup _{P \in M} P\left\{\gamma_{a b} \geqq k\right\} \leqq B_{a b}(k) \quad \text { for all } k, \text { and } \\
& \sup _{P \in M} P\left\{\gamma_{a b} \geqq k\right\} \sim B_{a b}(k) .
\end{aligned}
$$

Proof. Let $\theta_{1}(x)=[x-a]_{+}^{p}, \bar{r}\left(\theta_{1}\right)=L$ and $\underline{r}\left(\theta_{1}\right)=-\infty$. Let $\theta_{2}(x)=x-$ $m, \underline{r}\left(\theta_{2}\right)=0$ and $\bar{r}\left(\theta_{2}\right)=\infty$. Let $\phi=\left\{\theta_{1}, \theta_{2}\right\}$ and \bar{M} be the collection of all submartingales satisyfing condition $(\phi, \underline{r}, \bar{r})$. We check that $\bar{M}=M$. Setting
$B_{1}=(-\infty, a], B_{2}=[b, \infty), \ldots, B_{2 n-1}=(-\infty, a], B_{2 n}=[b, \infty)$ and applying Theorem 1, we have

$$
\sup _{Q \in M} Q\left\{\gamma_{a b} \geqq n\right\}=\sup _{Q \in M} Q\left\{X_{1} \leqq a, \ldots, X_{2 n} \geqq b\right\} .
$$

Next, by Theorem 2,

$$
\sup _{Q \in M} Q\left\{X_{1} \leqq a, \ldots, X_{2 n} \geqq b\right\}=\sup _{Q \in \bar{M}} Q\left\{X_{1} \leqq a, \ldots, X_{2 n} \geqq b\right\}
$$

where \tilde{M} is the collection of submartingales in M also having the form given in Theorem 2. Let $Q \in \tilde{M}$. Let

$$
\begin{aligned}
& Q\left\{X_{1}=m\right\}=1-p_{0} \\
& Q\left\{S_{k}\right\}=p_{k}, \quad k=1, \ldots, n
\end{aligned}
$$

Therefore, by the submartingale property, $m \leqq\left(1-p_{0}\right) m+p_{1} a+\left(p_{0}-p_{1}\right) l_{1}$. Clearly equality is best (for satisfying ($\phi, \bar{r})$) so

$$
l_{1}=\frac{p_{0} m-p_{1} a}{p_{0}-p_{1}} .
$$

Similarly $p_{k} b=p_{k+1} a+\left(p_{k}-p_{k+1}\right) l_{k+1}, k=1, \ldots, n-1$, so

$$
l_{k+1}=\frac{p_{k} b-p_{k+1} a}{p_{k}-p_{k+1}} .
$$

Next

$$
\begin{aligned}
L \geqq & \int\left[X_{2 n}-a\right]_{+}^{p} d Q \\
\geqq & \left(1-p_{0}\right)[m-a]_{+}^{p}+\left(p_{0}-p_{1}\right)\left[\frac{p_{0} m-p_{1} a}{p_{0}-p_{1}}-a\right]_{+}^{p} \\
& \quad+\left(p_{1}-p_{2}\right)\left[\frac{p_{1} b-p_{2} a}{p_{1}-p_{2}}-a\right]_{+}^{p}+\ldots \\
& \quad+\left(p_{n-1}-p_{n}\right)\left[\frac{p_{n-1} b-p_{n} a}{p_{n-1}-p_{n}}-a\right]^{p}+p_{n}(b-a)^{p} \\
= & \left(1-p_{0}\right)[m-a]_{+}^{p}+\frac{p_{0}^{p}[m-a]_{+}^{p}}{\left(p_{0}-p_{1}\right)^{p-1}}+\frac{p_{1}^{p}}{\left(p_{1}-p_{2}\right)^{p-1}}(b-a)^{p}+\ldots \\
& \quad+\frac{p_{n-1}^{p}}{\left(p_{n-1}-p_{n}\right)^{p-1}}(b-a)^{p}+p_{n}(b-a)^{p} .
\end{aligned}
$$

Let

$$
\tilde{L}=\frac{L-[m-a]_{+}}{(b-a)^{p}}, \quad \alpha_{0}=p_{0}, \alpha_{1}=\frac{p_{1}}{p_{0}}, \ldots, \alpha_{n}=\frac{p_{n}}{p_{n-1}} .
$$

Therefore

$$
\begin{align*}
\tilde{L} \geqq \frac{-\alpha_{0}[m-a]_{+}^{p}}{(b-a)^{p}}+\frac{\alpha_{0}[m-a]_{+}^{p}}{(b-a)^{p} \cdot\left(1-\alpha_{1}\right)^{p-1}} & +\frac{\alpha_{0} \alpha_{1}}{\left(1-\alpha_{2}\right)^{p=1}}+\ldots \tag{1}\\
& +\frac{\alpha_{0} \ldots \alpha_{n-1}}{\left(1-\alpha_{n}\right)^{p-1}}+\alpha_{0} \ldots \alpha_{n} .
\end{align*}
$$

We must now maximize $p_{n}=\alpha_{0} \ldots \alpha_{n}$ subject to the constraint (1) and $0 \leqq$ $\alpha_{0}, \ldots, \alpha_{n} \leqq 1$. Clearly the maximum occurs when (1) is an equality. Solving for α_{0} we must maximize
(2)

$$
\left\{\frac{\tilde{L} \alpha_{1} \ldots \alpha_{n}}{\frac{-[m-a]_{+}^{p}}{(b-a)^{p}}+\frac{[m-a]_{+}^{p}}{(b-a)^{p}\left(1-\alpha_{1}\right)^{p-1}}+\ldots+\frac{\alpha_{1} \ldots \alpha_{n-1}}{\left(1-\alpha_{n}\right)^{p-1}}+\alpha_{1} \ldots \alpha_{n}}\right\} .
$$

Equivalently, we can minimize

$$
\begin{array}{r}
\frac{1}{\widetilde{L}}\left\{\frac{[m-a]_{+}^{p}}{(b-a)^{p} \alpha_{1} \ldots \alpha_{n}}\left(\frac{1}{\left(1-\alpha_{1}\right)^{p-1}}-1\right)+\frac{1}{\left(1-\alpha_{2}\right)^{p-1} \alpha_{2} \ldots \alpha_{k}}+\ldots\right. \\
\left.+\frac{1}{\left(1-\alpha_{k}\right)^{p-1} \alpha_{k}}+1\right\} .
\end{array}
$$

Set

$$
\gamma_{1}=\frac{[m-a]_{+}^{p}}{(b-a)^{p} \alpha_{1}} \cdot\left(\frac{1}{\left(1-\alpha_{1}\right)^{p=1}}-1\right) .
$$

For $m \geqq 2$ set

$$
\begin{array}{r}
\gamma_{m}=\frac{[m-a]_{+}{ }^{p}}{(b-a)^{p} \alpha_{1} \ldots \alpha_{m}}\left(\frac{1}{\left(1-\alpha_{1}\right)^{p-1}}-1\right)+\frac{1}{\left(1-\alpha_{2}\right)^{p-1} \alpha_{2} \ldots \alpha_{m}}+\ldots \\
\\
+\frac{1}{\left(1-\alpha_{m}\right)^{p-1} \alpha_{n}} .
\end{array}
$$

Therefore for $k \geqq 2$,
(3) $\gamma_{k}=\frac{\gamma_{k-1}}{\alpha_{k}}+\frac{1}{\left(1-\alpha_{k}\right)^{p-1} \alpha_{k}}$.

We wish to minimize γ_{n} by choosing $\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{n}$. However, γ_{n-1} depends only on $\alpha_{1}, \ldots, \alpha_{n-1}$; therefore, at the minimum,

$$
0=\left.\frac{d \gamma_{n}}{d \alpha_{n}}\right|_{\bar{\alpha}_{n}}=\frac{-\gamma_{n-1}}{\bar{\alpha}_{n}{ }^{2}}-\frac{1}{\left(1-\bar{\alpha}_{n}\right)^{p-1} \bar{\alpha}_{n}{ }^{2}}+\frac{p-1}{\left(1-\bar{\alpha}_{n}\right)^{p} \bar{\alpha}_{n}} .
$$

This gives

$$
\gamma_{n-1}=\frac{p \bar{\alpha}_{i,}-1}{\left(1-\bar{\alpha}_{n}\right)^{p}} .
$$

Substituting back into (3) also gives $\gamma_{n}=(p-1) /\left(1-\bar{\alpha}_{n}\right)^{p}$. Now at the minimum,

$$
0=\frac{d \gamma_{n-1}}{d \alpha_{n-1}}=\frac{d \gamma_{n-1}}{d \alpha_{n-2}}=\ldots=\frac{d \gamma_{n-1}}{d \alpha_{1}}
$$

so the above relations hold for each level. Hence, (henceforth γ_{k} represents the
minimum value)
(4) $\quad \gamma_{k-1}=\frac{p \bar{\alpha}_{k}-1}{\left(1-\bar{\alpha}_{k}\right)^{p}}$, and
(5) $\quad \gamma_{k}=\frac{p-1}{\left(1-\bar{\alpha}_{k}\right)^{\bar{p}}} \quad$ for $k \geqq 2$.

We remark that

$$
\left.\frac{\tilde{L}}{\gamma_{k}}\right|_{\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{k}} \wedge 1
$$

yields the maximum probability of k upcrossings under our constraints for all $k \geqq 1$. With our recurrence relations we now examine the asymptotic behavior of γ_{k}.

$$
\frac{\gamma_{k-1}}{\gamma_{k}}=\frac{p \bar{\alpha}_{k}-1}{p-1}=1-\frac{p\left(1-\bar{\alpha}_{k}\right)}{p-1} .
$$

Also from (5), $\left(1-\bar{\alpha}_{k}\right)=(p-1)^{1 / p} \gamma_{k}{ }^{-1 / p}$; hence
(6) $\frac{\gamma_{k-1}}{\gamma_{k}}=1-\frac{p}{(p-1)^{(p-1) / \bar{p}}} \gamma_{k}^{-1 / p}$, or
(7) $\quad \gamma_{k}-\gamma_{k-1}=C \gamma_{k}{ }^{1-1 / p} ; \quad C=\frac{p}{(p-1)^{(p-1) / p}}$.

Now consider the equation $\mathrm{d} \gamma(t) / d t=C_{\gamma}(t)^{1-1 / p}$. Solutions are of the form $\left.\gamma(t)=((C t) / p)+C_{1}\right)^{p}$ where C_{1} is a constant. Also

$$
\begin{aligned}
\gamma(k) & -\gamma(k-1)=\dot{\gamma}(s) \quad \text { for some } k-1 \leqq s \leqq k, \\
& =C \gamma(s)^{1-1 / p} \\
& \leqq C \gamma(k)^{1-1 / p},
\end{aligned}
$$

since solutions are increasing. Therefore $\gamma(k)$ increases slower than γ_{k}.
Next from, (6) we have $\lim _{k \rightarrow \infty} \gamma_{k-1} / \gamma_{t}=1$, so for all $\delta>1$ there exists an n_{0} such that for $k \geqq n_{0}$,

$$
\gamma_{k}^{1-1 / p} \leqq \delta \gamma_{k-1}^{1-1 / p} \quad(\delta-1 \text { is small }) .
$$

Hence, $\gamma_{k}-\gamma_{k-1} \leqq \delta C \gamma_{k-1}{ }^{1-1 / p}$. Now let $d \tilde{\gamma}(t) / d t=\delta \mathrm{C} \tilde{\gamma}(t)^{1-1 / p}$. Hence

$$
\begin{aligned}
\tilde{\gamma}(k) & -\tilde{\gamma}(k-1)=\dot{\gamma}(s) \quad \text { for some } k-1 \leqq s \leqq k \\
& =\delta C \tilde{\gamma}(s)^{1-1 / p} \\
& \geqq \delta C \tilde{\gamma}(k-1)^{1-1 / p} .
\end{aligned}
$$

Therefore $\tilde{\gamma}(k)$ increases faster than γ_{k}. Also as before $\left.\tilde{\gamma}(t)=((\delta C t) / p)+C_{2}\right)^{p}$, where C_{2} is a positive constant. Hence γ_{k} is $o\left(k^{p}\right)$. Moreover, we can solve explicitly for γ_{1}.

$$
\gamma_{1}=\frac{[m-a]_{+}^{p}}{(b-a)^{p}} \frac{1}{\alpha_{1}}\left(\frac{1}{\left(1-\alpha_{1}\right)^{p-1}}-1\right)
$$

is increasing in $0 \leqq \alpha_{1} \leqq 1$. Hence the minimum is

$$
\lim _{\alpha_{1} \rightarrow 0} \gamma_{1}=\frac{[m-a]_{+}^{p}}{(b-a)^{p}}(p-1)
$$

If we set $\gamma(1)=\gamma_{1}$ we have

$$
\left(\frac{C}{p}+C_{1}\right)^{p}=\frac{[m-a]_{+}^{p}}{(b-a)^{p}}(p-1)
$$

and after substitution

$$
\gamma(t)=\frac{1}{(p-1)^{p-1}}\left(t+\frac{(m-a)^{+}}{(b-a)}(p-1)-1\right)^{p} .
$$

Hence

$$
\begin{aligned}
\frac{\tilde{L}}{\gamma_{k}+1} \leqq \frac{\tilde{L}}{\gamma(k)+1}= & \frac{L-[m-a]_{+}^{p}}{(b-a)^{p}} \\
& \times \sqrt{\left(k+\frac{(m-a)^{\mp}}{b-a}(p-1)-1\right)^{p}+(p-1)^{p-1}}
\end{aligned}
$$

Since the probability of k upcrossings is at most $\tilde{L} /\left(\gamma_{k}+1\right)$ we have our bound.
We now set $\tilde{\gamma}\left(n_{0}\right)=\gamma_{n_{0}}$, thereby determining C_{2}. Hence

$$
\begin{aligned}
\frac{\gamma_{k}}{\gamma(k)} & \leqq \frac{\tilde{\gamma}(k)}{\gamma(k)} \text { for } k \geqq n_{0} \\
& \leqq \frac{\left(\frac{\delta C k}{p}+C_{2}\right)^{p}}{\left(\frac{C k}{p}+C_{1}\right)^{p}}
\end{aligned}
$$

Therefore

$$
\varlimsup_{k \rightarrow \infty} \frac{\gamma_{k}}{\gamma(k)} \leqq \delta^{p} ;
$$

but $\delta-1$ is arbitrarily small. Therefore

$$
\varlimsup_{k \rightarrow \infty} \frac{\gamma_{k}}{\gamma(k)} \leqq 1 .
$$

Hence

$$
\lim _{k \rightarrow \infty} \frac{\frac{\tilde{L}}{\gamma(k)+1}}{\frac{\tilde{L}}{\gamma_{k}+1}}=1,
$$

SO

$$
\sup _{P \in M} P\left\{\gamma_{a b} \geqq k\right\} \sim B_{a b}(k)
$$

For $p=1$ it is easiest to maximize the expression (2). The maximum is \widetilde{L} / k. This completes the proof.

We could generalize Proposition 1 by supposing $E X_{1}=m$ and $E \theta\left(X_{n}-a\right)$ $\leqq L$ for all n where θ is an increasing convex function with derivative θ^{\prime}. The above proof goes through and (7) becomes $\gamma_{k}-\gamma_{k-1}=\theta^{\prime} \circ \alpha\left(\gamma_{k}\right)$ where $\alpha \circ\left(\theta^{\prime}(x) x-\theta(x)\right)=x$. In a particular case we may be able to proceed (as above) from here.

Corollary 1. Doob's upcrossing inequality is sharp.
Proof. For any submartingale P such that $\int\left(X_{n}-a\right)^{+} d P \leqq L$ for all n and $\int X_{1}=m$, Doob's inequality says

$$
\int \gamma_{a b} d P \leqq \frac{L-(m-a)^{+}}{b-a}
$$

Applying Chebyschev's inequality, we have

$$
P\left\{\gamma_{a b} \geqq k\right\} \leqq \frac{L-(m-a)^{+}}{k(b-a)}
$$

which is precisely the bound given in Proposition 1 for $p=1$ (Prof. David Heath pointed this out). Proposition 1 provides the construction of a submartingale (almost) attaining this bound (in fact $\alpha_{2}=\alpha_{3}=\ldots=\alpha_{k}=1$ means $l_{1}=l_{2}=\ldots=l_{k}=\infty$ so at best by taking l_{1}, \ldots, l_{k} large we may almost attain the bound). Hence Doob's inequality must also be sharp.

It is in fact possible to obtain Doob's upcrossing inequality directly by these methods (see [2]).

Example 2. (Dubins' inequality-see [3, p. 27]).
Proposition 2. If P is a submartingale such that $P\left\{L \leqq X_{n} \leqq U\right\}=1$ for constants $L, U(L \leqq U)$ for all n, and $\int X_{1} d P \geqq m$, then

$$
P\left\{\gamma_{a b} \geqq k\right\} \leqq\left(\frac{U-m \vee a}{U-a}\right)\left(\frac{U-b}{U-a}\right)^{k-1}
$$

for $L \leqq a<b \leqq U$, where $m \vee a=\max \{m, a\}$.
Proof. Define $\theta(x)=x, \underline{r}(\theta)=m, \bar{r}(\theta)=\infty$ and $\phi=\{\theta\}$. Let M be the class of all submartingales satisfying conditions (ϕ, r, \bar{r}) and (L, U). It is clear that M consists of exactly those submartingales satisfying our hypotheses. Therefore by Theorem 1,

$$
\sup _{P \in M} P\left\{\gamma_{a b} \geqq k\right\}=\sup _{P \in M} P\left\{T_{k}\right\}
$$

For any $P \in M$,

$$
\int_{T_{k-1}} X_{2 k-2} d P \leqq \int_{T_{k-1}} X_{2 k-1} d P=\int_{S_{k}} X_{2 k-1} d P+\int_{T_{k-1} \cap S_{k} c} X_{2 k-1} d P
$$

So $b P\left\{T_{k-1}\right\} \leqq P\left\{S_{k}\right\} a+\left(P\left\{T_{k-1}\right\}-P\left\{S_{k}\right\}\right) U$. Hence

$$
P\left\{T_{k}\right\} \leqq P\left\{S_{k}\right\} \leqq \frac{U-b}{U-a} P\left\{T_{k-1}\right\}
$$

Next $m \leqq \int X_{1} d P=\int_{S_{1}} X_{1} d P+\int_{S_{1} c} X_{1} d P$, so $m \leqq P\left\{S_{1}\right\} a+\left(1-P\left\{S_{1}\right\}\right) U$. Hence

$$
P\left\{T_{1}\right\} \leqq P\left\{S_{1}\right\} \leqq\left(\frac{U-m}{U-a}\right) \wedge 1
$$

By iteration we have

$$
P\left\{T_{k}\right\} \leqq\left(\frac{U-m \vee a}{U-a}\right)\left(\frac{U-b}{U-a}\right)^{k-1}
$$

Again this bound is sharp. A martingale with precisely these upcrossing probabilities is given as an Exercise II-2 in [3].

I thank Prof. Harry Kesten for his help with the asymptotic analysis in Proposition 1. Thanks also to the referee for the current improved version of Lemma 2.a.b.

References

1. D. Gilat and William D. Sudderth, Generalized Kolmogorov inequalities for martingales, Z. Wahrscheinlichkeitstheorie verw. Gebiete 36 (1976), 67-73.
2. D. McDonald, Sharp upcrossing probabilities, unpublished (1976).
3. J. Neveu, Martingales à temps discret (Masson et Cie, Paris, (1972).

University of Ottawa,
Ottawa, Ontario

[^0]: Received September 8, 1976 and in revised form, February 22, 1977. This work was done at

