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BIPARTITE GRAPH BUNDLES WITH CONNECTED FIBRES

SungPYO HONG, JIN HO KWAK AND JAEUN LEE

Let G be a finite connected simple graph. The isomorphism classes of graph bun-
dles and graph coverings over G have been enumerated by Kwak and Lee. Recently,
Archdeacon and others characterised bipartite coverings of G and enumerated the
isomorphism classes of regular 2p-fold bipartite coverings of G, when G is nonbi-
partite. In this paper, we characterise bipartite graph bundles over G and derive
some enumeration formulas of the isomorphism classes of them when the fibre is a
connected bipartite graph. As an application, we compute the exact numbers of the
isomorphism classes of bipartite graph bundles over G when the fibre is the path P,
or the cycle Cy,.

1. INTRODUCTION

Let G be a finite connected simple graph with vertex set V(G) and edge set F(G).
Let | X| denote the cardinality of a set X. The Betti number of G is by definition the
number B(G) = |E(G)| — |V(G)| + 1, which turns out to be the number of independent
cycles in G. For graph theoretic terminology not defined here, see [3).

Two graphs G and H are isomorphic if there exists a one-to-one correspondence
between their vertex sets which preserves adjacency. Such a correspondence is called
an isomorphism between G and H. An automorphism of a graph G is an isomorphism
of G onto itself. Thus, an automorphism of G is a permutation of the vertex set V(G)
which preserves adjacency. Obviously, the automorphisms of G form a permutation group
Aut (G), which acts on the vertex set V(G).

Now, we introduce the notion of a graph bundle [7]. Every edge of a graph G gives
rise to a pair of oppositely directed edges. We denote the set of directed edges of G by
D(G). A directed edge e in D(G) is denoted by wuw if its initial and terminal vertices are
u and v respectively, and its reverse edge is denoted by e~! or vu. For a finite group T,
a [-voltage assignment of G is a function ¢ : D(G) — I such that ¢(e™!) = ¢(e)~! for
all e € D(G). We denote the set of I'-voltage assignment of G by C*(G;T’). Note that
the set C'(G;T) needs not be a group under pointwise multiplication.
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For a finite simple graph F, let ¢ be an Aut(F)-voltage assignment of G. We
construct a new graph G x? F as follows: V(G x? F) = V(G) x V(F). Two vertices
(u,s) and (v,t) in G x® F are adjacent if either uv € D(G) and t = ¢(uv)(s) in Foru = v
in G and the vertices s and t in F are adjacent. The graph G x? F is called the bundle
graph associated with ¢. Together with the first coordinate projection p? : G x¢ F — G,
the pair (G x* F,p®) is called the F-bundle over G associated with ¢, and G and F are
called the base and the fibre of the F-bundle (G x® F, p?), respectively. When there is no
confusion, we often call the bundle graph G x# F an F-bundle.

Note that for each v € V(G), the fibre (p?)~}(v) = F, of v is a subgraph of the
graph G x? F which is isomorphic to F. The map p® maps vertices to vertices, but an
image of an edge can be either an edge or a vertex. Moreover, V(G x?F) = U V(F,

veV(G)
If F = K,, the complement of the complete graph K, on n vertices, then an F-bundle
over G is just an n-fold covering graph of G [2]. If ¢(e) is the identity of Aut (F) for all
e € D(G), then G x? F is just the cartesian product G x F of G and F.

Two F-bundles G x? F and G x¥ F are said to be isomorphic if there exists an
isomorphism ® : G x? F — G x¥ F such that the diagram

Gx*F GxYF

Y/

commutes. Such a ® is called a bundle isomorphism. Notice that two isomorphic bundie
graphs need not be isomorphic as graph bundles.

After the enumeration of double covers of a graph in [4] and [8], there has been
much progress during the last decade in the enumeration of several graph coverings or
graph bundles over a graph ({1, 4, 5, 6] and references there).

Kwak and Lee [6] obtained the following algebraic characterisation of isomorphism
classes of F-bundles over G.

THEOREM 1.1. Let ¢ and ) be two voltage assignments in C*(G; Aut (F)). Two
F-bundles G x® F and G x¥ F are isomorphic if and only if there exists f : V(G) —
Aut (F) such that Y(uv) = f(v)é(uv) f(u)™! for all wv € D(G).

COROLLARY 1.2. Let ¢ be a voltage assignment in C'(G;Aut (F)) and T a
fixed spanning tree of G. Then there exists a voltage assignment v in C'(G; Aut (F))
such that y(e) = the identity for all e € D(T) and G x® F is isomorphic to G x¥ F as
bundles.

In particular, if G is a tree, then every F-bundle graph over G is isomorphic to the
cartesian product G x F. For a fixed spanning tree T of G, let

C(G; Aut (F)) = {¢ € C'(G; Aut (F)) | ¢(e) = the identity for each e € D(T) }
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It follows from Corollary 1.2 that C}(G;Aut(F)) contains all representatives of the
isomorphism classes of F-bundles over G.

COROLLARY 1.3. Let ¢ and % be two voltage assignments in C1(G; Aut (F)).
Then two F-bundles G x® F and G x¥ F are isomorphic if and only if there exists an
automorphism o in Aut (F) such that ¥(uv) = o¢(uv)o~! for all uv € D(G) — D(T).

2. A CHARACTERISATION OF BIPARTITE F-BUNDLES

In this section, we consider graph bundles over G whose bundle graphs are bipartite,
called bipartite graph bundles over G. If an F-bundle G x® F is bipartite, then clearly
the fibre F as a subgraph of G x? F is bipartite, while the base graph G needs not be
bipartite in general. In the following we discuss some characterisations of a bipartite
F-bundle G x? F in terms of the base graph G.

Let B = {Vi(F), Vo(F)} be a bipartition of the vertices of a bipartite graph F. An
automorphism o € Aut (F') is said to preserve the bipartition B of F if o (Vi(F)) = Vi(F)
for each ¢ = 1,2, and said to reverse the bipartition B of F if o(V;(F)) = V;(F) where
1 # j. We put

Py(F) = {0 € Aut (F) | o preserves the bipartition B of F}

and
Re(F) = {cf € Aut (F) | o reverses the bipartition B of F}.

Note that, for a bipartition B of F, if Rg(F) # 0, then |V,(F)| = |Va(F)| and |Pg(F)| =
|Rs(F)|. If F is a connected bipartite graph, then the bipartition of F is unique and
Aut (F) is the disjoint union of Pg(F') and Rg(F). In this case, Pg(F) and Reg(F) are
denoted by P(F) and R(F) respectively. If F is not connected, then, for a bipartition
B of F, Aut(F) needs not be the disjoint union of Py (F) and Ry (F) even though
Re(F) # 0. From now on, we assume that the fibre F is a connected bipartite graph,
and T is a fixed spanning tree of the base graph G of a graph bundle G x? F.
For each ¢ € Aut (F), we define the signature of o as

41 ifoePF),
sig(0) = { -1 if o € R(F).

An edge e in E(G) — E(T) is said to be odd (respectively even) if T + e has an odd
(respectively even) cycle. For a directed edge e in D(G) — D(T), the signature of e is

defined as
sig(e) = { +1 if the underlying edge of e is even,

—1 if the underlying edge of e is odd.

Let Bo(G,T) and B.(G,T) be the number of odd and even edges in E(G) — E(T), respec-
tively. Then B(G) = Be(G,T) + Bo(G, T).
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Let ¢ be an Aut (F)-voltage assignment of G and let W = e;e5...e, be a walk in
G with length ¢(W) = n. The product of voltages ¢(W) = ¢(e,) - - - d(e2)d(e;) is called
the net ¢-voltage of W.

THEOREM 2.1. Let F be a connected bipartite graph and ¢ € C*(G; Aut (F)).
Then the following are equivalent.
(a) G x® F is bipartite.
(b) For each cycle C in G, sig($(C)) = (-1)4©.
Moreover, if ¢ € C. (G; Aut (F)), then the above statements are equivalent to
(c) For each uv € D(G) — D(T), sig(¢(uv)) = sig(uv).
PRrROOF: (a) = (b) Suppose G x? F is bipartite, and let C be a cycle of length n in
G having vertices vy, v, ... ,Un consecutively. Then (v1,s) (va, $(v192)(5)) (vs, $(vavs)
#(v1v2)(s)) -+ (v1,8(C)(s)) is a path or a cycle P in G x? F of length n. Let Q be a
walk in (p®)~!(v1) = F,, connecting the vertices (vi,#(C)(s)) and (v1,s). Then PQ is a
closed walk in G x® F so that the length £(PQ) is even, since G x® F is bipartite. Note
that
UPQ) =£(C) +4Q) =n+ Q).
Thus the parities of £(C) and £(Q) are the same, that is, (—1)%¢) = (=1)49). Moreover,
since Fy, is bipartite, the length £(Q) is odd if and only if ¢(C) € R(F), and is even if
and only if ¢(C) € P(F). Therefore, sig(¢(C)) = (—1)4@ = (-1)4°).
(b) = (a) Let ug be a fixed vertex in G and let the fibre F,,, have a vertex bipartition
Vi(F,,) and V(F,,) - Vi(Fy,). For each v in V(G), let P, be the unique path in a spanning
tree T which connects ug and v, and let

{ V(F,) — ¢(P,)(Vi(Fy,)) if &(P,) is odd,

Vl(Fv) =
?(P,) (Vi(Fy,)) if £(P,) is even.

Then for each v in V(G), Vi(F,) and V(F,) — V;(F,) form a bipartition of the bipartite
graph F,. This implies that V;(G x? F) = U Vi(F,) and its complement Vo(G x? F)
veEV(G)

in V(G x? F) form a bipartition of the connected graph (p®)~!}(T") which is a spanning
subgraph of G x® F. Now, if condition (b) holds, then G x? F cannot have an odd
cycle, and Vi(G x¢ F) and V(G x¢ F) actually form a bipartition of the connected graph
G x¢ F. Hence G x? F is bipartite.

(b) < (c) This is clear that the length £(C) of a cycle C in G is odd if and only if
C contains an odd number of odd edges. Since ¢ € C}(G; Aut (F)), the conditions (b)
and (c) are equivalent. 0

COROLLARY 2.2. Let F be a connected bipartite graph with R(F) = 0. Then
the following are equivalent.
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(a) G is bipartite.
(b) All bundle graphs G x® F over G are bipartite.
(c) G x F is bipartite.

PRrOOF: (a) = (b) Let ¢ be an Aut (F)-voltage assignment of G. Then for each
cycle C in G, sig(¢(C)) = 1, because R(F) = 0. Since G is bipartite, (—1)%) =1 for
each cycle C in G. Now, by Theorem 2.1, G x® F is bipartite.

(b) = (c) Let ¢ be the trivial voltage assignment in C'(G; Aut (F)), that is, ¢(uv)
is the identity for each uv € D(G). Then G x? F is just the cartesian product G x F,
which is bipartite by (b).

(c) = (a) This is clear, because G is a subgraph of G x F. 0

Corollary 2.2 implies that if R(F) = 0 and G is nonbipartite, then there is a voltage
¢ € C'(G;Aut (F)) such that G x? F is nonbipartite. Actually, the following corollary
shows that G x? F cannot be bipartite for any voltage ¢ € C'(G; Aut (F)). In particular,
if the number of vertices of F is odd, then clearly R(F) = §, and any F-bundle over a
nonbipartite graph G cannot be bipartite.

Recall that every F-bundle graph over a tree T is isomorphic to the cartesian product
T x F. Since the cartesian product of two bipartite graphs is also bipartite, every F-
bundle graph over a tree is bipartite. Note that if R(F') # 0, then one can always find a
nonbipartite graph bundle G x?® F for any bipartite graph G which is not a tree.

COROLLARY 2.3. Let F be a connected bipartite graph and G a nonbipartite
graph. Then there exists a bipartite F-bundle over G if and only if R(F) # 0.

PRrROOF: Suppose that there exists a bipartite F-bundle G x? F over a nonbipartite
graph G. Since G is not bipartite, it contains at least one odd cycle C. By Theorem 2.1,
#(C) € R(F) and hence R(F) # 0.

Conversely, let 0 € R(F). We define ¢ : D*(G) — Aut (F) by ¢(uv) = o for each
wv € DY(G), where D*(G) is a subset of D(G) consisting of all positively directed edges.
Then ¢ can be extended to a voltage assignment in C'(G; Aut (F)) with the property
that for each cycle C sig(¢(C)) = (—1)4©). Theorem 2.1 implies that G x?® F is a
bipartite F-bundle over G. 0

3. ENUMERATION FORMULAS

Let Iso?(G; F) denote the number of isomorphism classes of bipartite F-bundles
over G. The following theorem is a direct consequence of Corollaries 2.2 and 2.3.

THEOREM 3.1. Let F be a connected bipartite graph with R(F) = 0. Then we

have
0 if G is nonbipartite,

Iso(G; F) =
Iso (G; F) if G is bipartite,
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where Iso (G; F) denotes the number of isomorphism classes of F-bundles over G.

Recall that the number Iso (G; F') has been computed by Kwak and Lee [6]. In
the following, we derive an enumeration formula for the number Iso?(G; F) when F is
a connected bipartite graph. For a connected bipartite graph F', we first consider the
following set of Aut(F')-voltage assignments:

BC}(G; Aut(F)) = {¢ € Cr(G; Aut (F)) | sig(¢(e)) = sig(e) for all e € D(G) — D(T)}.
This set is characterised by Theorem 2.1 and Corollary 1.2 as follows.

LEMMA 3.2. Let F be a connected bipartite graph. Then BCL(G;Aut (F))
contains all representatives of the isomorphism classes of bipartite F-bundles over G.

We define an action of Aut (F') on BC}(G; Aut (F)) by (0 e ¢)(uv) = o¢(uv)o! for
all uv € D(G). This action is well-defined, since
oP(F)o™' =P(F) and oR(F)o~!=R(F)
for each automorphism o € Aut(F). The following is a direct consequence of Corol-
lary 1.3.

LEMMA 3.3. Let F be a connected bipartite graph, and let ¢ and v be two
voltage assignments in BCL(G;Aut (F)). Then two bipartite F-bundles G x¢ F and
G x¥ F are isomorphic if and only if there exists an automorphism o in Aut (F) such that
oep = 1, that is, ¢ and 1 lie in the same orbit of the Aut (F')-action on BC}. (G; Aut (F)).

By the Burnside lemma and Lemmas 3.2 and 3.3, we have the following.
THEOREM 3.4. Let F be a connected bipartite graph. Then the number

Iso?(G; F) of isomorphism classes of bipartite F-bundles over G is

1
Iso®(G; F) = ——— Fix |,
s0”(Gi F) |Aut (F)| Z IFix|
oceAut (F)
where Fix, = {¢> € BCLH(G; Aut(F)) |oegp= ¢}.

The following lemma shows how to compute the number |Fix,|. For ¢ € Aut (F),
let Z(o) = {p € Aut(F) | op = po}, Zplo) = {1 € P(F) | op = po}, and Zg(o) =
{ne€ R(F) | op=po}. Clearly, if Zr(c) # 0, then |Zp(0)| = | Zr(0)|-

LEMMA 3.5. Let F be a connected bipartite graph. Then for each o € Aut (F),

IFixo| = |2Zp(0)|*9" |Zr (o)™

0 if|ZR(a)| = 0 and G is nonbipartite,
IZ(U)Iﬂ(G) if|ZR(a)| = 0 and G is bipartite,

B(G)
<|_Z_(20_)|) otherwise.

https://doi.org/10.1017/50004972700032718 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700032718

(7 Bipartite graph bundles 159

By applying Theorems 4 and 5 in [6] and Lemma 3.5 to Theorem 3.4, we have the
following.

THEOREM 3.6. Let F be a connected bipartite graph such that Aut(F) is
Abelian. Then

0 if G is nonbipartite and R(F) = 0,
Is0?(G; F) = { Is0(G;F) if G is bipartite and R(F) =0,
Iso (G; F)/28©) if R(F) # 0,

where Iso (G; F) = |Aut (F)|ﬂ(G) as shown in [6].

4. APPLICATIONS

As an application of our results, one can compute the number Iso?(G; F) of the
isomorphism classes of bipartite F-bundles over G when F' = P, or C,, where P, is the
path with n vertices and C,, is the cycle of length n.

1. Let F = P,. Note that the automorphism group Aut (P,) of P, is isomorphic
to the cyclic group {1, a} of order 2 and hence is Abelian. Moreover, P(FP,) = Aut(FP,)
and R(P,) =0 if n is odd, and P(P,) = {1} and R(P,) = {a} if n is even.

By Theorem 3.6, we have the following.

THEOREM 4.1. The number Iso?(G; P,) of the isomorphism classes of bipartite
P,-bundles over G is

0 if G is nonbipartite and n is odd,
Iso?(G; P,) = { 2P ifG is bipartite and n is odd,
1  ifn is even.

The following table shows the number Iso?(G; P,) for small n and (G):

bipartite G nonbipartite G
BG |0 1 2 3 4 5 1 2 3 4 5
n=odd|1 2 4 8 16 32 ---|0 0 0 0 O
n=even|1l 1 1 1 1 1 11111

2. Let F = C,. Note that C, is bipartite if and only if n is even. Hence,
Iso?(G;C,) = 0 if n is odd. Let n be an even number. Then Aut(C,) can be
identified with the dihedral group D,, which is generated by = and p, where 7 =—
(1 n)@2 n—-1)---((n/2) (n/2)+1) and p = (12...7) in the symmetric group
S, on n elements 1,2,... ,n. Moreover,

)

P(C,) = {pZi, TpHt! | 1€i< g—} and R(C,) = {pﬁ“, Tp¥ | 1€4i<

N3

By a simple computation, we have the following.
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LEMMA 4.2. Letn be an even numberand h=0,... ,n—1. Then

n ifh:Oorh:n

(@) |Zo(e")| = |Zr(s")| = . 2’
n/2 otherwise.

N 4 ifn/2 is even and h is odd,
(b) |Zp(rp")| = ,
2 otherwise.
N 0 ifn/2 is even and h is odd,
(©) |Zr(re")| =

2 otherwise.

Lemma 3.5 and Theorem 3.4 imply the following theorem.
THEOREM 4.3. Letn > 3 be a natural number.

(a) Ifnis odd, 1s0®(G;C,) = 0.

(b) Ifn is even and not a multiple of 4, then

Is0B(G; Cp) = nfO1 + "_4_“2 (g)” ©-1 a1

(¢) Ifn is a multiple of 4, then

ABE-1 "%2 (g)"‘c’“‘ + 2502 (1 4 26(O))
Iso®(G; C,) = if G is bipartite,

-2 /n\AG)-1
nBe-1 4 n_4_ (72_1) +20%)=2 if G is nonbipartite.

The following table shows the number Iso?(G; P,) for small n and B(G):

bipartite G nonbipartite G
B(G)|0 1 2 3 4 5 1 2 3 4 5
n=o0odd |0 0 0 0 0 0 0 0 0 0 0
n=4|1 3 10 36 136 528 2 6 20 72 272
n=6]1 3 11 49 251 1393 3 11 49 251 1393
n=8|[1 4 19 106 676 4744 3 15 90 612 4488
n=10|1 4 22 154 1258 11266 4 22 154 1258 11266
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