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Perfect complexes on algebraic stacks

Jack Hall and David Rydh

ABSTRACT

We develop a theory of unbounded derived categories of quasi-coherent sheaves on
algebraic stacks. In particular, we show that these categories are compactly generated
by perfect complexes for stacks that either have finite stabilizers or are local quotient
stacks. We also extend Toén and Antieau—Gepner’s results on derived Azumaya algebras
and compact generation of sheaves on linear categories from derived schemes to derived
Deligne—Mumford stacks. These are all consequences of our main theorem: compact
generation of a presheaf of triangulated categories on an algebraic stack is local for the
quasi-finite flat topology.

Introduction

Our first main result is the following.

THEOREM A. Let X be a quasi-compact algebraic stack with quasi-finite and separated diagonal.
Then the unbounded derived category Dq.(X), of Ox-modules with quasi-coherent cohomology,
is compactly generated by a single perfect complex. Moreover, for every quasi-compact open
subset U C X, there exists a compact perfect complex with support exactly X\U.

This generalizes the results of Bondal and Van den Bergh [BVdB03, Theorem 3.1.1] for
schemes and Toén [Toél2, Corollary 5.2] for Deligne-Mumford stacks admitting coarse moduli
spaces (i.e., X has finite inertia). While we can show that every compact object of Dgc(X) is
a perfect complex (Lemma 4.4), a subtlety in Theorem A is that the converse does not always
hold in positive characteristic. Indeed, if X is not tame, then the structure sheaf is perfect but
not compact.

Theorem A, as well as the theory developed to establish it, have been used to classify the thick
tensor ideals in Dy (X )¢ [Hall6] (generalizing work of [Kri09, DM12]), to resolve the telescope
conjecture for algebraic stacks [HR17] (extending [Ant14]), and for results on dg-enhancements
[CS16, BLS16).

Extending Theorem A to certain stacks with infinite stabilizer groups is our second main
result. We briefly recall a notion from [Ryd15, §2]: an algebraic stack X is of s-global type if
étale-locally it is the quotient of a quasi-affine scheme by GLy for some N.

THEOREM B. Let X be an algebraic stack of s-global type. If X is of equicharacteristic zero
(i.e., it is a Q-stack), then the unbounded derived category Dq.(X) is compactly generated by a
countable set of perfect complexes. Moreover, for every quasi-compact open subset U C X, there
exists a compact perfect complex with support exactly X\U.
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Stacks of s-global type are frequently encountered in practice. Sumihiro’s theorem [Sum74]
and its recent generalization by Brion [Bril5] show that many quotient stacks are of s-global type
(Proposition 9.1). Thus, we have the following corollary (see Corollary 9.2 for an amplification).

COROLLARY. Let X be a variety over a field k of characteristic zero. Let G be an affine algebraic
k-group acting on X. If X is either (a) normal or (b) seminormal and quasi-projective, then
D(QCohg(X)) = Dyc([X/G]) is compactly generated. Moreover, for every G-invariant open subset
U C X, there exists a perfect G-equivariant complex with support exactly X\U.

A key advantage of Theorem B over previous results (e.g., [BFN10, Corollary 3.22] and
[Lie04, Proposition 2.2.4.13]) is its applicability to a much wider class of stacks. The main
result of [AHR15] implies that algebraic stacks of finite type over a field with affine diagonal
and linearly reductive stabilizers at closed points (e.g., stacks with a good moduli space) are
of s-global type [AHR15, Theorem 2.25]. In general, it is not possible to generate Dqy.(X) by a
single perfect complex (e.g., X = BG,,).

Theorems A and B are both consequences of a general result that we now describe. Let 8 be
a cardinal. Let X be an algebraic stack. We say that X satisfies the 8- Thomason condition if:

(i) Dge(X) is compactly generated by a set of cardinality < f; and

(ii) for every quasi-compact open subset U C X, there is a compact perfect complex supported
on the complement.

We say that X satisfies the Thomason condition if it satisfies the S-Thomason condition for
some (3. Our main results are that a very large class of stacks satisfy the Thomason condition.
In order to prove these results, however, we found it necessary to consider the following refinement
of the Thomason condition.

We say that X is S-crisp if the 8-Thomason condition is satisfied for every étale localization
of X (Definition 8.1). If X is S-crisp and f is finite, then X is compactly generated by a single
perfect complex. Hence, Theorems A and B are implied by the following result.

THEOREM C. Let p: X’ — X be a morphism of quasi-compact and quasi-separated algebraic
stacks that is representable, separated, quasi-finite, locally of finite presentation, and faithfully
flat. If X' is B-crisp, then X is (B-crisp.

Theorem C is proved using the technique of quasi-finite flat dévissage for algebraic stacks,
due to the second author [Rydl11], together with some descent results for compact generation.
In §§5-6, these descent results are stated in great generality, for presheaves of triangulated
categories, without requiring monoidal or linear structures. This allows us to establish compact
generation in other contexts (see Theorem 6.9, §9 and further below in the Introduction). Along
the way, we will review and develop foundational material for unbounded derived categories on
algebraic stacks.

We also wish to point out that for schemes the fppf and quasi-finite flat topologies coincide,
but for algebraic stacks they differ. Moreover, compact generation is not fppf local for algebraic
stacks. Indeed, Dyc(BxG,) when k is of characteristic p > 0 has no compact objects besides 0;
thus, it is not compactly generated, even though it is so fppf-locally [HNR14, Proposition 3.1].
In particular, Theorem C (as well as its generalizations to other contexts in this article), which is
about quasi-finite local compact generation, can be viewed as the correct generalization of fppf
local compact generation results to algebraic stacks.
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Azumaya algebras and the cohomological Brauer group

Our work is strongly influenced by Toén’s excellent paper [Toél12] on derived Azumaya algebras
and generators of twisted derived categories. In [Toé12], Toén showed that compact generation
of certain linear categories on derived schemes is an fppf-local question. The salient example is
the derived category of twisted sheaves D(QCoh®(X)), where the twisting is given by a Brauer
class a of H%(X,G,,). A compact generator of D(QCoh®(X)) gives rise to a derived Azumaya
algebra: the endomorphism algebra of the generator [Toé12, Proposition 4.6]. More classically, a
twisted vector bundle that is generating gives rise to an Azumaya algebra A.

The Brauer group Br(X) classifies Azumaya algebras A up to Morita equivalence, that is, up
to equivalence of the category of modules Mod(A). Moreover, Mod(A) ~ QCoh®(X) for a unique
element « in the cohomological Brauer group Br'(X) := H%(X,G,,)tors. Existence of twisted
vector bundles thus answers the question of whether Br(X) — Br/(X) is surjective.

Constructing twisted vector bundles, or equivalently Azumaya algebras, is difficult. Indeed,
the question is not local as vector bundles rarely extend over open immersions. When X is affine,
or the separated union of two affines, Gabber proved in his thesis that Br(X) = Br/(X) [Gab8&1]
or, equivalently, that D(QCoh®(X)) is compactly generated by a twisted vector bundle [Lie04,
Theorem 2.2.3.3]. The state of the art is also due to Gabber: twisted vector bundles exist if X
is quasi-projective [deJ03].

Compact objects of the derived category are typically easier to construct as we may extend
them over open immersions using Thomason’s localization theorem (Corollary 3.13). With this
technique, Lieblich proved that D(QCoh®(X)) is compactly generated when X is any quasi-
compact and quasi-separated scheme [Lie04, Corollary 2.2.4.14]. Lieblich has also studied twisted
vector bundles in great detail and obtained a number of arithmetic applications.

In §9, we prove that compact generation is quasi-finite flat local for twisted derived categories.
In particular, we prove that on a quasi-compact algebraic stack with quasi-finite and separated
diagonal every twisted derived category has a compact generator (Example 9.3). We thus
establish a derived analogue of Br(X) = Br/(X) for such stacks, extending the results of Toén
[Toé12] and Antieau and Gepner [AG14].

Sheaves of linear categories on derived Deligne-Mumford stacks
Although we work with non-derived schemes and stacks, our methods are strong enough to deduce
similar results for derived (and spectral) Deligne-Mumford stacks (Example 9.4). Indeed, if X
is a derived Deligne-Mumford stack, then the small étale topos of X is equivalent to the small
étale topos of the non-derived O-truncation mpX. Thus, (local) compact generation of a presheaf
of triangulated categories on X can be studied on myX.

Sometimes results for stacks can be deduced from schemes using a similar approach: if
m: X — Xcms is a coarse moduli space, then a presheaf T of triangulated categories on X
induces a presheaf 7,7 of triangulated categories on X . If 7,7 is locally compactly generated,
then it is enough to show that compact generation is local on X5 to deduce compact generation
of T(X). This is how Toén extended his result to Deligne-Mumford stacks admitting a coarse
moduli scheme [Toé12, Corollary 5.2].

Perfect and compact objects

As we already have mentioned, some care has to be taken since perfect objects are not necessarily
compact. The perfect objects are the locally compact objects or, equivalently, the dualizable
objects. If X is a quasi-compact and quasi-separated algebraic stack, then the following conditions
are equivalent (Remark 4.6):
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every perfect object of Dyc(X) is compact;
— the structure sheaf Ox is compact;

there exists an integer dy such that for all quasi-coherent sheaves M on X, the cohomology
groups HY(X, M) vanish for all d > dp; and

— the derived global section functor RI': Dqc(X) — D(Ab) commutes with small coproducts.

We say that a stack is concentrated when it satisfies the conditions above.

In [HR15, Theorem B], we give a complete list of the group schemes G/k such that BG is
concentrated: every linear group and certain non-affine groups in characteristic zero but only
the linearly reductive groups in positive characteristic. Note that [HR15, Theorem A] also gives
many examples of classifying stacks that are not concentrated, yet compactly generated.

Drinfeld and Gaitsgory have proved that noetherian algebraic stacks with affine stabilizer
groups in characteristic zero are concentrated [DG13, Theorem 1.4.2]. This is generalized in
[HR15, Theorem C] to positive characteristic. In particular, a stack with finite stabilizers is
concentrated if and only if it is tame.

Perfect stacks

Ben-Zvi et al. introduced the notion of a perfect (derived) stack in [BFN10]. In our context,
an algebraic stack X is perfect if and only if it has affine diagonal, it is concentrated, and its
derived category Dc(X) is compactly generated [BFN10, Proposition 3.9]. A direct consequence
of our main theorems and [HR15, Theorem C] is that the following classes of algebraic stacks
are perfect:

(i) quasi-compact tame Deligne-Mumford stacks with affine diagonal; and
(ii) @Q-stacks of s-global type with affine diagonal.

The affine diagonal assumption is needed only because it is required in the definition of a
perfect stack. It is useful though: if X is perfect, then D(QCoh(X)) = Dqc(X) by [HNR14].

In the terminology of Lurie [Lurlla, Definition 8.14], an algebraic stack is perfect if it
has quasi-affine diagonal, is concentrated, and Dy.(X) is compactly generated. Thus, in Lurie’s
terminology, we have shown that:

(i) quasi-compact tame Deligne-Mumford stacks with quasi-compact and separated diagonals;
and

(ii) @Q-stacks of s-global type

are perfect.

Coherence

Compact generation is extremely useful and we will illustrate this with a simple application; also
the origin of this paper. Let A be a commutative ring and Mod(A) the category of A-modules.
A functor F': Mod(A) — Ab is coherent if there exists a homomorphism of A-modules M; — My
together with isomorphisms

F(N) 2 coker(Homy(Ms, N) — Hom (M7, N))

natural in N. This definition is due to Auslander [Aus66], who initiated the study of coherent
functors. Hartshorne [Har98] studied in detail coherent functors when A is noetherian and M
and M> are finitely generated and obtained some very nice applications to classical algebraic
geometry. For background material on coherent functors, we refer the reader to Hartshorne’s
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article. Recently, the first author has used coherent functors to prove ‘cohomology and base
change’ for algebraic stacks [Hall4] and to give a new criterion for algebraicity of a stack [Hall7].

Using the compact generation results of this article, we can give a straightforward proof of
the following theorem (combine Theorem A with Corollary 4.16).

THEOREM D. Let A be a noetherian ring and let m: X — Spec A be a proper morphism of
algebraic stacks with finite diagonal. If ¥ € Doc(X) and § € D%, (X), then the functor

Homo , (F,S ®g, Li.(—)): Mod(A) — Mod(A)
is coherent.

Theorem D generalizes a result of the first author for algebraic spaces [Hall4, Theorem EJ,
which was proved using a completely different argument. The first author has also proved a
non-noetherian and infinite-stabilizer variant of Theorem D at the expense of assuming that G
has flat cohomology sheaves over S [Hall4, Theorem C].

Related results

The first proof that Dyc(X) is compactly generated when X is a quasi-compact separated scheme
appears to be due to Neeman [Nee96, Proposition 2.5] although he attributed the ideas to
Thomason [TT90]. Bondal and Van den Bergh [BVdB03, Theorem 3.1.1] adapted the proof to
deal with quasi-separated schemes and noted that there is a single compact generator. Lipman
and Neeman further refined the result by giving an effective bound on the existence of maps from
the compact generator [LN0O7, Theorem 4.2]. As noted by Ben-Zvi et al., the proof of Bondal
and Van den Bergh readily extends to derived schemes [BFN10, Proposition 3.19].

In [Lurlla, Theorem 6.1] and [Lurllb, Theorem 1.5.10], Lurie proved that compact
generation is étale local on E-algebras and on spectral algebraic spaces for quasi-coherent stacks
(sheaves of linear oo-categories). Lurie used scallop decompositions, which are a special type of
étale neighborhoods (or Nisnevich squares). Unfortunately, scallop decompositions do not exist
for algebraic stacks. This is what necessitates our stronger inductive assumption, (-crispness,
for our local-global principle, Theorem C. Indeed, to apply Thomason’s localization theorem it
is necessary to establish the existence of compact objects with prescribed support. On affine
schemes (which appear in the scallop decompositions) this is done using Koszul complexes,
cf. Bokstedt and Neeman [BN93, Proposition 6.1]. This is the basis for our induction and also
used in all previous proofs, e.g., [Toé12, Lemma 4.10] and [AG14, Proposition 6.9].

Drinfeld and Gaitsgory [DG13, Theorem 8.1.1] proved that on an algebraic stack of finite
type over a field of characteristic zero with affine stabilizers, the derived category of D-modules
is compactly generated. They remarked that compact generation of Dy (X) is much subtler and
open in general [DG13, 0.3.3].

Antieau [Ant14] has considered local-global results for the telescope conjecture. Some of these
are generalized in [HR17].

Krishna [Kri09] has considered the K-theory and G-theory for tame Deligne-Mumford stacks
with the resolution property admitting projective coarse moduli schemes (i.e., projective stacks).

Future extensions

In [LNO7, Theorem 4.1], Lipman and Neeman proved that pseudo-coherent complexes can be
approximated arbitrarily well by perfect complexes on a quasi-compact and quasi-separated
scheme. Local approximability by perfect complexes is essentially the definition of pseudo-
coherence, so this is a local-global result in the style of Theorem C. This result has been extended
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to algebraic spaces in [Sta, 08HH] and we expect that it can be extended to stacks with quasi-finite
diagonal using the methods of this paper amplified with t-structures. Similarly, we expect that
there is an effective bound on the compact generator in Theorem A as in [LNO7, Theorem 4.2].

Contents of this paper

In §§1-2, we recall and develop some generalities on unbounded derived categories of quasi-
coherent sheaves on stacks and concentrated morphisms; working in the unbounded derived
category is absolutely essential for this range of mathematics. Unfortunately, some important
foundational notions, such as concentrated morphisms, had not been considered in the literature
before.

In §3, we recall the concept of compact objects and Thomason’s localization theorem for
triangulated categories.

In §4, we address fundamental results on perfect and compact objects in the derived
categories of quasi-coherent sheaves on algebraic stacks. Using this, we establish a general
projection formula for stacks, tor-independent base change, and finite flat duality. We also prove
Theorem D assuming Theorem A.

In §§5-6, we introduce presheaves of triangulated categories and Mayer—Vietoris triangles.
We also prove our main result on descent of compact generation (Theorem 6.9).

In § 7, we introduce the S-resolution property, which gives a convenient method to keep track
of the number of vector bundles needed for generating the derived category of a stack with the
resolution property.

In §8, we introduce compact generation with supports and S-crispness and relate these to
Koszul complexes.

In §9, we prove the main theorems.

Notations and assumptions

For an abelian category A, denote by D(A) its unbounded derived category. For a complex
M € D(A), denote its ith cohomology group by H!(M). For a sheaf of rings A on a topos E,
denote by Mod(A) (respectively QCoh(A)) the category of A-modules (respectively the category
of quasi-coherent A-modules). If the sheaf of rings A on the topos E is implicit, it will be
convenient to denote Mod(A) as Mod(E) and D(Mod(A)) as D(E).

For algebraic stacks, we adopt the conventions of the Stacks Project [Sta]. This means
that algebraic stacks are stacks over the big fppf site of some scheme, admitting a smooth,
representable, surjective morphism from a scheme (note that there are no separation hypotheses
here). A morphism of algebraic stacks is quasi-separated if its diagonal and double diagonal are
represented by quasi-compact morphisms of algebraic spaces.

For a scheme X, denote its underlying topological space by |X|. For a scheme X and a point
x € |X|, denote by r(x) the residue field at .

Let f: X — Y be a l-morphism of algebraic stacks. Then, for any other 1-morphism of
algebraic stacks g: Z — Y, we denote by fz: Xz — Z the pullback of f by g.

1. Quasi-coherent sheaves on algebraic stacks

In this section we review derived categories of quasi-coherent sheaves on algebraic stacks. For
generalities on unbounded derived categories on ringed topoi, we refer the reader to [KS06,
§18.6]. In [KS06, §18.6], a morphism of ringed topoi is assumed to have a left-exact inverse
image; we will not make this assumption, but instead indicate explicitly when it does and does
not hold.

2323

https://doi.org/10.1112/50010437X17007394 Published online by Cambridge University Press


http://stacks.math.columbia.edu/tag/08HH
http://stacks.math.columbia.edu/tag/08HH
http://stacks.math.columbia.edu/tag/08HH
http://stacks.math.columbia.edu/tag/08HH
https://doi.org/10.1112/S0010437X17007394

J. HALL AND D. RyDH

Let X be an algebraic stack. Let Mod(X) (respectively QCoh(X)) denote the abelian category
of Ox-modules (respectively quasi-coherent Ox-modules) on the lisse-étale topos of X [LMOO,
12.1]. Let D(X) (respectively Dq.(X)) denote the unbounded derived category of Mod(X)
(respectively the full subcategory of D(X) with cohomology in QCoh(X)). Superscripts such
as +, —, > n, and b decorating D(X) and Dy.(X) are to be interpreted as usual.

If X is a Deligne-Mumford stack (e.g., a scheme or an algebraic space), then there is an
associated small étale topos, which we denote as Xg. There is a natural morphism of ringed
topoi resx : Xjis.st = Xt Let Mod(Xgt) (respectively QCoh(Xg;)) denote the abelian category of
Ox,,-modules (respectively quasi-coherent O x,,-modules). The restriction of (resx).: Mod(X) —
Mod(X¢;) to QCoh(X) is fully faithful with essential image QCoh(Xg;) [LMO00, Proposition 13.2.3].
Let Dgc(X¢t) denote the triangulated category Dqcon(x,,)(Mod(Xet)). Then the natural functor
R(resx)«: Dqc(X) — Dge(Xegt) is an equivalence of categories [LMOO, Proposition 12.10.1]. If
X is a scheme, then the corresponding statement for the Zariski topos also holds [LMOO,
Lemme 13.1.5].

1.1 Hypercoverings and simplicial sites
We now recall the relationship between the unbounded derived categories of quasi-coherent
sheaves on an algebraic stack and those on a smooth hypercovering (i.e., cohomological descent).
Our approach follows [Ols07] and [LOO08|. Let X be an algebraic stack and let ps: Us — X be
a smooth hypercovering by algebraic spaces. Typically, we will take U, to be the 0-coskeleton
associated to a smooth covering pg: Uy — X, where U is an algebraic space. In plainer language,
Uy is the (n + 1)th fiber product of Uy over X and the simplicial structure (i.e., face and
degeneracy maps) comes from the various projections and diagonals between the U, as n varies.

The simplicial algebraic space U, gives rise to two semi-simplicial topoi: U:’r lis.ct and U:,r &t
The semi-simplicial topos U, f ¢ is formed as follows: for each integer n > 0 there is the étale topos
Upn st and for each injective ﬁlap 0: [n] ={0,...,n} = [m] ={0,...,m} there is a morphism of
topoi 0: Upy ¢ — Upgi- A sheaf Fy on U:fét is a sheaf Fj, on each U, ¢; together with transition
maps § 1 F, — F,, for each injective map §: [n] — [m] that are compatible with composition;
the sheaf F, is cartesian if the transition maps are always isomorphisms.

The topos U

o 6t

is naturally ringed by the flat sheaf Osz. .- Here flat means that the transition
maps 010y, & — Op,, ¢ are flat. Let Mod(U;" «) denote the associated category of modules and

Modcart (U, .+ ét) the subcategory of cartesian sheaves. Here cartesian means that the transition

maps 0*F, = 6 ' F, Rs-10y, . Oy

m,ét

— F}, are isomorphisms.
An O -module is quasi-coherent if it is cartesian and its restriction to each U, g is quasi-
Us st n,ét
e.¢é

coherent. Let QCoh(U; «) denote the category of quasi-coherent sheaves. Let DU «) be the
unbounded derived category of Mod(U.!.,), let Deart (US',,) denote the subcategory whose objects

o ét o ét

have cartesian cohomology sheaves, and let Dy (U, ) denote the subcategory with quasi-coherent

o 6t

cohomology sheaves. The semi-simplicial topos U."

olis.et and its various module categories are

defined similarly.
Thus, there are natural morphisms of ringed topoi:

+
Dg lis-ét resy
3 + ° —+
X]is_ét D — Uo,lis—ét —_— Uo,ét' (11)
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One way of phrasing smooth descent of quasi-coherent sheaves is that these morphisms of topoi
induce equivalences of abelian categories:

+
(p-,lis—ét)*

QCoh(X) «—="— QCoh(U};. 4

(restra )«

QCoh(Uj’ét).

In [LO08, Example 2.2.5], it is shown that this can be improved to unbounded cohomological
descent, that is, these morphisms of topoi induce equivalences of triangulated categories:

+
R(po,lis-ét)*

ch(X) I E— DqC(Uj,_lis—ét)

R(resy, )«

Dac(Uyey)- (1.2)

+

The morphisms p, .. . and resy, have left-exact inverse image functors.

1.2 Operations in unbounded categories of modules
We now record for future reference some useful formulas [KS06, §§18.4 and 18.6]. If M and
N € D(X), then there are

M ®'@X N e D(X) (the derived tensor product),
RHomp, (M,N) € D(X) (the derived sheaf Hom functor),
RHomg , (M, N) € D(Ab) (the derived global Hom functor).

If in addition P € D(X), then we have a functorial isomorphism
Homy, (M ®g, N, P) = Homp , (M, RFHome, (N, P)) (1.3)
as well as a functorial quasi-isomorphism
RHomo, (M @5, N, P) ~ RHomg,, (M, RHoma, (N, P)). (1.4)
Letting RT'(X, —) = RHomg, (Ox, —), there is also a natural quasi-isomorphism
RHomyg, (M, N) ~ RI'RFHomgo, (M, N). (1.5)

If M and N belong to Dgc(X), then M ®'@X N € Dgc(X). Indeed, using homotopy colimits and
triangles we reduce to the case where M and N are quasi-coherent sheaves. Then it follows from
the definition of quasi-coherence [LMO00, Définition 13.2.2]. Since the category Dgc(X) is well
generated [HNR14, Theorem B.1] and the functor — ®'@X M: Dge(X) = Dge(X) preserves small
coproducts, it admits a right adjoint [NeeOlb, Theorem 8.4.4]

Rﬂfom%; (M, _): ch(X) - DqC(X)

In fact, if
Qx: D(X) = Dyc(X)

is the right adjoint to the inclusion Dgyc(X) C D(X), which exists for the same reasons as above,
then
Rﬂ{omgcx (M, =) ~ Qx(RFHomgo, (M, —)).

Note that while the formation of RHomg, (M, —) is smooth local on X, this is not true in general
for R%om%cx (M, —). It is true, however, if M is perfect (Lemma 4.3(ii)).
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1.3 Direct and inverse images

For a morphism of algebraic stacks f: X — Y, the induced morphism of ringed topoi
fris-et © Xuis-ét = Yiis.et does not necessarily have a left-exact inverse image functor [Beh03, 5.3.12].
Thus, the construction of the correct derived functors of f*: QCoh(Y) — QCoh(X) is somewhat
subtle. There are currently two approaches to constructing these functors. The first, due to
Olsson [Ols07] and Laszlo and Olsson [LOO08], uses cohomological descent. The other approach
appears in the Stacks Project [Sta, Tag 07BD]. In this article, we will employ the approach of
Olsson and Laszlo—Olsson, which we now briefly recall.

Let f: X — Y be a morphism of algebraic stacks. Let q: V' — Y be a smooth surjection
from an algebraic space. Let U — X Xy V be another smooth surjection from an algebraic space.
Let f: U — V be the resulting morphism of algebraic spaces and let p: U — X be the resulting
smooth covering. By (1.1), there is an induced 2-commutative diagram of ringed topoi as follows.

p+1' resy,
o lis-ét + ° +
X Uo,lis—ét Uo,ét
~+ ~+
ft fc,lisétl if-,ét (1-6)
+ 5 +
Y + Vvo,lis—ét resy, Vo,ét
qo,lis—ét

The 2-commutativity of the diagram above induces natural transformations:

R(fiis-6t)« = R(q:hs-ét)*R( N:,rlis-ét)*l-(p:]is-ét)* (1.7)
R( ~o+,ét)* = R(resy, )«R( ~:,rlis-ét)*L(reSU.)*, (1.8)

which are natural isomorphisms for those complexes with quasi-coherent cohomology that are
sent to complexes with quasi-coherent cohomology by R( ff liset ) or R( f:r )%

Remark 1.1. Note, however, that if f: X — Y is not representable, then R(fjis4t)« does not,
in general, send Dgo(X) to Dy (Y); even if f is proper and étale and X and Y are smooth
Deligne-Mumford stacks [Sta, 07DC]. The problem is that quasi-compact and quasi-separated
morphisms of algebraic stacks can have unbounded cohomological dimension, which is in contrast
to the cases of schemes and algebraic spaces [Sta, 073G]. In the next section we will clarify this
with the concept of a concentrated morphism.

Another crucial observation here is that the morphism of topoi ff « has a left-exact
inverse image functor. The general theory now gives rise to an unbounded derived functor
L(fi)": D(V,5) — D(US,), which is left adjoint to R(f,)«: D(US,) — D(V,,). The functor
L( :r «)" 1s easily verified to preserve small coproducts and complexes with quasi-coherent
cohomology. Using the equivalences of (1.2), we may now define a functor L f.: Dqc(Y) = Dge(X)
such that HO(LfZ.M[0]) = f*M whenever M € QCoh(Y). It is readily verified that the functor
Lfgc is unique up to canonical natural isomorphism, that is, it does not depend on the choice
of charts U and V. If f: X — Y is flat, then for all integers ¢ and all M € Dq(Y') there is a
natural isomorphism

FEHION) = HI(LLEM). (1.9)

Since the category Dqc(Y) is well generated [HNR 14, Theorem B.1] and the functor L fj. preserves
small coproducts, it admits a right adjoint [NeeO1b, Theorem 8.4.4]

R(fqe)s: Dge(X) = Dge(Y).
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The functor above is closely related to the functors we have already seen. Indeed, since
Lf3cOy[0] = Ox|0], it follows that if M € Dqc(X), then

RT(Y, R(fqc)«M) ~ RT'(X, M). (1.10)
We now describe R(fqc)« locally. Let

Qu+ : D(ert) — DqC(V:rét)

0 ét

be a right adjoint to the natural inclusion functor ch(V.J;gt) — D(V:ét), which exists by [NeeO1b,

Theorem 8.4.4]. A straightforward calculation, utilizing the equivalences (1.2), induces a natural
isomorphism of functors:

R(foe)x = R(Qjﬁgét)*L(reSVG)*ch;tR(jikt)*R(reSUZ)*L(pjhm4%)*' (1.11)
The following lemma clarifies the situation somewhat.

LEMMA 1.2. If f: X — Y is a morphism of algebraic stacks that is quasi-compact and quasi-
separated, then the following hold.
(i) The restriction of R( fiisst)« to Ddo(X) factors through DZ.(Y).

(ii) The restrictions of R( fiisst)« and R(fqc)« to Di.(X) are isomorphic.

(iii) For each integer d, the restriction of the functor R(fqc)« to Dgf;oo) (X) preserves direct limits
(in particular, small coproducts).

(iv) Consider the following 2-cartesian diagram of algebraic stacks.

X' L) X
1
v sy
If g is flat, then the base-change transformation
LgécR(qu)* = R(f(;c)*l-(g/):lc
is an isomorphism upon restriction to DF.(X).

Proof. Claim (i) is [Ols07, Lemma 6.20]. Claim (ii) follows from cohomological descent (1.2),
claim (i) and equations (1.7), (1.8), and (1.11).
For (iii), by (ii), we may replace R(fqc)« by R(fiis-¢t )« The hypercohomology spectral sequence

R”(fiis-t)« H* (M) = R™*( fiis-e1)«M (1.12)
now applies and it is thus sufficient to prove that the higher pushforwards
Rr(fhs_ét)*: QCOh(X) —> QCOh(Y)

preserve direct limits for every integer r > 0. This is local on Y for the smooth topology, so
we may assume that Y is an affine scheme. Thus, it suffices to prove that the cohomology
functors H" (Xjis.¢t, —): QCoh(X) — Ab preserve direct limits for every integer r > 0. Since X is
quasi-compact and quasi-separated, this is well known (e.g., [Sta, 0739]).

The base-change transformation of (iv) exists by functoriality of the adjoints. Applying (ii),
we may replace (fqc)« and (fgc)x« by (fiis-ét)x and (fi ¢ )+, respectively. The statement is now
local on Y and Y’ for the smooth topology, so we may assume that both Y and Y’ are affine
schemes. Small modifications to the argument of [Sta, 073K] complete the proof. O
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In §2 we describe a class of morphisms for which the conclusions of Lemma 1.2 remain valid
in the unbounded derived category.

1.4 Comparison with definitions in derived algebraic geometry

We will now compare the derived category of quasi-coherent sheaves Dyc(X) that we are using
in this paper with derived categories of quasi-coherent sheaves as defined in derived algebraic
geometry. This is not used in the remainder of the paper (but see Example 9.4).

First recall that if A is an abelian category, then the derived category D(A) is the
homotopy category of a natural stable oo-category D(A) [Lurl6a, Definition 1.3.5.8]. If in
addition ¢ C A is a weak Serre subcategory, then we can consider the full co-subcategory
De(A) of objects with cohomology in € and this has homotopy category De(A). We thus define
Dye(X) := Dqcon(x)(Mod(X)), which has homotopy category Dqc(X). If X is Deligne-Mumford,
we also define Dge(Xgt) 1= Dqcon(xy)(Mod(Xg)), which is equivalent to Dyc(X) [LMOO,
Proposition 12.10.1].

PRrOPOSITION 1.3 (cf. [DG13, Remark 1.2.3]). Let X be an algebraic stack. Then

Dye(X) = I}_I_n D(Mod(4)),
Spec A— X

where the limit is taken in the co-category of oco-categories and is over (i) the category of all
affine schemes over X, (ii) the full subcategory of those smooth over X, or (iii) the subcategory
of those smooth over X with only smooth X-morphisms Spec A — Spec B.

We denote the limit of the right-hand side going over all morphisms by QCoh(X). This is a
stable co-category which is left- and right-complete, and has a t-structure with heart the abelian
category QCoh(X) [Lurl6b, Corollary 9.1.3.2 and Remark 9.1.3.3]. The oco-category QCoh(X) also
makes sense for any contravariant functor X from affine schemes to groupoids and can be adapted
to variants in derived algebraic geometry. This is how derived categories of quasi-coherent sheaves
usually are defined in derived algebraic geometry; cf. [BFN10, §3.1], [DG13, §1.2], [Lurl6b,
§6.2.2], and [GR17, 1.3, §1.1].

The category Dqc(X) is left-complete [HNR14, Theorem B.1]. We do not use this fact in
the proof and so we obtain an independent proof of the left-completeness of both Dgy.(X) and
Dge(X).

Proof of Proposition 1.3. The limit restricted to smooth morphisms or to smooth morphisms
with smooth maps between them is also equivalent to QCoh(X') [GR17, 1.3, §1.4.2]. Moreover, if
U — X is a smooth presentation and U, is the corresponding semi-simplicial algebraic space,
then restricting the limit to the diagram UJ" gives the same limit (use that X is a stack and
that A* C A is right cofinal; cf. [Lurl6b, Proposition 6.2.3.1 and proof of Proposition 9.1.3.1]
or [GR17, 1.3, Corollary 1.3.11]). We may also instead take the limit over the site U, .+ & since
Ulr: AT — Uiét is right cofinal.
We have a sequence of maps between oco-categories
Dee(X) = Dy (U

o ét

g .
) — lim qu(Uj:ét/V)
veuS,,
. 5
= 1lim De(V) <= QCoh(X).
veu,

0 ét
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That « is an equivalence follows by unbounded cohomological descent (1.2). That § is an
equivalence follows from Lemma 1.6 applied to the semi-simplicial étale site U: ¢« since having
quasi-coherent cohomology can be verified locally. The map v comes from the morphism of topoi
e: U :“ «/V — Ve. Since e, (restriction) is exact and €* is exact and fully faithful with essential
image the cartesian modules, we obtain equivalences between cartesian modules and between
derived categories of modules with cartesian cohomology sheaves; cf. [LM00, Proposition 12.10.1].

This shows that « is an equivalence. We saw that ¢ was an equivalence above. O

Remark 1.4. The maps 8 and ~ are also equivalences if we replace quasi-coherent cohomology
with cartesian cohomology.

Remark 1.5. If in addition X has affine diagonal, or is noetherian and affine-pointed, then the
natural functor D™ (QCoh(X)) — D (X) is an equivalence [HNR14, Appendix C]. It follows that
DT (QCoh(X)) — QCoh™(X) is an equivalence, which can also be proven directly; cf. [DG13,
Remark 1.2.10] and [GR17, 1.3, Proposition 2.4.3]. Note that D(QCoh(X)) and D(QCoh(X)) are
not always left-complete, e.g., when X = BG, in positive characteristic [Neell]. They are left-
complete and hence coincide with Dge(X) and Dgc(X), respectively, when Dgo(X) is compactly
generated [HNR14, Theorem 1.2].

LEMMA 1.6. Let (7,0) be a ringed topos and let (T/U,O|y) denote the localized topos for any
U € 7. Then the assignment U — D(Mod(O|y)) is a sheaf, that is, there is a limit-preserving
functor

T° — Catoo
U — D(Mod(O|p)).

Proof. We identify a ringed topos with a E..-ringed co-topos by taking nerves. Such an co-topos
is a 1-topos, that is, discrete, and O is discrete. We let Mody denote the oo-category of
O-module spectra. Its heart is the category of usual modules Mod(O) [Lurl6b, Definition 2.1.0.1
and Remark 2.1.2.1]. By the universal property of derived categories, there is a functor
Dt (Mod(0]yr)) — Modgy,,. This functor extends to a fully faithful functor D(Mod(O|y)) —
Modp|, whose essential image is the full subcategory of hypercomplete objects [Lurl6b,
Corollary 2.1.2.3].

By [Lurl6b, Remark 2.1.0.5], there is a limit-preserving functor U + Modp), . Since being
hypercomplete is a local property [Lur09, Remark 6.5.2.22], we obtain a limit-preserving functor
U +— D(Mod(O|p)). a

Remark 1.7 (Deligne-Mumford stacks). If X is a Deligne-Mumford stack, we can associate a
spectral Deligne-Mumford stack X to X. To X, one associates a stable oco-category of quasi-
coherent sheaves QCoh(X), a subcategory of Mod(X) = Mod(Ox,, ). It is equivalent to QCoh(X)
as defined above [Lurl6b, Proposition 6.2.4.1] and hence to Dy (X). This can also be seen
directly as follows [Lurl6b, Corollary 2.2.6.2]. The oo-category D(Mod(Ox,,)) can be identified
with the full subcategory of hypercomplete objects of Mod(X) [Lurl6b, Corollary 2.1.2.3] and
QCoh(X) can be identified with the full subcategory of hypercomplete objects with quasi-coherent
homotopy sheaves [Lurl6b, Proposition 2.2.6.1]. That is, Dqc(Xe) = QCoh(X).
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2. Concentrated morphisms of algebraic stacks

A morphism of schemes f: X — Y is concentrated if it is quasi-compact and quasi-separated
[Lip09, §3.9]. Concentrated morphisms of schemes are natural to consider when working with
unbounded derived categories of quasi-coherent sheaves. Indeed, if f is concentrated, then:

(i) R(fqc)« coincides with the restriction of R(fzar)« to Dgc(X);
(ii) R(fqc)« preserves small coproducts; and
(ili) R(fqc)« is compatible with flat base change on Y.

Here, as before, R(fq)« denotes the right adjoint to the unbounded derived functor
Lfac: Dge(Y) — Dge(X). In this section we isolate a class of morphisms of algebraic stacks,
which we will also call concentrated, that enjoy the same properties.

DEFINITION 2.1. Let n > 0 be an integer. A quasi-compact and quasi-separated morphism of
algebraic stacks f: X — Y has cohomological dimension < n if for all ¢ > n and all M € QCoh(X)
we have that R*(flis.¢t)«M = 0 (by Lemma 1.2(ii), this is equivalent to R*(fqc)«M = 0).

The next result is inspired by [Alp13, Proposition 3.9], where similar results are proven in
the context of cohomologically affine morphisms. Note, however, that cohomologically affine
morphisms are not quite the same as morphisms of cohomological dimension < 0 [Alpl3,
Remark 3.5].

LEMMA 2.2. Let f: X — Y be a l-morphism of algebraic stacks that is quasi-compact and
quasi-separated. Let n > 0 be an integer.

(i) Let a: f = f' be a 2-morphism. If f has cohomological dimension < n, then so has f.

(ii) Let g: Z — Y be a 1-morphism of algebraic stacks that is faithfully flat. If f7: X xy Z — Z
has cohomological dimension < n, then so has f.

(iii) If f is affine, then it has cohomological dimension < 0.

(iv) Let h: W — X be a l-morphism of algebraic stacks that is quasi-compact and quasi-
separated and let m > 0 be an integer. If f (respectively h) has cohomological dimension
< n (respectively < m), then the composition f oh: W — Y has cohomological dimension
<m+n.

(v) Letg: Z — Y beal-morphism of algebraic stacks that is quasi-affine. If f has cohomological
dimension < n, then so has the 1-morphism fz: X xy Z — Z.

(vi) Let g: Z — Y be a 1-morphism of algebraic stacks. If f has cohomological dimension < n
and Y has quasi-affine diagonal, then the 1-morphism f7: X Xy Z — Z has cohomological
dimension < n.

Proof. The claim (i) is trivial. To address the claim (ii), we note that higher pushforwards
commute with flat base change (Lemma 1.2(iv)). As faithfully flat morphisms are conservative,
the morphism f has cohomological dimension < n. The claim (iii) follows trivially from (ii).
The claim (iv) follows from the Leray spectral sequence.

We now address the claim (v). Denote the pullback of g by f as gx: Zx — X and throughout
we fix M € QCoh(Zx). We first assume that the morphism ¢ is a quasi-compact open immersion.
In this situation the adjunction (gX)ZC((gX)lis_ét)*M — M is an isomorphism. For ¢ > 0, we
deduce that there are isomorphisms in QCoh(Z2):

RY((f2)tis-6t) (9 Ve (9 tis-ét )« M) = RY((f2)is-st)« M.
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Since higher pushforwards commute with flat base change, we deduce that for all ¢ > 0 there are
isomorphisms:

g* Ri(flis—ét)*(((QX)lis—ét)*M) - Ri((fZ)lis—ét)*M~

Since ((gx)is-t)«M € QCoh(X), it follows that fz: Xz — Z has cohomological dimension < n.
Next assume that the morphism g is affine. Then the morphism gx is also affine and so, by (iii),
both morphisms have cohomological dimension < 0. By (iv), we conclude that the composition
fogx: Zx — Y has cohomological dimension < n. But we have a 2-isomorphism fogx = go fz
and so, by (i), the morphism g o fz has cohomological dimension < n. By the Leray spectral
sequence, however, we see that there is an isomorphism for all 7 > 0:

(gris-6)« R ((f2)tiscet )« M — R*((g © f2)tise)« M.

Since the morphism g¢ is affine, the functor g, is faithful; thus, we conclude that the morphism
fz has cohomological dimension < n. In general, a quasi-affine morphism ¢g: Z — Y factors as

72575 Y, where the morphism j is a quasi-compact open immersion and the morphism g is
affine. Combining the above completes the proof of (v).

To prove the claim (vi), we observe that by (ii) the statement is smooth local on Z; thus, we
are free to assume that Z is an affine scheme. Since the diagonal of the stack Y is quasi-affine,
the morphism g: Z — Y is quasi-affine. An application of (v) now gives the claim. O

We wish to point out that Lemma 2.2(vi) is false if Y does not have affine stabilizers [HR15,
Remark 1.6].

DEFINITION 2.3. A quasi-compact and quasi-separated morphism f: X — Y of algebraic stacks
has finite cohomological dimension if there exists an integer n > 0 such that the morphism f has
cohomological dimension < n.

Morphisms of quasi-compact and quasi-separated algebraic spaces have finite cohomological
dimension [Sta, 073G]. Drinfeld and Gaitsgory [DG13, Theorem 1.4.2 and §2] have shown
that a morphism of quasi-compact and quasi-separated algebraic stacks f: X — Y has finite
cohomological dimension if Y is a QQ-stack and f has affine stabilizers and finitely presented
inertia. This result is refined and generalized in [HR15]: the condition on inertia is not required
and in positive characteristic f has finite cohomological dimension exactly when f has linearly
reductive stabilizers.

DEFINITION 2.4. A morphism of algebraic stacks f: X — Y is concentrated if it is quasi-
compact, quasi-separated, and, for every quasi-compact and quasi-separated algebraic stack Z
and every morphism g: Z — Y, the pulled back morphism f7: Xz — Z has finite cohomological
dimension.

By the result of Drinfeld and Gaitsgory, a quasi-compact and quasi-separated morphism of
algebraic stacks f: X — Y is concentrated if Y is a Q-stack and f has affine stabilizers.

The next result is immediate from Lemma 2.2.
LEMMA 2.5. Let f: X — Y be a l-morphism of algebraic stacks that is quasi-compact and
quasi-separated.
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(i) If f is concentrated, then it remains so after base change.

(ii) Let g: Z — Y be a 1-morphism that is faithfully flat. If f7: X xy Z — Z is concentrated,
then so is f.

(iii) If f is representable, then it is concentrated.

(iv) Let h: Y — W be a 1-morphism that is concentrated. Then the composition ho f: X — W
is concentrated if and only if f is concentrated.

(v) Assume that Y is quasi-compact with quasi-affine diagonal. Then f is concentrated if and
only if it has finite cohomological dimension.

The main result of this section is the following theorem that refines Lemma 1.2.

THEOREM 2.6. Let f: X — Y be a concentrated 1-morphism of algebraic stacks.

(i) If'Y is quasi-compact and quasi-separated, then there is an integer n such that the natural
morphism
TPIR(fae) kM = T7IR(fae) (77 7"M)
is a quasi-isomorphism for every integer j and M € Dy (X).
(ii) The restriction of R( fiis-¢t)« to Dgc(X) coincides with R(fyc)«-
(iii) The functor R(fyc)« preserves small coproducts.
(iv) If g: Y' — Y is a flat morphism of algebraic stacks, then the 2-cartesian square

X - x

d

vy 2oy
induces a natural quasi-isomorphism for every M € Dy (X):
Lg-R(fae)«M =~ R(f{o)«Lg e M.

Proof. For (ii), choose a diagram as in (1.6). By the natural transformations (1.7), (1.8), and
(1.11), it is sufficient to prove that the restriction of R( ?’ )+ to ch(U:r «) factors through
ch(V.Jrét)- This can be verified smooth-locally on Y, so we may assume that Y is quasi-compact
and qliasi—separated and f has cohomological dimension <n for some integer n. In particular,

Ri(f)«M = 0 for every i > n and M € QCoh(U,,). By [LO08, Lemma 2.1.10], for every

e ét e ét

M € Dy (U, f ) and integer j, the natural morphism
PPIR(f )M = TR )« (P77 (2.1)

is an isomorphism. By Lemma 1.2(ii), the result follows. Note that the equation (2.1) now proves
(i). Finally, the claims (iii) and (iv) follow from (i) and the corresponding results for the bounded
below category in Lemma 1.2. O

COROLLARY 2.7. If f: X — Y is an affine morphism of algebraic stacks, then there is a natural
equivalence of triangulated categories

?*: ch(Yiis—émf*OX) - ch(X)-
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Proof. Pick a diagram as in (1.6). Since f is an affine morphism, we may assume that U; =
X Xy V;. The morphism of ringed topoi f (U V+ factors as

0 ét " oet

pt k
(U Ouz, ) = Vi (e Ouz, ) = (Vs Oz, ).

We claim that g_l(fjet

each (U;)g and then work etale—locally, thus, we may assume that f is a morphism of affine
schemes Spec B — Spec A. Hence, it suffices to prove that the induced morphism of ringed sites
f: ((Spec B)eét, Ospec B.,) — ((Spec A)gg, (fot)+Ospec ) is flat. This can be verified at geometric
points, so let p be a prime ideal of B. We must prove that if ¢ = f(p), then the induced
ring homomorphism B ® 4 Aah — B;h is flat, where sh denotes the strict henselization at the

) (‘)U+ — O+ s flat. It is sufficient to verify this upon restriction to

e,ét

relevant prime ideal. Since Spec(B ® 4 Aah) has flat diagonal over Spec B and Spec th is a flat
Spec B-scheme, the assertion is clear and the claim is proved.
It follows that g*: Mod(V,", ot (f )0 vz, ) — Mod(U;"

ot OU:L,ét) is exact. Moreover, since f
is affine, it has cohomological dimension <0 (Lemma 2.2(iii)) and is concentrated. In particular,

the restriction of Rg. to Dyc (U, OU+ ) factors through ch(v-i- (f i) OU+ ) and is exact.

0.6t o ét)
It remains to prove that the restrlctlons of the adjunctions Id = Rg,Lg"* and Lg* Rg. = Id to
complexes with quasi-coherent cohomology sheaves are isomorphisms. By the exactness, it is
sufficient to prove that the restrictions of the underived adjunctions Id = g,¢* and g*g,. = 1d to
quasi-coherent modules are isomorphisms. Unwinding the definitions, this is just the assertion
that QCoh(X) = QCoh(Yiis.¢t, f«Ox). By smooth descent, we may reduce to the situation where
X and Y are affine schemes. The result now follows from [EGA, §II.1.4]. O

COROLLARY 2.8. Let f: X — Y be a quasi-affine morphism of algebraic stacks and let M €
Dge(X). If R(fqc)«M =~ 0, then M =~ 0, that is, R(fqc)« is conservative.

Proof. We may factor f as X & X’ L Y, where j is a quasi-compact open immersion and f’
is an affine morphism. By Corollary 2.7, the result is true for f’. Hence, we are reduced to the
situation where f is a quasi-compact open immersion. In this case, however, Ay y: X — X xy X
is an isomorphism. By Theorem 2.6(iv), Lfj.R(fqc)«M =~ M and the result follows. O

3. Triangulated categories

In this section we will recall some results on triangulated categories that may not be familiar to
everyone. For excellent and comprehensive treatments of these topics, see [Nee92b| and [Tho97,
§2]. In particular, we will recall thick and localizing triangulated subcategories. This leads to
the concept of compact objects and Thomason’s localization theorem.

Throughout this section let § be a triangulated category with shift operator X.

A functor F: 8§ — 8’ between triangulated categories is triangulated if F sends triangles to
triangles and is compatible with shifts. We say that a full subcategory R of 8 is triangulated if
the category R is triangulated and the inclusion functor R — § is triangulated. A subcategory
R C 8 is thick (also known as épaisse or saturated) if it is full, triangulated, and every S-direct
summand of every r € R belongs to R.

Example 3.1. For a triangulated functor F': 8§ — 8, we denote by ker F' the full triangulated
subcategory consisting of those z € § such that F(z) ~ 0. The subcategory ker F' C § is thick.
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Example 3.2. Given triangulated subcategories Ry C Ry C 8 such that Ry is a thick subcategory
of 8, then R is a thick subcategory Rs.

Kernels of triangulated functors produce essentially all thick subcategories [Tho97, §1.3].
Indeed, for every thick subcategory R C 8, there is a quotient functor @Q: 8§ — §/R such that
R = ker @, Q is essentially surjective, and satisfies a universal property [NeeOlb, Theorem 2.1.8].

For a class R C 8, the thick closure of R is the smallest thick subcategory R C § containing
R. A subcategory R C 8§ is dense if it is full, triangulated, and its thick closure coincides with 8.

If the triangulated category § is essentially small, then there is a notion of Ko(8): it is the
free abelian group on the set of isomorphism classes of objects in & modulo the relation that
given an 8-triangle s; — so — s3, then [so] = [s1] + [s3]. It is easy to see that for s, t € §, then
[s @ t] = [s] + [t] and [s] = —[Es]. Also, for every o € K¢(8), there exists s € 8§ such that o = [s].
Given a triangulated functor F': § — 8’ between essentially small triangulated categories, there
is an induced group homomorphism Kg(F): Ko(8) — Ko(8'). The following is a nice result of
Neeman [Nee92b, Corollary 0.10] (also see [TT90, 5.2.2] and [Tho97, Lemma 2.2]).

LEMMA 3.3. Let 8 be an essentially small triangulated category and let R be a dense subcategory.
If s € §, then s € R if and only if s belongs to the image of Ko(R) in Ko(8). In particular, if
s €8, then s® Xs € R.

A pair of triangulated functors R — § 5T left-exact (respectively almost-exact,
respectively ezact) if R is a thick subcategory of § via the functor R — 8§ and the functor
F: 8 — T factors through the quotient F': §/R — T and this functor is fully faithful (respectively
fully faithful and dense, respectively an equivalence). The following (well-known) lemma will be
useful.

LEMMA 3.4. Let F': § — T be a triangulated functor. If F' has a right adjoint G: T — § such

. . . . . F .
that the adjunction e: F'G — 1dy is an isomorphism, then the sequence ker F' — 8§ — T is exact.

Proof. We will show that F' satisfies the universal property of the quotient. Let P: § — P be a
triangulated functor such that ker F' C ker P. We must prove that there are a functor P': T — P
and an isomorphism a:: P ~ P'F unique up to unique isomorphism. For the uniqueness, let Pj, P
be two such functors with isomorphisms «;: P ~ P/F. Then the isomorphism aga; ' : P{F ~ PjF
induces a unique isomorphism P ~ P{FG ~ PjFG ~ Pj compatible with the «;. For the
existence, set P’ = PG and let o = P,n, where 1: Idg — GF is the unit of the adjunction.
Now F,n is an isomorphism since € is an isomorphism, so a = P,n is an isomorphism since
ker F' C ker P. O

A triangulated category is said to be closed under small coproducts if it admits small
categorical coproducts and small coproducts of triangles remain triangles. If the triangulated
category 8 is closed under small coproducts, then we say that a subcategory R C 8 is localizing
if it is a full triangulated subcategory, closed under small coproducts, and the functor R — §
preserves small coproducts. For a class R C 8, where 8 is closed under small coproducts, there
is a smallest subcategory R C § that is localizing and contains R. We refer to R as the localizing
envelope of R.
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Ezample 3.5. If a subcategory R C 8 is localizing, then it is thick. Indeed, given r € R and
r~7r"@r" in 8, the Eilenberg swindle produces an 8-isomorphism

"ererdo - ~redrdrd---.

Since R is localizing, "’ @ r @& r @ --- € R. The cone of the natural morphism r ®r @& --- —
" oror®--- isr”’; thus, r” € R.

A result of Neeman [Nee92b, Proposition 1.9] says that if a subcategory R C 8§ is localizing,
then the quotient @: 8§ — §/XR preserves small coproducts. In particular, since the quotient is
essentially surjective, the category 8/R is closed under small coproducts.

Example 3.6. If F: 8§ — 8’ is a triangulated functor that preserves small coproducts, then the
subcategory ker F' is localizing.

An object s € 8 is compact if the functor Homg(s, —) preserves small coproducts. Denote by
8¢ the full subcategory of compact objects of S.

Ezample 3.7. Let A be a ring. A complex of A-modules is compact in D(A) if and only if it is
quasi-isomorphic to a bounded complex of finitely generated projective A-modules [Sta, 07LT].
That is, the compact objects of D(A) are the perfect complexes of A-modules.

Ezample 3.8. Let F': 8§ — 8’ be a triangulated functor that admits a right adjoint G: 8’ — 8.
If G preserves small coproducts, then F' sends 8¢ to 8’ [Nee96, Theorem 5.1 ‘="].

*

qc sends

Ezample 3.9. If f: X’ — X is a concentrated morphism of algebraic stacks, then L
Dge(X)¢ to Dge(X”)¢. This follows by combining Example 3.8 with Theorem 2.6(iii).

A class S C 8 is generating if given x € 8§ such that Homg(X"s,z) = 0 for all s € S and n € Z,
then x ~ 0. The triangulated category 8 is compactly generated if it admits a set of generators
consisting of compact objects.

Ezample 3.10. Let A be a ring. Denote the unbounded derived category of A-modules by D(A).
Then the set {A} compactly generates D(A). Hence, D(A) is compactly generated.

Ezample 3.11. This is a refinement of Example 3.8. Let F': § — 8 be a triangulated functor
that admits a right adjoint G': 8 — 8 that preserves small coproducts. In addition, assume that
G is conservative (i.e., G(x) ~ 0 implies that x ~ 0). If 8 is compactly generated by a class S,
then 8’ is compactly generated by the class {F(s) : s € S}.

We now recall Thomason’s localization theorem, which was proved in this generality by
Neeman [Nee92b, Nee96, Theorem 2.1] (also see [TT90, 5.1]).

THEOREM 3.12 (Thomason’s localization). Consider an exact sequence of triangulated categories

R = 8 & T that are closed under small coproducts. If the triangulated category § is compactly
generated and R is the localizing envelope of a subset R C 8¢, then there is an induced sequence
R¢ — 8¢ — T¢ which is almost-exact. In particular, R = 8N R and R€ is the thick closure of R.

Combining Theorem 3.12 with the elementary Lemma 3.3 produces something very
surprising, which was observed by Neeman [Nee92b, Corollary 0.9].
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COROLLARY 3.13. In Theorem 3.12, assume that the category JT¢ is essentially small. Then, for
every t € T¢, there exist an s € 8¢ and an isomorphism t & 3t ~ F(s).

Another useful corollary is the following [Nee96, Theorem 2.1.2].

COROLLARY 3.14. In Theorem 3.12, suppose that R is a generating set for 8; then R = 8.

4. Perfect complexes, projection formulas, and finite duality

We now use the results of the previous section to prove some useful results for derived categories
of algebraic stacks. We begin with the notion of a perfect complex on an algebraic stack.

4.1 Perfect complexes
We recall some notions from [SGA6, Exposé II] (also see [Sta, Tag 08FK]). If A is a ring, then
a complex of A-modules P is strictly perfect if it is a bounded complex of finitely generated
and projective A-modules. More generally, if A is a sheaf of rings on a site E, then a complex
P = (P¥) of A-modules is strictly perfect if it is a bounded complex and each term P* is a direct
summand of a finite free A-module. A complex P € D(A) is perfect if it is locally strictly perfect.
Let X be an algebraic stack. Then a complex P on X is perfect if it is a perfect object of
D(X). Note that all perfect complexes on X belong to Dqc(X). The following lemma provides a
useful criterion for perfection.

LEMMA 4.1. Let X be an algebraic stack and let P € Dqyc(X). The following conditions are
equivalent:

(i) P is perfect; and
(ii) for every x € |X|, there exists a flat morphism f: Spec A — X with image containing x
such that RT'(Spec A, Lf;.P) is a strictly perfect complex of A-modules.

Moreover, every perfect complex on an affine scheme is strictly perfect.

Proof. It is sufficient to prove that if A — B is a faithfully flat ring homomorphism and M €
D(A), then M is a strictly perfect complex of A-modules if and only if M ®4 B is a strictly
perfect complex of B-modules. This is [Sta, Tag 068T]. O

Example 4.2. Let X be an algebraic stack. Then every flat Ox-module of finite presentation
defines a perfect complex in Dyc(X). In particular, if f: X — Y is a morphism of algebraic
stacks that is finite, flat, and of finite presentation, then f,Ox is perfect in Dyc(Y').

We recall the following well-known definition (e.g., [Bral4, Definition 4.7.1] or [BFNI10,
Definition 3.3]). Let X be an algebraic stack. An object P € Dqo(X) is dualizable if there exists
PV € Dge(X) together with morphisms e: PV ®'®X P— Ox,c:0x > P ®'@X PV such that the
two induced maps

oxah, P-LL Pl Vel P,

Idg,\/ ®c e®1d?\/
PV @5, Ox —PY @ Py, PV —>PV

are isomorphisms. It is standard that P dualizable implies that PV ~ RHomg’ (P, Ox) and the e
and ¢ maps are simply those arising from the adjunction between — ®('5X P and Rf}{omgcx (P, —).
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The following lemma is straightforward but crucial.

LEMMA 4.3. Let X be an algebraic stack and let P € Dq.(X) be a perfect complex.

(i) The double duality morphism P — RHomg, (RHomg, (P,0x), Ox) is a quasi-isomorphism.

(ii) The restriction of the functor RHomg, (P, —): D(X) — D(X) to Dgc(X) factors through
Dyc(X) and preserves small coproducts in Dyc(X). Moreover, if M € Dyc(X), then there is
a natural quasi-isomorphism

RHome, (P, 0x) ®5, M ~ RHome, (P, M).

In particular, Rﬂfom%; (P, =) ~ RHomp, (P,—) ~ P¥ ® — on Dyc(X).
(i) If P € Dye(X) is dualizable, then it is perfect.

In particular, for every algebraic stack X, the notions of perfect and dualizable objects in Dqc(X)
coincide.

Proof. To prove (i), we note that the existence of the double duality morphism follows from
RHom-® adjunction. That it is a quasi-isomorphism can be verified smooth-locally on X, so
we may assume that X = Spec A is an affine scheme. To prove (ii), we may argue similarly to
reduce to the affine setting. Now the collection of all P that satisfy the conclusions of (i) and (ii)
is closed under finite coproducts, direct summands, shifts, and the taking of cones, that is, it is
a thick subcategory of Dqc(X) =~ D(A). Since Ox satisfies the conclusions of (i) and (ii) and X
is affine, (i) and (ii) follow.

For (iii), since dualizable implies locally dualizable, it follows that we may assume that X is
affine. In this case, the result is classical. One may also argue as follows: Q being dualizable implies
that there is an isomorphism of functors RHom{’ (2, —) ~ Q¥ @ — from Dge(X) to Dge(X).
In particular, the functor Rﬂ-fom%cx (Q,—): Dgc(X) = Dge(X) preserves small coproducts. Taking
global sections, we see that Homg, (Q, —) preserves small coproducts. Hence, Q is compact in
Dyc(X). But X is affine, so Q is perfect. O

4.2 Compact complexes
We now move on to a description of the compact objects of Dy.(X) and their relationship to
perfect complexes.

LEMMA 4.4. Let X be a quasi-separated algebraic stack.

(i) If Q € Dge(X)¢, then Q is perfect.
(i) If P is perfect on X and Q € Dgc(X)¢, then Q ®bx P e Dge(X)e.
(iii) If X is concentrated, then Ox € Dy (X)¢; in particular, if P is perfect on X, then P €
Dgc(X)©.

Proof. We first prove (i). Consider a smooth morphism p: Spec A — X. It follows from the quasi-
separatedness of X that p is quasi-compact, quasi-separated, and representable. In particular, p
is concentrated (Lemma 2.5(iii)) and so Lpg.Q € Dqc(Spec A)¢ by Example 3.9. The claim now
follows from Example 3.7 and Lemma 4.1.

To prove (ii), we note that if M € D(X), then (1.3) implies that

Homo , (Q ®g, P, M) ~ Homg, (Q, RHome, (P, M)).
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By Lemma 4.3(ii), the restriction of RHom(P, —) to Dqc(X) preserves small coproducts. Since
Q € Do (X)¢, it follows that the restriction of RHomg, (Q ®('5X P, —) to Dqc(X) preserves small
coproducts. Hence, Q ®('5X P € Dge(X)“.

For (iii), we note that if M € D(X), then by definition RHomg, (Ox, M) = RI'(Xjis.¢t, M).
Since X is concentrated, Theorem 2.6(iii) implies that the restriction of RT'(Xjis-¢, —) t0 Dgc(X)
preserves small coproducts. Thus, Ox € Dy (X)¢. The latter claim follows from the former
and (ii). O

In the following lemma we provide criteria for a perfect complex on an algebraic stack to be
compact. We have not seen this characterization in the literature before.

LEMMA 4.5. Let X be a quasi-compact and quasi-separated algebraic stack and let P € Dqc(X)
be a perfect complex. The following conditions are equivalent:
(i) P is a compact object of Dy (X);
(ii) there exists an integer r > 0 such that Homg (P, N[i]) = 0 for all N € QCoh(X) and i > r;
and
(iii) there exists an integer r > 0 such that the natural map

72/RHomg , (P, M) — 77/RHomg (P, 777 7"M)
is a quasi-isomorphism for all M € Dy.(X) and integers j.

Proof. Assume that (ii) does not hold. Then there are an infinite sequence of quasi-coherent
Ox-modules My, Mo, ... and a strictly increasing sequence of integers dqy < ds < --- such that
Homyg , (P, M;[d;]) # 0 for every i. Since Dgyo(X) is left-complete [HNR14, Theorem B.1], there
is a quasi-isomorphism in Dy (X):

This implies that the natural morphism

EBHom@X (P, M;[d;]) - Homg <1P, @Ml[dzo ~ HHomoX(ﬂ’,Mi[di])
=1

=1 i=1

is not an isomorphism. In particular, P is not compact. Thus, by the contrapositive, we have
proved the implication (i)=(ii).

For (ii)=-(iii), first choose a diagram as in (1.6) with V =Y = SpecZ. Let '.P:ét =
R(resU.)*L(pilis_ét)*T and M}, = R(resU.)*L(piliS_ét)*M. Note that

o ét

06ty Ve ét

R(resU.)*L(p:r’hs_ét)*RfHomoX (P, M) ~ RfHomoUﬁt (PF.,MT.)

has quasi-coherent cohomology (Lemma 4.3) and that RHomoU N (PF
0 ét

e 6t

N[i]) =0 for all i > r
and N € QCoh(Uiét). It is enough to prove that

72 RHomg, , (PF

e 6t

M) — 77/RHomg, , (P!, 777" M)

e 6t

2338

https://doi.org/10.1112/50010437X17007394 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007394

PERFECT COMPLEXES ON ALGEBRAIC STACKS

for every integer j and M € Dgc(U,). This follows as in the proof of [LO08, Lemma 2.1.10]
with €, replaced by HomoUJr (ﬂ’f’ét, —).
e ét
Finally, for (iii)=-(i), we note that because P is perfect, it is dualizable. Thus, for all
M € Dyc(X) and integers j, there are natural quasi-isomorphisms:

727 RHomgp, (P, M) ~ 723 RHomg, (P, T>j_TM)
~ 77IRT (Xser, P¥ @6, 77 "M).

Also, since P is perfect, the restriction of the functor PV ®(|5X (=) to DZZ7"(X) factors through

D(?g - (X) for some fixed integer r’. The result now follows from Lemma 1.2(iii). O
For future reference, we summarize the situation in the following remark.

Remark 4.6. Let X be a quasi-compact and quasi-separated algebraic stack. Then the following
are equivalent:
(i) every perfect object of Dqc(X) is compact;
(ii) the structure sheaf Ox is compact;
(iii) X has finite cohomological dimension; and
(iv) the derived global section functor RI': Dqc(X) — D(Ab) commutes with small coproducts.

The equivalence of the first two conditions follows from Lemma 4.4. The structure sheaf is
compact if and only if X has finite cohomological dimension (Lemma 4.5). The last condition is
equivalent to the definition of Ox being compact.

4.3 Supports and generation
Let X be a scheme and let M € QCoh(X). The support of M is the subset

supp(M) = {x € | X| : M, # 0}.

More generally, if X is an algebraic stack and M € QCoh(X), then we define the support of M as
follows: let p: U — X be a smooth surjection from a scheme U; then supp(M) = p(supp(p*M)).
It is easily verified that this is well defined (i.e., independent of the cover p).

DEFINITION 4.7. Let X be an algebraic stack and let E € Dgc(X). Define the cohomological
support of E to be the subset

supph(E) = | J supp(H"(E)) C |X|.
nez

Recall that if X is a quasi-separated algebraic stack, then, for every = € |X]|, there is a
quasi-affine monomorphism i,: §, < X with image x, where G, is a gerbe over a field x(z),
the residue field at « [Rydl1, Theorem B.2]. We refer to this data as the residual gerbe at .
We now have the following lemma.

LEMMA 4.8. Let X be a quasi-compact and quasi-separated algebraic stack. Let E be a perfect
complex on X.

(i) Then x € supph(E) if and only if the complex L(i;)y.E is not acyclic in Dyc(Sz), where
iz: Gz — X is the residual gerbe.
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(ii) If f: X' — X is a quasi-compact and quasi-separated morphism, then supph(Lfj.E) =
f~tsupph(E).
(iii) supph(FE) is closed with quasi-compact complement.

Proof. For (i), x € supph(F) if and only if there exist a smooth and surjective morphism p: U —
X, where U is a scheme, and u € U such that p(u) = z and (Lpg.F). is not acyclic in Dge(Opu)-
By [Tho97, Lemma 3.3(a)], this is equivalent to (Lp.FE) ® s(u) not being acyclic in Dyc(#(u)).
Since Spec k(u) — Gy is faithfully flat, the result follows.

For (ii), we use (i) and argue as in [Tho97, Lemma 3.3(b)], with the additional observation
that for every 2’ € |X’|, the induced morphism on residual gerbes S, — Gy, is faithfully flat.

For (iii), by (ii), the conclusion may be verified smooth-locally. In particular, we may assume
that X is an affine scheme, and the result follows from [Tho97, Lemma 3.3(c)]. O

If X is an algebraic stack and Z C | X|, then we define
Dy, 2| (X) = {M € Dgc(X) : supph(M) C Z}.
If j: U — X is a flat monomorphism, e.g., an open immersion, then
ch,|X\U|(X) = {M < DqC(X) ]*M ~ O}

LEMMA 4.9. Let X be an algebraic stack and let P € Dq(X) be a perfect complex with support
Z = supph(P). If M € Dy |z(X), then M =~ 0 if and only if RFHomg, (P, M) >~ 0.

Proof. The question is local on X for the smooth topology, so we may assume that X is an affine
scheme. By [BNO93, Proposition 6.1], there is a perfect generating complex K € Dye, 7/ (X)¢
(a Koszul complex). As P is perfect and the support of P is |Z|, it follows from [Nee92a,
Lemma A.3] that K is in the thick closure of P, so P is also a generator of Dy z(X). Thus,
RHomyg, (P, M) ~ 0 if and only if M ~ 0. O

LeEMMA 4.10. Let X be a quasi-compact and quasi-separated algebraic stack and let j: U — X
be a quasi-compact open immersion with complement |Z|.

(i) If Dye,z|(X) is generated by a set whose elements have compact image in Dy.(X), then
there exists a compact object Q of Dyo(X) with support |Z|.

(ii) If Dge(X) is generated by a set of compact objects {Qy}pep and there exists a perfect
complex P on X with support |Z|, then Dy |7 (X) is generated by the set {Qy ®('5X Ploen
(whose elements have compact image in Dgc(X)).

Proof. For (i), let {Qx}xea be a set of generators for Dy |7 (X) whose elements have compact
image in Dyc(X). Let z € |Z] be a point and choose a representative, that is, a field & and
a l-morphism of algebraic stacks Z: Speck — X with image z. Since the diagonal of X is
quasi-compact and quasi-separated, it follows that Z is quasi-compact and quasi-separated. By
Lemma 1.2(iv), it follows that Lji.R(Zqc)«Ospeck = 0 and so there exist a A € A, an integer n,
and a non-zero morphism Qy[n| — R(Zqc)+Ospeck- By adjunction, LE:;CQ)\ # 0 and we deduce
that (J,c, supph(Qy) = |Z|. It suffices to show that there is a finite subset A’ C A such that
Uxear supph(Qy) = [Z]. This is obvious if X is noetherian or, more generally, if Z has a finite
number of irreducible components.
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In complete generality, we note that |Z| is constructible (by hypothesis) and that supph(Q,)
is constructible for every A\ (by Lemma 4.8(iii)). Indeed, both subsets are closed with quasi-
compact complement. We conclude that |Z| = [J,., supph(Qy) has a finite subcovering since
the constructible topology is quasi-compact.

For (ii), first note that the complex Qb@bx P, which belongs to Dy |7 (X), is a compact object
of Dgc(X) (Lemma 4.4(ii)). Let M € Dy |7 (X) and suppose that RHomg (9 ®('5X P, M) ~ 0.
By adjunction (1.3), RHomg (Qp, RHome, (P, M)) ~ 0. Since the set {Q;}pcp is generating, it
follows that RHomg (P, M) ~ 0. Thus, M ~ 0 by Lemma 4.9. O

4.4 Projection formula

A typical application of Corollary 3.14 is given by the following proposition. The given argument
is a variant of [Nee96, Proposition 5.3], though we have not seen this proposition in the literature
before.

PROPOSITION 4.11 (Strong projection formula). Let A be a ring and let m: X — Spec A be a
morphism of algebraic stacks. Let Q be a compact object of Dy.(X) and let § € Dgc(X). Then,
for every I € D(A), there is a natural quasi-isomorphism

RHomo , (Q,9) ®% I ~ RHomo, (2,5 ®g,, L)
Proof. First we describe the morphism: by adjunction, there is a natural morphism
L R(mqe) «RHome (2, G) — RHome, (2, 9)

and so by (1.3) there is a natural morphism

(Lmf R(7qe)«RFomo (9, 9)) ®§, Q@ Lri — § &g, LI
By (1.3) again, there is a natural morphism

Lt [R(mqe) «RHomo (9, 9) ®Y I] = RHomo, (2, § ®g, L T).
By adjunction and (1.5) and (1.10), we deduce the existence of the required natural morphism

¢1: RHomy, (Q,9) ®45 I — RHomo, (Q,§ ®g, LmlT).

Let K C D(A) be the full subcategory with objects those I such that ¢; is a quasi-isomorphism.
It remains to show that X = D(A). Clearly, X is a triangulated subcategory that contains A[k]
for every integer k. Moreover, since Q is a compact object of Dgc(X), K is closed under small
coproducts. The result now follows from Corollary 3.14. O

A straightforward implication is the usual projection formula for concentrated morphisms of
algebraic stacks.

COROLLARY 4.12 (Projection formula). Let f: X — Y be a concentrated 1-morphism of
algebraic stacks. The natural map

(R(fqe)sM) @, N = R(fqe)«(M ®g . LfiN)

is a quasi-isomorphism for every M € Dqc(X) and N € Dgc(Y).
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Proof. By adjunction, there is a natural morphism
LfrR(fae) M &, LEEN = M ®g, LN
By adjunction again, we deduce the existence of a natural morphism

Ut (R(fqe)eM) @, N = R(fqe)s(M @p, LFEN).

It remains to show that i is a quasi-isomorphism for every N € D (Y). Note that the
verification of this is smooth local on Y, so, by Theorem 2.6(iv), we may reduce to the situation
where Y is an affine scheme. By Lemma 4.4(iii), Ox is compact and the result now follows from
Proposition 4.11. O

4.5 Tor-independent base change

Let f: X — Y and ¢g: Y/ — Y be morphisms of algebraic stacks. We say that f and g are
tor-independent if for every smooth morphism Spec A — Y and every pair of smooth morphisms
Spec B — X xy Spec A and Spec A’ — Y’ xy Spec A, we have that Tor(B, A’) = 0 for all
1 > 0. Equivalently, ‘.Torzy’f’g(OX, Oy+) = 0 for every integer i > 0 (see [Hall7, Appendix C] for
details). Note that if g is flat, then it is tor-independent of every f. The projection formula of
Corollary 4.12 is powerful enough to prove a very general tor-independent base-change result
which extends Theorem 2.6(iv).

COROLLARY 4.13. Fix the following 2-cartesian square of algebraic stacks.

x I x
f ’i lf
A v
If f and g are tor-independent and f is concentrated, then there is a natural quasi-isomorphism
for every M € Dgc(X):
Lg;cR(qu)*M = R(fclic)*Lg,ZcM
Proof. By Theorem 2.6(iv), the result can be verified smooth-locally on Y and Y’. Thus, we
may assume that Y = Spec A and Y’ = Spec A’. In particular, g and ¢’ are affine. Since g is
affine, R(gqc)« is conservative (Corollary 2.8). Hence, it is sufficient to verify that the morphism

in question is a quasi-isomorphism after application of the functor R(gqc)«. By the projection
formula applied to g and then f, there are natural quasi-isomorphisms

R(Qqc)*Lg;cR(ch)*M = R(ch)*M X0y R(Qqc)*OY’
= R(ch)*(M ®|(5X Lf;CR(qu>*OY/)-
Note, however, that because f and g are tor-independent and ¢ is affine, the natural map
LchcR(qu)*oY’ - R(gélc)*oX'
is a quasi-isomorphism. Indeed, this may be verified smooth-locally on X, so we may assume
that X = Spec C. The morphism in question corresponds to the map C ®';1 A= (C®4 A)[0] in

D(C), which is a quasi-isomorphism because f and g are tor-independent. With the projection
formula and functoriality, we now obtain the following natural sequence of quasi-isomorphisms:
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R(fae) M @G, LEiR(9ae)+Oy7) = R(fae)s (M @ R(ghe)s«Ox)
R(qu)*R(g(/]C)*Lg/:ch
R(gae)«R(fhe)«Lg qeM.

The result follows. O

12

1

Note that in the setting of derived algebraic geometry, tor-independence is not necessary to
obtain a base-change result [BFN10, Proposition 3.10].

4.6 Finite duality
Using the projection formula, we can also establish finite duality.

THEOREM 4.14. Let f: X — Y be a concentrated morphism of algebraic stacks.

(i) R(fqe)s: Dge(X) = Dqe(Y') admits a right adjoint f*.
(ii) For every M € Dy (Y), there is a natural quasi-isomorphism

R(fac)«f (M) = RHomg (R(fqe)«Ox, M).
(iii) If f is affine, then for every M € Dy (Y') there is a natural quasi-isomorphism

FX(N) = fRHom: (f.0x, M),

where f* is the functor from Corollary 2.7.
(iv) If f is affine and f,Ox is perfect, then for every M € Dy (Y') there is a natural quasi-
isomorphism

F(Oy) @, f*(M) = f*(M).

In particular, f* preserves small coproducts. Moreover, f* is compatible with tor-
independent base change on Y. If in addition f is surjective, then f* is conservative.

Proof. By Theorem 2.6(iii), the functor R(fy)« preserves small coproducts. Since Dqyc(X) is well
generated [HNR14, Theorem B.1], the existence of f* follows from [NeeOlb, Proposition 1.20].
Now fix N € Dg(Y); then there are natural isomorphisms

Homg, (N, R(fqe)«f" (M)) = Homo  (LfG.N, f*(M))
= Homoy (R(fac)-L LN, M)
> Homo, ((R(fqe)+O0x) ©5, N, M)
= Homy, (N, Rﬂ{om%cy (R(fqe)+Ox, M)).

The penultimate isomorphism follows from the projection formula (Corollary 4.12). By the
Yoneda lemma, this proves (ii).

We now address (iii). Let f*: Dqc(Y) = Dgc(X) be the functor
(M) = [ RHom (f.0x,M),
where 7* comes from the equivalence of Corollary 2.7. We claim that there is a natural
transformation of functors f* = f*. To see this, let N € Dgc(X) and M € Dq(Y); then there
are natural morphisms
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N, R(fae)« [ (M)
N, RHom® (f,0x,M))

N, RHomg (Oy,M))

By the Yoneda lemma, we have the claim. Since f is affine, to prove that the natural
transformation f * = f* is an isomorphism, it is sufficient to prove that it is after application
of R(fqe)+ (Lemma 2.8). This follows from the definition of f* and (ii).

We now treat (iv). By adjunction and the projection formula (Corollary 4.12) we obtain a
natural morphism for every M € Dy (Y):

L
F(0y) ®gy Lfge(M) — f7(M).
Since f is affine, it is sufficient to prove that this morphism is an isomorphism after application

of R(fqc)« (Lemma 2.8). By (ii) and the projection formula (Corollary 4.12), we see that it is
sufficient to prove that the induced morphism

RHomg (f.0x,0y) ®g, M — RHomg (f.0x, M)

is a quasi-isomorphism for every M € Dyc(Y'). But f,Ox is perfect, so Lemma 4.3(ii) now gives
the claim.

For the compatibility of f* with base change, we consider the following tor-independent
2-cartesian diagram of algebraic stacks.

x4 .x

4

A, v

Adjointness and tor-independent base change (Corollary 4.13) provide a natural transformation
Lg'qef* = (f')*Lg;. of functors that we must show is an isomorphism. Tor-independent base
change also implies that there is a quasi-isomorphism: Lg}.R(fqc)«Ox =~ R(f.)+Lg'5Ox. Since
R(fqe)«Ox is perfect, it follows that R(f.)«Ox is perfect. By the formula just determined for
f*, we thus see that it is sufficient to prove that Lg'’.f*(Oy) — (f')*Lgi.(Oy) is a quasi-
isomorphism. Since f (and so f’) is affine, it is sufficient to verify this after application of
R(f4c)+- This observation, together with (ii) and tor-independent base change, shows that it is
sufficient to prove that the morphism

Lgéc Rj{om%cy (f*oX7 OY) - Rg{om@y/ (Lgéc(f*oX)a OY’)

is a quasi-isomorphism. But f,Ox and Lgéc( fxOx) are both perfect and so dualizable (Lemma
4.3). In particular, the derived pullback of the dual of f.Ox coincides with the dual of Lg.(f+Ox).
It follows that the asserted map is a quasi-isomorphism and the claim follows.

Finally, we address the conservativity. For this, it is sufficient to observe that if f is surjective,
then supph(f.Ox) = |Y|. But RHomg, (f«Ox,M) ~ 0 if and only if M ~ 0 (Lemma 4.9). O

COROLLARY 4.15. If f: X — Y is a finite and faithfully flat morphism of finite presentation
between algebraic stacks, then the functor

FX(M) = F RHomo, (feOx, M), where M € Dy(Y),

is right adjoint to R(fqc)x: Dgc(X) — Dqc(Y). Moreover, f* is compatible with arbitrary base
change on Y, f*(Oy) ®bX f*(—=) = f*(—), preserves small coproducts, and is conservative.
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4.7 Coherent functors
Combining the strong projection formula of Proposition 4.11 with the characterization of compact
objects in Lemma 4.5, we can prove most of Theorem D.

COROLLARY 4.16. Let A be a noetherian ring and let m: X — Spec A be a morphism of finite
type between noetherian algebraic stacks. Suppose that:

(i) for every i > 0 and M € Coh(X), the cohomology H'(Xjs.s, M) is a finitely generated
A-module (e.g., ™ proper); and
(ii) Dqc(X) is compactly generated.

Then, for every F € Dyc(X) and G € D, (X), the functor
Homo, (F,5 ®g,, Li.(—)): Mod(A) — Mod(A)
is coherent.

Proof. We begin by observing that the coherent functors Mod(A) — Mod(A) constitute a full
abelian subcategory of the category of A-linear functors, which is closed under products (where
everything is computed ‘pointwise’) [Hall4, Example 4.9]. Let T C Dq.(X) denote the full
subcategory with objects those F € Dgo(X) where the functor Homg, (F, 3 ®('5X Lrg.(=)) is
coherent for every G € D%Oh (X). In particular, T is closed under small coproducts, shifts, and
triangles. By Corollary 3.14, it is enough to prove that T contains the compact objects of D (X).
If Q € Dye(X) is compact, then the strong projection formula (Proposition 4.11) implies that
there is a natural quasi-isomorphism

RHomg, (Q,5) ®% I ~ RHomo, (Q,§ ®§, LriI).

Since Q is compact, it is perfect (Lemma 4.4(i)) and so RHome, (Q,G) € D&, (X). The
assumption on preservation of coherence implies that R(mqc)s« sends D¢, (X) to D¢, (A). In
particular, RHomg, (Q,9) =~ R(mgc)«RHomo, (Q,9) € DJCroh(A). By Lemma 4.5, we also have
RHomp, (Q,5) € D(A). Thus, the functor Homg, (Q,§ ®'(5X Lm.(—)) is coherent [Hall4,
Example 4.13] and we deduce the result. o

5. Presheaves of triangulated categories

Throughout this section we fix a small category D that admits all finite limits. Let TCat denote
the 2-category of triangulated categories. A D-presheaf of triangulated categories is a 2-functor
T: D° — TCat.

Given a morphism f: U — V in D, there is an induced pullback functor f5: T(V) — T(U).
When there is no cause for confusion, we will suppress the subscript T from fg. For any such f
(not necessarily a monomorphism), we let

Tno (V) =ker(f*: T(V) — T(U)).

We say that T has adjoints if for every morphism f: U — V in D, the pullback functor
f*:T(V) = T(U) admits a right adjoint f,: T(U) — T(V).

DEFINITION 5.1. Suppose that T is a D-presheaf of triangulated categories with adjoints.
Let f: U — V be a morphism in D and let N € T(V). We denote by njf\,: N — f.f*N the
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unit of the adjunction. A morphism g: W — V in D is T-preflat if for every cartesian square
inD

UW9L>U

fwl if

w2V

the natural transformation ¢*f. — (fw)«(gy)* is an isomorphism. A morphism g: W — V in
D is T-flat if for every morphism V' — V, the pullback ¢': W/ — V' of g is T-preflat.

Note that because monomorphisms are stable under base change, T-flat monomorphisms are
stable under base change.

Example 5.2. Let Y be an algebraic stack that is quasi-compact and quasi-separated. Let
Repfp/ Y denote the category of l-morphisms X — Y that are representable and of finite
presentation. The category Repfp/ Y is small. We have a Rep' /Y-presheaf of triangulated
categories Dyc: (Rep®/Y)° — TCat that sends X — Y to Dg(X) and a l-morphism
f: X' - X in Rep®/Y to L et Dae(X) = Dge(X'). The functor Lf;. admits a right adjoint
R(fqc)#» 80 Dgc is a presheaf with adjoints.

By Theorem 2.6(iv), if f is a flat morphism, then it is Dqc-flat. Conversely, if f: X' — X is
Dyc-flat, then f is flat. Indeed, this is local on the source and target of f, so it is sufficient to
show that if f: Spec B — Spec A is Dyc-preflat, then B is a flat A-algebra. For this, we note
that if [ is an ideal of A, then corresponding to i: Spec(A/I) — Spec A we see that there is a
quasi-isomorphism (A/I) ®Y4 B ~ (B/IB)[0]. That is, for all n > 0 and ideals I of A, we have
that Tor"y (B, A/I) = 0; hence, B is flat over A. It follows that the Dc-flat monomorphisms are
the quasi-compact open immersions [EGA, IV.17.9.1].

Ezxample 5.3. Our notion of T-flatness is not always optimal. In particular, it is weaker than
expected in the derived setting. If T is a presheaf of triangulated categories with t-structures,
then a better definition is that f is T-flat if f* is t-exact.

To illustrate this, suppose that D = SCR® is the oo-category of affine derived schemes,
that is, the opposite category to the co-category of simplicial commutative rings. Further, let
T = Mod(—) be the functor that takes a simplicial commutative ring A to the stable co-category
Mod(A) of (not necessarily connective) A-modules. Then every morphism in D is T-flat whereas

L
Spec B — Spec A is flat exactly when the pullback B ®4 —: Mod(A) — Mod(B) is t-exact.
Nevertheless, just as in the non-derived case, the finitely presented T-flat monomorphisms are

exactly the quasi-compact open immersions since every monomorphism of derived schemes is
formally étale [TVO0S, 2.2.2.5(2)].

LEMMA 5.4. Let T be a D-presheaf of triangulated categories with adjoints. Fix the following
commutative diagram in D.
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(i) Ifj is a T-preflat monomorphism in D, then the adjunction j*j. — Idgy is an isomorphism.
(i) f*: Tx\v(X) — T(W) factors through Ty w,, (W).
(iii) If the diagram is cartesian and j is J-preflat, then the functor fi: Tyrw, (W) — T(X)
factors through Tx\v (X) and is right adjoint to f*: Tx\y(X) = Tyrw,, (W).

Proof. If j: V — X is a monomorphism, then the commutative diagram

vy

Idvi, ) ¢]
VX
is cartesian, whence j*j. ~ (Idy )« (Idy)* ~ Idg(y).
By functoriality, (ii) is trivial. For (iii), given M € Ty \p, (W), then j*fiM =~
(fv)«(jw)*M =~ 0 and hence fiM € Tx\y(X). O

DEFINITION 5.5. Fix a D-presheaf of triangulated categories T with adjoints. A Mayer—Vietoris
T-square is a cartesian diagram in D:

satisfying the following three conditions:

(i) j is a T-flat monomorphism:;
(ii) the natural transformation f*j, — j,f{; is an isomorphism; and
(iii) the induced functor f*: Tx\y(X) — Txnp(X') is an equivalence of categories.

Condition (ii) for a Mayer—Vietoris T-square is satisfied if f is a J-(pre)flat morphism.
By tor-independent base change (Corollary 4.13), if T = D, then condition (ii) is satisfied
for every f.In [HR16], we will consider applications of these Mayer—Vietoris triangles to a result
of Moret-Bailly [Mor96]. For this intended application, it is essential that we permit f to be
non-flat.

Ezample 5.6. We continue with Example 5.2. Let f: X’ — X be a representable, quasi-compact,
and quasi-separated étale neighborhood of a closed subset |Z] C |X| with quasi-compact
complement |U|. Let j: U — X be the resulting quasi-compact open immersion. Then the
cartesian square

Ul #_ X/

q

J

U—

is a Mayer—Vietoris Dqc-square. To see this, it remains to prove that the functor Lf]. induces
the desired equivalence. Now the exact functor f*: Mod(X) — Mod(X’) admits an exact left
adjoint fi: Mod(X’) — Mod(X) [Sta, 03DI]. Explicitly, for M € Mod(X"), we have that fiM is
the sheafification of the presheaf

(V- X)— PMy 3 x).
¢€Homx (V,X')
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Note that the natural map M — f*fiM is an isomorphism for all M € Mod(X’) such that
J*M = 0. Also, if N € Mod(X) and j*N = 0, then the natural map fif*N — N is an
isomorphism. The exactness of the adjoint pair (fi, f*) now gives an adjoint pair on the level
of derived categories (fi, f*): D(X) = D(X’) and that the relations just given also hold on the
derived category. Next, we observe that the restriction of f* to Dyc(X) coincides with L fae- Thus,
it remains to prove that if M € Dqc(X') and L(j") .M = 0, then fiM € Dqc(X). The exactness of
fiand L(j’ ):;C shows that is sufficient to prove this result when M is a quasi-coherent sheaf such

that (j')*M = 0. Note that (U & X, X’ EN X) is an étale cover of X, j* iM = (fu)(3/)*M =0,
and f*fiM =2 M. We deduce that étale-locally fiM is quasi-coherent. By descent, fiM is
quasi-coherent and the result is proved. For a different proof in a more general context, see [HR16,
Proposition 4.2].

Example 5.7 (Etale cohomology). Let Y be an algebraic stack that is quasi-compact and
quasi-separated. Let A be a noetherian ring such that A is torsion and |A| is invertible
on Y. We have the derived category DI, (Y, A) of bounded below lisse-étale A-modules on
Y with cartesian cohomology [LMO00, 12.10]. More generally, we have a Rep/Y-presheaf of
triangulated categories D, (—, A): (Rep®/Y)° — TCat that sends X — Y to D (X, A) and
a l-morphism f: X’ — X in Rep®/Y to f*: D} (X,A) — D (X', A) [01s07, 9.16]. By
smooth base change, f, takes cartesian sheaves to cartesian sheaves, so the functor f* admits a
right adjoint Rf, [Ols07, Proposition 9.9], i.e., DI . (—, A) is a presheaf with adjoints. Moreover,
étale and smooth morphisms are D (—, A)- ﬂat.

If f: X’ - X is an étale neighborhood of |Z] C |X| as in the previous example, then
the resulting square is a Mayer—Vietoris D7, ,(— ,A)—square. Indeed, if i: Z — X is a closed
immersion for some scheme structure on Z, then ¢* and i, induce an equivalence of categories

Dot v (X A) = Dy (Z, A).

We also have a subpresheaf DI (—, A), where D (X, A) C D (X, A) consists of the objects
with constructible cohomology sheaves [LMO00, 18.6]. If Y is quasi-excellent of finite dimension,
A =7Z/NZ, and N is invertible on Y, then D} (—, A) has adjoints (Deligne-Gabber’s finiteness
theorem) and an étale neighborhood is a Mayer—Vietoris D (—, A)-square.

These results are also valid for unbounded derived categories [LZ12, 6.3.3-6.3.4].

Ezxample 5.8. Consider the following 2-commutative diagram of triangulated functors

R g
T*T Tf*
R<L 8

and assume that they all have right adjoints, which we will denote as fi, j«, T+, and j.,
respectively. Let X = ker(j*) and X' = ker(j™*). Let D be the category consisting of the following
objects and arrows.

R 1.9
rl lf
R—1-8

There is a D-presheaf of triangulated categories T with adjoints such that T(S) = § etc.
The square above is a Mayer—Vietoris T-square if and only if the following conditions are satisfied:
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/*/

(i) the natural transformations j*j, — Id and j — Id are isomorphisms;

)
(ii) the natural transformation j*f, — r.j™* is an 1somorphlsm7
(iii) the natural transformation f*j, — jir* is an isomorphism; and
)

(iv) the induced functor X — X' is an equivalence of categories.

Condition (i) implies that R = §/K, R' = 8'/K" and K, X’ are Bousfield subcategories of 8,
8’ respectively (Lemma 3.4 and [Nee0Olb, ch. 9]).

Mayer—Vietoris T-squares give rise to many nice properties. In particular, we obtain a familiar
distinguished triangle.

LEMMA 5.9. Let T be a D-presheaf of triangulated categories with adjoints. Consider the
following Mayer—Vietoris T-square in D.

v x

q

U—1sXx

(i) If N € T(X), then there is a unique map d that makes the triangle

()
e (] jow —F57k)

. . oo e d
N "L *N@ f. f*N Jef¥jsj* N —— N[1]

distinguished. Moreover, this d is functorial in N.
(ii) Let M € Txny(X') and let N € T(X). Then there is a natural bijection

Hom'.T(X)(f*M7N) = Hom‘.T(X’)(M7 f*N)

(ili) Given Ny € TJ(U), N’ € T(X'), and an isomorphism 0: j*N' — f/;Ny, define N by a
distinguished triangle in T(X):

(n]f*NU 7a)
-

NH]*NU@JC*N/ f*f*]*NU*)N[l]v

where a: fuN' — f.f*7.Ny is the composition:

* % f*
f*N/ - f*] N — f*]*fUNU = fuf Ny

Then the induced maps j*N — Ny and f*N — N’ are isomorphisms.
(iv) If N € T(X) satisties j*N € T(U)°, f*N € T(X")¢, and f};j*N € T(U')¢, then N € T(X)°.

Proof. An equivalent formulation of (i) is that

J

lnl{f lnjf*J*N
N % A )
foffN ——— = ——— fuf" "N
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is a homotopy cartesian square [NeeOlb, Definition 1.4.1] whose differential d is unique and
is functorial in N. To see that the square is cartesian, first choose C such that we have a
distinguished triangle

J

C Lo N VG N M o).
Since j is a T-flat monomorphism, j*nfv is an isomorphism (Lemma 5.4(i)). It follows that j*C' =
0, so C € ‘J'X\U(X ), and né is an isomorphism. We thus obtain the following morphism of
distinguished triangles

J
C l N Al GG N m C1]

in{V J/u m
f ol fef* (L) "ot f*
C N f«f*N —>nN fof 73N o C[1]

for some morphism u. We can certainly let u = njf* N and we will soon see that this is actually
the only possible u. On the other hand, we can choose u such that the middle square is a
homotopy cartesian square by the octahedral axiom [NeeOlb, Lemma 1.4.3]. After applying j,.j*
to the middle square and adjoining to it the natural square relating v and j.j*u, we obtain the
following commutative diagram.

. Je3"m} o T .

jei*N s juj N = juj*N

lj*j*m{r , iju’*u | J{u
JeJ Je "N ——— 53" [ [ 9" N <———— [ [" "N

Since j is a T-flat monomorphism, the horizontal maps are all isomorphisms and it follows that

u = njf* j+n- Moreover, it is readily verified that the induced differential
d:=11]o (nf) o fuof*m: fuf*juj*N — NI

J
is independent of the choice of the triangle C LN VLR jj*N 5 C[1]. The functoriality of the
Mayer—Vietoris triangle now follows from the construction. Finally, to show that d is unique, if
d': fof*5.j*N — NJ[1] is another morphism that makes a distinguished triangle, then there is
an induced morphism of distinguished triangles as follows.

N —>j.j*N & fuf*N — fuf*juj* N 41— N[1]
|

f
Y d

It remains to show that 6 is the identity morphism. Splitting up the sum in the middle square,
we obtain the following commutative diagram.

Fo ) o
J«f*N ~ T 9xJ* N
|
L Tl .
fof N4N>f*f*3*] N
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Applying j.j* to this diagram, we may append another square on the right to obtain the
commutative diagram

. G dtf oy o Thefr i .
Jed* Fo N = 5" o " N <= fof*5.5*N

|0 ls

o N - i T £ ju i N i kN
JxJ* fef JeJ [ g N =———— fu [ js]

where the horizontal arrows are isomorphisms. It follows that 6 is the identity.

To obtain the isomorphism in (ii), first note that by the definition of a Mayer—Vietoris
square, the co-unit f*f,M — M is an isomorphism since M € ‘J'X/\U/(X’ ). This gives us a
natural isomorphism

Ged* Fe Fr 0y

Homg(xn (M, f*N) = Homg(x (f* f« M, f*N) = Homg(x)(f M, f f*N).

Now apply the homological functor Homg(x)(f«M, —) to the triangle N — j.j*N @ f. f*N —
fef*jej*N from (i). Since j*fuM =~ 0, we obtain an isomorphism Homgx)(f«M,N) =
Homg(x)(f«M, f«f*N) and the result follows.

For (iii), the natural maps v;: j*N — Ny and vy: f*N — N’ are obtained by adjunction
from the maps v;-/: N — j.Ny and v}/: N — f.N' in the defining triangle of N. The defining
triangle exhibits N as a homotopy pullback. We may thus find a morphism of distinguished

triangles as follows [NeeOlb, Lemma 1.4.4] (octahedral axiom).

C N— "7 Ny ol
|+ [#n,
c N £ PNy o)

Since j is a T-flat monomorphism, we have that j*« is an isomorphism, so 7*C = 0. It follows
that j*v;/: J*N — j*j«Ny is an isomorphism and hence that v;: j7*N — Ny is an isomorphism
(Lemma 5.4(1)).

Now, by (i), we have the following morphism of distinguished triangles.

N —>jj*N & fuf 'N — fuf*juj* N —= N[1]
|
lj*vj@fwf g

A

As before, it follows that § = f. f* j,v; by considering the application of j,j* to the middle square.
Since v; is an isomorphism, it follows that fivy is an isomorphism. Now, if we let W be a cone
of vy, then f,W ~ 0. We will be done if we can show that j*vs is an isomorphism. Indeed, it
would then follow that j*W ~ 0 and so W ~ f*f,W ~ f*0 ~ 0. To this end, since the following
diagram commutes:

j,*f*N J"vs j/*N/

canl \L(S
' fovs
R A
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and all appearing morphisms except j”vy are known to be isomorphisms, it follows that j™ vy is
an isomorphism.

For (iv), let h € {j, f,j o fu}. Since h* admits a right adjoint, it commutes with small
coproducts. Thus, if {Q} is a set of objects of T(X), then

P Hom(N, h.h*Q») = €D Hom(h* N, h*Q,)
A A
=~ Hom <h*N, @h*QA>
A

=~ Hom <h*N, h* (@QA) )
A

=~ Hom <N, hoh* (@QQ >
A

The result now follows by consideration of the Mayer—Vietoris triangles associated to @) and
P, @, together with the long exact sequence given by the homological functor Hom(N, —). O

In the following definition, we axiomatize the required properties of open immersions of
algebraic stacks.

DEFINITION 5.10. Let T be a D-presheaf of triangulated categories with adjoints. Let £ be a
collection of morphisms in D. We say that £ supports T if it satisfies the following five conditions:
(i) if j: U — X belongs to £, then j is a T-flat monomorphism;
(ii) if j: U — V is an isomorphism, then j belongs to £;
(iii) if j: U - V and k: V — X belong to £, then k o j belongs to £L;
)

(iv) if j: U — X belongs to £ and f: X’ — X is a morphism in D, then the induced morphism
j': U xx X' — X' belongs to £; and

(v) ifi: U —- X and j: V — X belong to £, then there exists a commutative diagram

UnNnv — v

bl

U ‘U UV

where k belongs to £, and the square is a Mayer—Vietoris T-square.
Note that UNV =U xx V.

Ezample 5.11. We continue Example 5.6. Let J be the collection of morphisms in Rep® /Y that
are open immersions. By Example 5.6 and standard arguments, J supports Dgc.

We now have a straightforward lemma.

LEMMA 5.12. Let T be a D-presheaf of triangulated categories with adjoints. Let £ be a collection
of morphisms in ‘D that supports T. If i: U — X and j: V — X belong to £, then:
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(1) Tx\ouv(X) = Tx\u(X) NTx\v(X); and
(ii) there is an exact sequence of triangulated categories:

Txwov (X) = Txw (X) = Tpnpav (U).

Proof. (i) Certainly, we have Tx\puy(X) C (keri*) N (ker j*). For the other inclusion, let
M € (keri*) N (kerj*). If k: U UV — X denotes the morphism induced by Definition 5.10(v),
then k*M € T(U U V). Now let k: UNV — U UV denote the induced morphism. There is a
triangle in T(U UV):

M — 1.0k M © 3,7k M — k& kM.
Functoriality induces isomorphisms 7*k* ~ ¢*, 7*k* ~ 5*, and k' k* ~ Jirt*. By hypothesis, * M
and j*M vanish, so the triangle gives k*M =~ 0. Hence, M € Tx\yuy (X).

(ii) Lemma 5.4(ii) shows that the functor i*: Tx\y (X) — T(U) factors through Tin gy (U)
and the kernel is (keri*) N (kerj*) = Tx\puy(X) by (i). Also, Lemma 5.4(iii) shows that
iv: Tnounv(U) — Tx\p(X) is a right adjoint to i* and Lemma 5.4(i) shows that the
natural transformation ¢*i, — Id is an isomorphism. It follows that the sequence is exact by
Lemma 3.4. O

6. Descent of compact generation

For this section we fix a small category D that admits all finite limits. We also fix a collection £
of morphisms in D.

DEFINITION 6.1. An admissible (£, D)-presheaf of triangulated categories is a D-presheaf T of
triangulated categories with adjoints (§5) satisfying:

(i) for all X € D, the triangulated category T(X) is closed under small coproducts;

(ii) for all (f: X — Y) € D, the pushforward f,: T(X) — T(Y) preserves small coproducts;
and

(iii) £ supports T (Definition 5.10).

Ezample 6.2. We continue Example 5.11: Dy is an admissible (J, Rep?/Y)-presheaf of
triangulated categories. Indeed, the only non-trivial condition is that f, preserves small
coproducts, which follows from Theorem 2.6(iii) since representable morphisms are concentrated.

DEFINITION 6.3. Let /3 be a cardinal and let X € D. We say that an admissible (£, D)-presheaf
of triangulated categories T is compactly generated with L-supports by [ objects at X if for every
j: V — X in £ the triangulated category T x\y (X) is generated by a set of cardinality <3 whose
elements have compact image in T(X).

In practice, D will often contain an initial object @ and, for every X € D, it will be the case
that (# — X) € £ and T(#) ~ 0. Hence, in this situation, T(X) = Tx\3(X) is also compactly
generated by a set of cardinality <. Also, observe that if 8 is a finite cardinal, then T can
always be compactly generated with supports by one object at X. In this section we will give
conditions on 7 that guarantee that the condition of compact generation with L-supports by 3
objects descends along certain morphisms and diagrams in D.

Our first result is of an elementary nature and is similar to the arguments of Toén [Toél2,
Lemma 4.11]. First we require a definition.
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DEFINITION 6.4. Let T be an admissible (£, D)-presheaf of triangulated categories. A morphism
f: X' — X in D is T-quasi-perfect with respect to L if the following three conditions are satisfied:

(i) fis T-flat (Definition 5.1);
(i) if P € T(X')¢, then f,P € T(X)®;
(iii) f. admits a right adjoint f* such that for every j: V' — X in L, the restriction of f* to
Tx\v(X) factors through Txnyy  x(X').

By Example 3.8, a potentially easy way to verify condition (ii) above is for f* to preserve
small coproducts. To verify condition (iii) above, it is sufficient to prove the following: for every
j:V— X in L, if j/: V' — X' is the pullback of j along f and fi,: V' — V is the projection to
V, then f, and (fy)« both admit right adjoints and the natural transformation j™f* — fJsj*
is an isomorphism of functors.

Ezample 6.5. We continue with Example 6.2. If qg: W' — W is a finite and faithfully flat
morphism of finite presentation, then g is Dqc-quasi-perfect with respect to J (Corollary 4.15).
In [HR15, Appendix A], we prove that if g: W’ — W is a proper, smooth, and locally schematic
morphism of noetherian algebraic stacks, then ¢ is Dqc.-quasi-perfect with respect to J.

We now have the first important result of this section.

PROPOSITION 6.6. Let 8 be a cardinal. Let T be an admissible (£,D)-presheaf of triangulated
categories. Let f: X' — X be a morphism in D that is T-quasi-perfect with respect to L.
If the functor f* (which exists because f is T-quasi-perfect) is conservative and T is compactly
generated with L-supports by 3 objects at X', then T is compactly generated with L-supports
by B objects at X. In fact, if j: V — X belongs to £, let V' = X’ xx V and let B C T(X")*N
Txnv/(X') be a subset of cardinality < 8 generating Txny+(X'); then f.B" C T(X)*NTx\y(X)
and f.B' generates Tx\y (X).

Proof. Tt suffices to prove the latter assertion. Set B = f, B’ = {f,P : P € B'}. Then B has
cardinality < 3, and B C Tx\y(X) by Lemma 5.4(iii). Moreover, B C T(X)¢, since f is T-quasi-
perfect with respect to £. It remains to show that B generates Tx\y(X). Let N € Tx\y(X)
satisfy Homg(x)(f«P[n], N) = 0 for all P € B" and all n € Z. Since f is T-quasi-perfect with
respect to £, it follows that f*N € Txny/(X'). As B’ is generating for Txny/(X'), we may
conclude that f*N =~ 0. By assumption, f* is conservative. Thus, N ~ 0 and B generates
(‘TX\V(X)- O

Our next descent result is deeper, relying on Thomason’s localization theorem 3.12. First,
however, we require a lemma.

LEMMA 6.7. Let 8 be a cardinal. Let T be an admissible (£,D)-presheaf of triangulated
categories. Suppose that T is compactly generated with L-supports by 8 objects at X € D.
Let W — V and V — X belong to £. Then the following hold:

(i) Tx\w(X) is closed under small coproducts and the subcategory Tx\y(X) € Tx\w (X) is
localizing;

(ii) Tx\v(X) is the localizing envelope of a set of compact objects of Tx\w (X); and
(i) Tx\v (X)° = Txaw (X)° N Ty (X).
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Proof. First, observe that J(X) is closed under small coproducts. Also, if f: X' — X is a
morphism in D, then f* admits a right adjoint, so f* preserves small coproducts. Hence, we
see that T\ x/(X) is a localizing subcategory of T(X). In particular, Tx\ x/(X) is closed under
small coproducts. The claim (i) is now immediate.

By hypothesis, Tx\1/(X) is generated by a subset R that has compact image in T(X)
and hence also in Tx\y(X). Let R C Tx\p(X) denote the localizing envelope of R; then
R C Tx\v(X). Applying Corollary 3.14 to R C Tx\(X), we find that R = Tx\(X), proving
(ii). The claim (iii) is now an immediate consequence of (ii) and Thomason’s theorem 3.12. O

PROPOSITION 6.8. Let 8 be a cardinal. Let T be an admissible (£, D)-presheaf of triangulated
categories. Consider a Mayer—Vietoris T-square (Definition 5.5)

Ul #_ X/

q

J

U———

with j € L. If T is compactly generated with L£-supports by 3 objects at U and X', then T is
compactly generated with L-supports by [ objects at X.

Proof. Let V — X belong to £. Form the following cartesian cube.

unv /V’
el VR
| Lf
fu vnvV —|—sv
/ J X/

By Lemma 5.12, we have an exact sequence

{‘TX’\U’UV’ (X/) — TX’\V’(X/) — “TU’\U’OV'(U/)’ (61)

The category Txny+(X') is compactly generated and, by Lemma 6.7(i), it is also closed
under small coproducts. By Lemma 6.7(ii), the subcategory Txnruy+(X') C Txnyr(X') is the
localizing envelope of a set of compact objects of Txny- (X").

Now let P € T(U)° N Tpnpnv(U). Then fiP € T(U')¢ since (fy)« preserves coproducts
(Example 3.8) and ff; P € Tynpray(U') (Lemma 5.4(ii)). Thus, f; P € Tynpay(U')¢ by Lemma
6.7(iii). We now apply Thomason’s localization theorem, in the form of Corollary 3.13, to the
exact sequence (6.1). This gives us P’ € Txny/(X')¢ = T(X')*NTxnp7(X') and an isomorphism
J*P" >~ f;(P & P[1]). As in Lemma 5.9(iii), form the following triangle in T(X):

P — j (P& Pl))® P — f.f"j.(P @ P[1]).

By Lemma 5.9((iii),(iv)), we have that j*P ~ P& P[1] and f*P ~ P’ and that P € T(X)°¢. Since
§:5* P, fof*P and fif*joj* P € Ty\y(X), it follows that P € Ty (X).

Now let @ € Txnpruy/(X') and note that f.@Q € Tx\puy(X) (Lemma 5.12(i)). Moreover,
[ fi@Q — Q is an isomorphism, because f* : Tx\y(X) — Txny/(X') is an equivalence of
categories. We also have that j*f.Q ~ 0 and j™*f*f.Q ~ 0. Thus, if in addition Q € T(X")¢,
then f.Q € T(X)¢ by Lemma 5.9(iv).
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By hypothesis, there is a subset Bo € T(U)° N Tpnprv(U) (respectively By € T(X')¢N
Txnpruv (X)) of cardinality <A generating Ty pny (U) (respectively Txn gy (X')). Define

B={P:PecBlU{f.Q:Q¢c B}

If B is infinite, then the cardinality of B is <f and, if § is finite, then the same is true of B.
By the above considerations, B C T(X)° N Tx\y(X) and it remains to show that B generates

Tx\v (X).

Let M € Tx\y(X), so that f*M € Txny/(X') and j*M € Tpnpyav(U). Suppose
that Homg(x)(f«Q[n], M) = 0 for all @ € B; and all n € Z. By Lemma 5.9(ii), we see that
Homg(x) (Q[n], f*M) = 0 for all Q € B and all n € Z. Let K be a cone of f*M — jij™f*M.
Note that

Homg(x+)(Q[n], 7™ f*M) = Homg(x+) (5 Q[n], 7 f* M) = 0,
so Homg(x (Q[n], K) = 0. Since K € Txn v (X') and By is generating, we see that K ~ 0, so
that fof*M — fojlj™f*M ~ f.f*j.j*M is an isomorphism. From the Mayer—Vietoris triangle
M — 3.5°M @ fof*M — fof*jj"M, we deduce that the natural map M — j,j*M is an
isomorphism for all such M.

Now suppose that M also satisfies Homg( x) (P[n], M) =0 for all P € By and n € Z. Since the
natural map M — j.j*M is an isomorphism, it follows that Homg( (j*Pln],7*M) = 0 for all
P € By and n € Z. By Lemma 5.9(iii), j*P ~ P & P[1] and so Homg g7y (P[n], j*M) = 0 for
all P € By and all n € Z. By assumption, By generates T\ pyny (U) and thus j*M ~ 0. Since
M =~ j.j*M =~ 0, we deduce that B generates Tx\y (X). O

We are now in a position to prove the main technical result of the article.

THEOREM 6.9. Let X be a quasi-compact and quasi-separated algebraic stack. Let D be
Rep®/X or one of the full subcategories Rep™ 5P /X or Rep¢“*P /X Let J denote the
set of open immersions in D. Let T be a presheaf of triangulated categories on D. Assume that:

(i) T(W) is closed under small coproducts for all W € D;
(ii) for every morphism f: Wy — Wy in D, the pullback f*: T(Wy) — T(W1) admits a right
adjoint f, that preserves small coproducts;
(iii) for every cartesian square in D

UWQL>U

fwl J{f
w—2-v
such that g is flat, the natural transformation g* f. — (fw)«(gv)* is an isomorphism;
(iv) for every open immersion U — W and étale neighborhood f: W' — W of W\U, the
pullback f* induces an equivalence Ty (W) — Ty g (W');
(v) for every finite faithfully flat morphism W' — W of finite presentation, the functor

fo: TW') — T(W) admits a right adjoint f* that preserves small coproducts, is
conservative, and commutes with pullback along open immersions.

Let € C D be the collection of all objects W such that for every separated étale morphism
q: W' — W in D and every open immersion V' — W' inJ, the triangulated category Ty y+(W')
is generated by a set of cardinality < 8 whose elements have compact image in T(W").
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Ifp: W — X is a separated, quasi-finite, and faithfully flat morphism in D such that W € C,
then X € C.

Proof. Condition (ii) says that T has adjoints. Condition (iii) says that flat morphisms are
JT-flat. Conditions (iii) and (iv) imply that étale neighborhoods are Mayer—Vietoris squares.
In particular, J supports 7. Combining this with conditions (i) and (ii), we conclude that T is
an admissible (J, D)-presheaf of triangulated categories.

By assumption, there exists an object W € € with W — X separated, quasi-finite, and
faithfully flat. We will apply [Ryd11, Theorem 6.1] to deduce that X € €. To do this, we need
to verify the following three conditions for a flat morphism ¢: W’ — W in D:

(D1) if W € € and ¢ is étale and separated, then W' € C;
(D2) if W’ € € and q is finite and surjective, then W € €; and

(D3) if ¢ is an étale neighborhood of W\U, where U — W is an open immersion in D, and U
and W’ belong to €, then W € C.

Now (D1) tautologically follows from the definition of €. For (D2), condition (v) implies that
p is T-quasi-perfect with respect to J. By Proposition 6.6, we deduce that (D2) is satisfied.
As noted previously, conditions (iii) and (iv) imply that étale neighborhoods are Mayer—Vietoris
T-squares. By Proposition 6.8, (D3) is satisfied. The result follows. O

7. Algebraic stacks with the 3-resolution property

Let X be an algebraic stack. Recall that X is said to have the resolution property if every
quasi-coherent O x-module M is a quotient of a direct sum of locally free Ox-modules of finite
type. The resolution property is a subtle and difficult property, although it is always satisfied
for quasi-projective schemes. It has been studied systematically by several authors, with notable
contributions due to Thomason [Tho87], Totaro [Tot04], and Gross [Grol0, Grol7].

The following simple refinements of the resolution property will be useful for us. Let
VB(X) C QCoh(X) denote the subcategory of locally free Ox-modules of finite type. Let (5
be a cardinal. We say that X has the S-resolution property if there exists a subset B C VB(X)
of cardinality </ with the property that every quasi-coherent Ox-module M is a quotient of a
direct sum of elements of B. If, in addition, it can be arranged that B consists of vector bundles
that are compact objects of Dqc(X), then we say that X has the compact -resolution property.

If X is concentrated, then every locally free O x-module of finite type is a compact object of
Dgc(X) (Lemma 4.4(iii)). In particular, if X also has the S-resolution property, then X has the
compact [-resolution property. Since quasi-compact and quasi-separated schemes and algebraic
spaces are concentrated, the compact [-resolution property and the [-resolution property
coincide for schemes and algebraic spaces.

The following simple lemma will be important.

LEMMA 7.1 [Grol7, Proposition 1.8(v)]. Let f: X — Y be a quasi-affine morphism of algebraic
stacks. Let B be a cardinal. If Y has the [-resolution property or the compact (-resolution
property, then so does X.

Proof. If B C VB(Y) is a resolving set of cardinality g, then f*B = {f*E : E € B} is a
resolving set of cardinality §. Indeed, f* is right-exact and f*f.M — M is surjective for every
M € QCoh(X). In addition, if B consists of compact objects of Dyc(Y'), then f*B consists of
compact objects in Dy (X) (Example 3.9). O
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Remark 7.2. Similarly, there is the following partial converse: if f: X — Y is finite and faithfully
flat of finite presentation and X has the [-resolution property or the compact [-resolution
property, then so does Y. In this case, one takes f,B as the resolving set and uses that f, is
right-exact and that f,f'M — M is surjective [Grol7, Proposition 1.13]. But f' = f* preserves
coproducts (Corollary 4.15), so f, preserves compact objects (Example 3.8).

PROPOSITION 7.3. Let X be an algebraic stack. If X is quasi-affine, then X has the 1-resolution
property. If X is quasi-compact and quasi-separated with affine stabilizer groups, then the
following are equivalent:

(i) X has the Ng-resolution property;
(ii) X has the resolution property; and
(ii) X =[V/GL,z|, where V is a quasi-affine scheme.

When these conditions hold, X has affine diagonal.

Proof. The first statement follows from the fact that Ox € QCoh(X) is a generator if X is
quasi-affine. Trivially, (i) = (ii). That (ii) = (iii) is Totaro’s theorem [Tot04, Grol7]. Finally,
to see that (iii) == (i), it is enough to prove that BGL, 7 has the RNg-resolution property
since X — BGL, 7 is quasi-affine. That BGL,, 7 has the resolution property is a special case
of [Tho87, Lemma 2.4]: every coherent sheaf on BGL, 7 is a quotient of a finite-dimensional
subrepresentation of a finite number of copies of the regular representation. Since there is a
countable number of vector bundles on BGL,, 7z, the Rg-resolution property holds.

The last statement follows since [V/GLj, 7] has affine diagonal. O

Question 7.4. Every algebraic stack that admits a finite flat cover V' — X with V' quasi-affine has
the compact 1-resolution property by Remark 7.2. Are all stacks with the (compact) 1-resolution
property of this form? Is every algebraic space with the 1-resolution property quasi-affine?

Many quotient stacks have the resolution property.

Ezample 7.5. Let S = Spec R be a regular scheme of dimension at most 1 (e.g., R=7Z or R is
a field). Let G — S be a flat affine group scheme of finite type and let V' be an algebraic space
with an action of G. Then X = [V/G] has the resolution property in the following cases [Tot04,
Theorem 2.1].

(i) V is quasi-affine.

(ii) V is normal, noetherian, and has an ample family of line bundles (e.g., V' is quasi-projective)
and G is an extension of a finite flat group scheme by a smooth group scheme with connected
fibers (this is automatic if R is a field).

(iii) V has an ample family of G-equivariant line bundles (e.g., V' is quasi-projective and G is
acting linearly).

For (i), use that BGg has the resolution property [Tho87, Lemma 2.4] and Lemma 7.1.
For (ii), use [Tho87, Lemmas 2.10 and 2.14] and for (iii) use [Tho87, Lemma 2.6]. Note that
in (ii) it is crucial that V' is normal to apply Sumihiro’s theorem [Sum?75, Theorem 1.6] and
deduce that sufficiently high powers of the line bundles carry a G-action. In fact, this is false
otherwise (cf. [Tot04, §9]) and whether X has the resolution property in this case is not known in
general. Alternatively, we could assume that V is a quasi-projective scheme with a linear action
of G, as in [BFN10, Corollary 3.22].
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LEMMA 7.6. Let X be a quasi-compact and quasi-separated algebraic stack. The following
conditions are equivalent.

(i) X has the compact (-resolution property.

(ii) X has the (-resolution property and there exists a vector bundle F' such that supp(F) = X
and F is a compact object of Dgc(X).

(iii) There are a vector bundle F' on X that is a compact object of Dy.(X) and a subset
B C VB(X) of cardinality < /3 such that the set {F ® E}pcn generates QCoh(X).

(iv) There are a subset B C VB(X) of cardinality < 3 that generates QCoh(X) and an integer
r > 0 such that Exty, (E,N) =0 for alli > r, all E € B, and all N € QCoh(X).

(v) There are a subset B C VB(X) of cardinality < [ that generates QCoh(X) and an integer
r 2 0 such that the natural map

72/RHomg . (F, M) — 72/RHomg  (E,7777"M)
is a quasi-isomorphism for all integers j, all E € B, and all M € D (X).

Proof. (i)=(ii): there is a surjection F' — Ox with F' a vector bundle on X that is compact in
Dqc(X). Note that supp(F) = X.

(il)=-(iii): if € € VB(X) is a resolving set of vector bundles, then so is the set {F ® F" ®
E}gce. Indeed, the evaluation map F @ FV — Ox is surjective. We take B = {FY ® E}gee.

(iii)=-(iv): for all 7, all E € B, and N € QCoh(X), we have EX‘C%X (F® E,N) = ExthX(F,
EY® N). Now choose r > 0 as in Lemma 4.5 for F'. An identical argument gives (iii)=(v). Also,
(v)=>(iv) is trivial.

(iv)=(i): immediate from Lemma 4.5. O

8. Crisp stacks

In this section we define S-crisp stacks and show that the compact S-resolution property implies
[B-crispness.
DEFINITION 8.1. Let 8 be a cardinal. Let X be an algebraic stack. We say that X satisfies the

B-Thomason condition if:

(i) Dge(X) is compactly generated by a set of cardinality < §; and

(ii) for every quasi-compact open immersion j: U — X, there exists a perfect object P of
Dyc(X) with support X\U.

We say that X is 8-crisp if for every representable, étale, separated, and quasi-compact morphism
X’ — X the stack X’ satisfies the 3-Thomason condition.

By Lemmas 4.10 and 8.2, an equivalent definition for [-crispness is that for every

representable étale morphism W — X that is quasi-compact and separated, and every quasi-
compact open immersion j: U — W, the triangulated category

Deejwi | (W) = {M € Dgo(W) : j*M ~ 0}

is generated by a set of cardinality < § consisting of compact objects of Dgc(W).
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LEMMA 8.2. Let f: X — Y be a quasi-affine morphism of algebraic stacks. Let 5 be a cardinal.
If Dy (Y') is compactly generated by [ objects, then so is Dyc(X). In fact, if B C Dqo(Y)¢ is a
subset that generates Dqc(Y'), then the set {Lfs.B : B € B} compactly generates Dqc(X).

Proof. Since f is concentrated, R(fqc)« preserves small coproducts. Since R( fqc)« is conservative
(Corollary 2.8), the result follows from Example 3.11. O

Remark 8.3. We do not know if the analogue of Lemma 8.2 holds for the S-Thomason condition
or even f3-crispness.

The main result of this section is the following.

ProPOSITION 8.4. Let X be a quasi-compact algebraic stack with affine diagonal. Let 8 be
a cardinal. If X has the compact (-resolution property, then it is (-crisp. In particular,
concentrated stacks with the [-resolution property are [-crisp. In fact, Dyc(X) is compactly
generated by any resolving set of compact vector bundles.

Proof. By Lemma 7.1, the compact [-resolution property is preserved under quasi-affine
morphisms. By Zariski’s main theorem [LMO00, Théorém 16.5], étale morphisms that are quasi-
compact, separated, and representable are quasi-affine. Thus, it is enough to prove the following
statement: if j: V — X is a quasi-compact open immersion with complement |Z|, then there
exists a generating subset B|z C D7 (X), of cardinality < 8, with compact image in Dgc(X).

Choose a resolving set B C VB(X) of cardinality <  and an integer r > 0 as in Lemma
7.6(v). Let M € Dyc(X). We claim that if n € Z is such that H"(M) # 0, then there exist
an E € B and a non-zero morphism E[—n] — M in Dq.(X). We prove this claim by a small
modification (which is likely well known, e.g., [DG13, Remark 1.2.10]) to the argument of Neeman
[Nee96, Example 1.10].

Thus, for all E € B, all n € Z, and all M € Dy.(X), we have

Homg, (E, M[n]) = Homg, (E, 72" Mn]).

We may consequently assume that M € D(J{C(X ). By [Lur04, Theorem 3.8], the natural functor
D*(QCoh(X)) — D{.(X) is an equivalence of triangulated categories. Hence, we are free to

assume that M is a complex (--- — MF d—k> M*F+1 — ...} of quasi-coherent Ox-modules.
By assumption, H"(M) # 0, so there exist F € B and a morphism E — ker(d") such that
E — ker(d") — H"(M) is non-zero. The composition E — ker(d") — M" thus induces a
non-zero morphism E — M |n] in Dq.(X) and we deduce the claim.

We now return to the proof of the proposition. The above considerations show that the set
B compactly generates Dqc(X). Now let i: Z — X be a closed immersion with support |Z|.
Since X has the resolution property and j: V — X is quasi-compact, we may choose i such
that the quasi-coherent ideal sheaf I defining Z in X is of finite type. It follows that there is a
surjection F' — I, where F is a finite direct sum of objects of B. Corresponding to the morphism
s: F'— Ox, we obtain a section s¥ € I'(X, F'V) with vanishing locus | Z|. If K(s") is the resulting
Koszul complex [FL85, IV.2], then K (s") is a perfect complex on X with support |Z|. By Lemma
4.10(ii), we deduce the claim. O

We conclude this section with examples of algebraic stacks that are crisp.

Example 8.5. Let A be a ring. Then Spec A is 1-crisp. Indeed, Spec A has the 1-resolution
property and is concentrated; thus, the result follows from Proposition 8.4.
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Ezample 8.6. Let X be a concentrated stack with affine stabilizers and the resolution property.
Then X has the Ry-resolution property and affine diagonal (Proposition 7.3) and hence is Rg-crisp
(Proposition 8.4).

Examples are stacks of the form X = [V/G], where V and G are as in Example 7.5 and either
S = Spec(Q) or G is linearly reductive (e.g., a torus). Indeed, under these assumptions on G, the
classifying stack BG is concentrated, so X is concentrated since X — BG is representable. More
generally, we can take any stack X = [V/G] as in Example 7.5 with linearly reductive stabilizers.
Such stacks are concentrated by [HR15, Theorem C].

Remark 8.7. Let X be a quasi-compact algebraic stack with affine diagonal and the resolution
property. When X is concentrated, Dqc(X) is compactly generated (Proposition 8.4) and Dgc(X)
is an example of a unital algebraic stable homotopy category [HPS97, Definition 1.1.4]. Note that
the localizing envelope of a set of compact generators is the whole category (Corollary 3.14).

The proof of Proposition 8.4 actually shows that even if X is not concentrated, then
D(QCoh(X)) is perfectly generated. Note that since D(QCoh(X)) may not be compactly
generated, Corollary 3.14 does not apply. Nonetheless, D(QCoh(X)) is well generated [NeeOla,
Theorem 0.2] and there is a version of Corollary 3.14 for well-generated triangulated
categories [NeeOlb, Theorem 1.14]. This result and others are also discussed in [AJPV17].
Thus, D(QCoh(X)) is a non-algebraic stable homotopy category in the sense of [HPS97,
Definition 1.1.4]. Note that this says nothing about perfect or compact generation of Dyc(X),
because the functor D(QCoh(X)) — Dqc(X) can fail to be fully faithful or essentially surjective
(e.g., if X = BG, in positive characteristic [HNR14]). Compact generation of Dq.(X), however,
is sufficient to prove that D(QCoh(X)) — Dgc(X) is an equivalence [HNR14].

9. Quasi-finite flat locality of 3-crispness and applications

We are now in a position to prove Theorems A—C and address the applications mentioned in the
Introduction.

Proof of Theorem C. Take D = Repfp/X. By Examples 5.2, 5.6, 6.2, and 6.5, the D-presheaf
of triangulated categories Dy satisfies conditions (i)—(v) of Theorem 6.9. The result now follows
from Lemma 4.10 and Theorem 6.9. o

Proving Theorems A and B is now very simple.

Proof of Theorem A. By [Rydl1l, Theorem 7.1], there exists a locally quasi-finite flat morphism
p: X' — X, where X’ is a scheme. Since X is quasi-compact, we may further assume that
X'’ is an affine scheme, and consequently the morphism p is also quasi-compact and separated.
The result now follows by combining Example 8.5 with Theorem C. O

Proof of Theorem B. Since X is of s-global type, there exist an integer N > 0, a quasi-affine
Q-scheme V' with an action of GLy, together with an étale, representable, separated, and
finitely presented morphism p: [V/ GLy] — X. Now the result follows from Theorem C and
Example 8.6. O

We now recall some results of Sumihiro and Brion.

PROPOSITION 9.1 (Sumihiro and Brion). Let X be a variety over a field k. Let G be an affine
algebraic k-group scheme acting on X. Assume that X is either:
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(i) geometrically normal; or
(ii) quasi-projective and:

(a) geometrically seminormal; or
(b) chark =p > 0; or

(c) the action is linearizable; or
(d) GY is a torus.

Then there exist a finite field extension k' /k, a quasi-projective variety W' over k' with a linear
action of G' = (G ®y k')?ed, and an étale G'-equivariant morphism f: W' — X,..

Proof. Choose a finite field extension k’/k such that X’ = X xj k' is normal (respectively
seminormal, respectively G’ is smooth, respectively G’ is a split torus). By construction, G’ is
then a smooth connected group scheme.

If X’ is normal, then, by Sumihiro’s theorem, we can choose f as a Zariski-open covering
[Sum74, Lemma 8] (see [Sum75, Theorem 3.8] when k is not algebraically closed, or replace k
with a finite field extension). If X’ is seminormal and quasi-projective, then an étale f exists by
Brion [Bril5, Theorem 4.7]. If char k > 0, then an étale f exists by [Bril5, §4.3]. If the action
is already linearizable, then let f be the identity. If G’ is a split torus, then an étale f, with W’
affine, exists by [Bril5, Theorem 4.8]. O

In [AHR15, Theorem 2.6], it is proved that if G acts with linearly reductive stabilizers
at closed points (e.g., if G is linearly reductive), then the result of Proposition 9.1 holds for
any algebraic space of finite type (not necessarily normal, quasi-projective, or even separated).
In particular, if G° is a torus, we may drop the requirement that X is quasi-projective.

The corollary of Theorem B is a special case of the following.

COROLLARY 9.2. Let (X,G,k) and (W',G', k') be as in Proposition 9.1. Then:

(i) [W'/G'] has the resolution property;
(ii) the map [W'/G'] - [X'/G'] — [X/G] is quasi-finite and faithfully flat; and
(iii) [X/G] is of s-global type.

If in addition, chark = 0 or (G ®j, E)?ed is a torus, then:

(iv) [W'/G'] is concentrated and Ro-crisp;
(v) D(QCohg (X)) = Dyc([X/G]) is compactly generated; and

(vi) for every G-invariant open subset U C X, there exists a compact perfect G-equivariant
complex with support exactly X\U.

Proof. (i) is Example 7.5(iii), (ii) is by construction, and (iii) follows from (ii) and [Ryd15,
Proposition 2.8(iii)]. Under the additional assumption on k& and G, we have that BG' is
concentrated [HR15, Theorem B] and hence so is [IW'/G'] and (iv) follows from Proposition 8.4.
It follows that [X/G] is Np-crisp by Theorem C. We always have that QCohg(X) =
QCoh([X/G]) and we have that D(QCoh([X/G])) = Dqc([X/G]) since Dqc([X/G]) is compactly
generated [HNR14]. O

Ezample 9.3 (Brauer groups). Let X be a quasi-compact algebraic stack with quasi-finite and
separated diagonal. Let o € H%(X, G,,) be an element of the (bigger) cohomological Brauer group
and let X denote the G,,-gerbe corresponding to «. Since X has quasi-finite diagonal, there exists
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a quasi-finite flat presentation p: X’ — X such that X’ is affine and p*a = 0. Indeed, recall that
X admits a quasi-finite flat presentation ¢: U — X by an affine scheme [Ryd15, Theorem 7.1]
and then we may trivialize ¢*« by a further surjective étale morphism of schemes. In particular,
X xx X' = X' x BG,, has the resolution property and is cohomological affine. It follows that
Dge(X xx X') and Dgc(X) have countable sets of compact generators by Proposition 8.4 and
Theorem C.

Let D = Rep®/X and let T = D(QCoh®(—)) be the presheaf of derived categories of
a-twisted sheaves. Then the conditions of Theorem 6.9 are satisfied. Indeed, there is a canonical
decomposition Dyc(X xx T') = D(QCoh(X xx T')) = D,z D(QCoh™?(T")) which is respected by
pullbacks.! Since Dy (X x x —) satisfies conditions (i)—(v) of Theorem 6.9, so does 7.

Thus, D(QCoh®(X’)) = D(QCoh(X')) = Dqc(X’) is compactly generated by one object with
supports. It follows that D(QCoh®(X)) is compactly generated by one object with supports
(Theorem 6.9). The endomorphism algebra of this object, in a dg-enhancement of D(QCoh® (X)),
is a derived Azumaya algebra [Toé12].

Alternatively, one could argue as follows. Take the degree-one part of the compact generators
of Dge(X). This gives a countable generating set {F;} of compact objects in Dg.(X). For
sufficiently large n > 0, the direct sum P := @;_, P; gives a compact object that locally
generates Dg.(X). Indeed, since Dg.(X') = Dq(X') and X' is affine, it is sufficient that
supph(p*P) = | X'| (Lemma 4.9). This compact local generator P is enough to produce a derived
Azumaya algebra [Toé12, Proposition 4.6].

This latter argument also works for any quasi-compact and quasi-separated algebraic stack
X such that Dgc(X) has a set of compact generators. In this case, take p: X’ — X as a smooth
presentation by an affine scheme such that p*o = 0. By [AHR15, Theorem 2.26], Dgyc(X) is
compactly generated for any algebraic stack X of finite type over a field, with affine diagonal,
and linearly reductive stabilizers at closed points. We can thus conclude that for such X, every
cohomological Brauer class comes from a derived Azumaya algebra.

Ezample 9.4 (Sheaves of linear categories on derived stacks). Let (X,0x) be a derived (or
spectral) Deligne-Mumford stack. The O-truncation (X, 79O x) is an ordinary Deligne-Mumford
stack with the same underlying topos X. In fact, even for a non-connective E,.-algebra A,
the category of étale A-algebras is equivalent to the category of étale myA-algebras [Lurl6a,
Theorem 7.5.0.6].

Let F € QStk(X) be a quasi-coherent stack on X [Lurlla, §8], e.g., FF = QCoh(X). For
every object U in the small étale topos of X, this gives an O x (U)-linear oo-category F(U). Let
hF be the presheaf of triangulated categories that assigns to each étale U — X the homotopy
category of F(U). Compact generation of F'(U) is a statement about its homotopy category
[Lurl6a, Remark 1.4.4.3]. Moreover, since the conditions (i)—(v) of Theorem 6.9 can all be verified
étale-locally, it follows that Theorem 6.9 can be applied to hF to deduce compact generation of
F(X) from local compact generation of F'.
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Appendix A. Generators from above

Let w: W — X be an étale, separated, finitely presented, and representable morphism of
algebraic stacks. Define

P (w) = {R(wee)xR(tge)« P : (u: U — W) € RepP P /I and P € Dy (U)}

and let P(w) C Dge(X) be the smallest thick subcategory of Dgc(X) containing P’(w). The
following lemma, requested by Neeman, is a natural generalization to algebraic stacks of a result
that has found applications to Grothendieck duality for schemes [Neel4, Lemma 3.1].

LEMMA A.1. Let w: W — X be an étale, separated, finitely presented, representable, and
surjective morphism of algebraic stacks. If X is quasi-compact and quasi-separated and Dqc(X)
is compactly generated, then

Dge(X)¢ C P(w).

Proof. Let @ C Rep™®*P /X be the subcategory with objects those V such that Dge(V)¢ C
P(W xx V — V). Note that if W xx V — V admits a section, then it is clear that V' € C.
In particular, it follows immediately that W € C. Now we will prove that X € € using [Ryd11,
Theorem 6.1]. To do this, we need to verify the following three conditions for a morphism
v: V' — V in Rep¢"*P /X

(D1) if V € €, then V' € €;

(D2) if V' € € and v is finite and surjective, then V € €; and

(D3) if v is an étale neighborhood of V\U, where j: U — V is an open immersion in
Rep™¢“*P /X and U and V' belong to €, then V € €.

For (D1), Lemma 8.2 and Theorem 3.12 imply that Dg.(V’)¢ is the smallest thick subcategory
of Dqc(V') containing Lvg.Q, where Q € Dge(V)¢. A simple argument involving flat base change
(Theorem 2.6(iv)) and the preservation of compact objects under concentrated morphisms
(Example 3.9) now shows that V' € €. For (D2), Proposition 6.6 and Theorem 3.12 imply
that Dgc(V)¢ is the smallest thick subcategory of Dgyc(V') containing the collection of complexes
R(vqe)«@, where @ € Dgc(V')¢. The property now follows from the trivial observation that

{R(vge)sM : M € P(W xx V' = V)} CP(W xx V = V).

For (D3), we note that the Mayer—Vietoris triangle of Lemma 5.9(i) implies that if P € Dy (V)¢,
then there is a distinguished triangle

P — R(jqe)«Ljge P @ R(fae)sLfqeP = R(fqe)«LfocR(Jge)«Lige P — P[1].

Since LfiR(jge)« =~ R(jie)sLf qer where j': U = U xy V! — V' and f': U’ — U are the

c qe’
projections, it follows immediately that Dqy.(V)¢ is contained in the smallest thick subcategory

of Dgce(V') containing the objects:

~ {R(Jge)sM : M € P(W xx U — U)};
— {R(fqe)sM : M € P(W xx V' — V')}; and
~ {R((f 0 ")qe)eM : M € P(W xx U’ — U")}.

But all the objects above are contained in P(W x x V' — V') and the claim follows. Since W € C,
we may now conclude that X € C. |

2364

https://doi.org/10.1112/50010437X17007394 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007394

PERFECT COMPLEXES ON ALGEBRAIC STACKS

REFERENCES

AJPV17

Alp13

AHR15

Ant14

AG14

Aus66

Beh03
BFN10

BLS16

BN93

BVdB03

Bral4d

Brilb
CS16

deJO3

DG13

DM12

EGA

FL85

Gab81

GR17

Grol0

L. Alonso Tarrio, A. Jeremias Lépez, M. Pérez Rodriguez and M. J. Vale Gonsalves, On the
derived category of quasi-coherent sheaves on an Adams geometric stack, J. Pure Appl. Algebra
(2017), doi:10.1016/j.jpaa.2017.05.009, to appear, available online.

J. Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013),
2349-2402.

J. Alper, J. Hall and D. Rydh, A Luna étale slice theorem for algebraic stacks, Preprint (2015),
arXiv:1504.06467.

B. Antieau, A local-global principle for the telescope conjecture, Adv. Math. 254 (2014),
280-299.

B. Antieau and D. Gepner, Brauer groups and étale cohomology in derived algebraic geometry,
Geom. Topol. 18 (2014), 1149-1244.

M. Auslander, Coherent functors, in Proc. conf. on categorical algebra (La Jolla, CA, 1965)
(Springer, New York, 1966), 189-231.

K. Behrend, Derived l-adic categories for algebraic stacks, Mem. Amer. Math. Soc. 163 (2003).

D. Ben-Zvi, J. Francis and D. Nadler, Integral transforms and Drinfeld centers in derived
algebraic geometry, J. Amer. Math. Soc. 23 (2010), 909-966.

D. Bergh, V. A. Lunts and O. M. Schniirer, Geometricity for derived categories of algebraic
stacks, Selecta Math. (N.S.) 22 (2016), 2535-2568.

M. Bokstedt and A. Neeman, Homotopy limits in triangulated categories, Compos. Math. 86
(1993), 209-234.

A. Bondal and M. Van den Bergh, Generators and representability of functors in commutative
and noncommutative geometry, Mosc. Math. J. 3 (2003), 1-36; 258.

M. Brandenburg, Tensor categorical foundations of algebraic geometry, PhD thesis, Wilhelms-
Universitdt Miinster (2014), p. 243.

M. Brion, On linearization of line bundles, J. Math. Sci. Univ. Tokyo 22 (2015), 113-147.

A. Canonaco and P. Stellari, Uniqueness of dg enhancements for the derived category of a
Grothendieck category, J. Eur. Math. Soc. (2016), to appear.

A. J. de Jong, A result of Gabber, Preprint (2003), p. 9, available at
http://www.math.columbia.edu/~dejong/.

V. Drinfeld and D. Gaitsgory, On some finiteness questions for algebraic stacks, Geom. Funct.
Anal. 23 (2013), 149-294.

U. V. Dubey and V. M. Mallick, Spectrum of some triangulated categories, J. Algebra 364
(2012), 90-118.

A. Grothendieck, Eléments de géométrie algébrigue, Publ. Math. Inst. Hautes Etudes Sci. 4,
8, 11, 17, 20, 24, 28, 32 (1960, 1961, 1961, 1963, 1964, 1965, 1966, 1967).

W. Fulton and S. Lang, Riemann—Roch algebra, Grundlehren der mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 277 (Springer, New
York, 1985).

O. Gabber, Some theorems on Azumaya algebras, in The Brauer group (séminaire, Les Plans-
sur-Bex, 1980), Lecture Notes in Mathematics, vol. 844 (Springer, Berlin—New York, 1981),
129-209.

D. Gaitsgory and N. Rozenblyum, A study in derived algebraic geometry: Volume I:
correspondences and duality, Mathematical Surveys and Monographs, vol. 221 (American
Mathematical Society, Providence, RI, 2017).

P. Gross, Vector bundles as generators on schemes and stacks, PhD thesis, Heinrich-Heine-
Universitat Diisseldorf (2010).

2365

https://doi.org/10.1112/50010437X17007394 Published online by Cambridge University Press


https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
https://doi.org/10.1016/j.jpaa.2017.05.009
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.arxiv.org/abs/1504.06467
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
http://www.math.columbia.edu/~dejong/
https://doi.org/10.1112/S0010437X17007394

Grol7

Hal14
Hall6
Hall7
HNR14

HR15

HR16

HR17
Har98
HPS97

KS06

Kri09

LOO08

LMO0

Lie04

Lip09

LNO7
LZ12

Lur04
Lur09

Lurlla

Lurllb

Lurl6a
Lurl6b
Mor96

Nee92a

Nee92b

J. HALL AND D. RyDH

P. Gross, Tensor generators on schemes and stacks, Algebr. Geom. 4 (2017), arXiv:1306.5418,
to appear.

J. Hall, Cohomology and base change for algebraic stacks, Math. Z. 278 (2014), 401-429.
J. Hall, The Balmer spectrum of a tame stack, Ann. K-Theory 1 (2016), 259-274.
J. Hall, Openness of versality via coherent functors, J. reine angew. Math. 722 (2017), 137-182.

J. Hall, A. Neeman and D. Rydh, One positive and two negative results for derived categories
of algebraic stacks, Preprint (2014), arXiv:1405.1888v2.

J. Hall and D. Rydh, Algebraic groups and compact generation of their derived categories of
representations, Indiana Univ. Math. J. 64 (2015), 1903-1923.

J. Hall and D. Rydh, Mayer—Vietoris squares in algebraic geometry, Preprint (2016),
arXiv:1606.08517.

J. Hall and D. Rydh, The telescope conjecture for algebraic stacks, J. Topol. 10 (2017), 776-794.
R. Hartshorne, Coherent functors, Adv. Math. 140 (1998), 44-94.

M. Hovey, J. H. Palmieri and N. P. Strickland, Aziomatic stable homotopy theory, Mem. Amer.
Math. Soc. 128 (1997).

M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332 (Springer, Berlin,
2006).

A. Krishna, Perfect complexes on Deligne—Mumford stacks and applications, J. K-Theory 4
(2009), 559-603.

Y. Laszlo and M. Olsson, The siz operations for sheaves on Artin stacks. 1. Finite coefficients,
Publ. Math. Inst. Hautes Etudes Sci. 107 (2008), 109-168.

G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge., vol. 39 (Springer, Berlin, 2000).

M. Lieblich, Moduli of twisted sheaves and generalized Azumaya algebras, PhD thesis,
Massachusetts Institute of Technology, ProQuest LLC, Ann Arbor, MI (2004).

J. Lipman, Notes on derived functors and Grothendieck duality, in Foundations of Grothendieck

duality for diagrams of schemes, Lecture Notes in Mathematics, vol. 1960 (Springer, Berlin,
2009), 1-259.

J. Lipman and A. Neeman, Quasi-perfect scheme-maps and boundedness of the twisted inverse
image functor, lllinois J. Math. 51 (2007), 209-236.

Y. Liu and W. Zheng, Enhanced siz operations and base change theorem for Artin stacks,
Preprint (2012), arXiv:1211.5948.

J. Lurie, Tannaka duality for geometric stacks, Preprint (2004), arXiv:math/0412266, p. 14.

J. Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170 (Princeton University
Press, Princeton, NJ, 2009).

J. Lurie, Derived algebraic geometry XI: descent theorems, Preprint (2011),
http://www.math.harvard.edu/~lurie/.

J. Lurie, Derived algebraic geometry XII: proper morphisms, completions, and the Grothendieck
existence theorem, Preprint (2011), http://www.math.harvard.edu/~lurie/.

J. Lurie, Higher algebra, Preprint (2016), http://www.math.harvard.edu/~lurie/.
J. Lurie, Spectral algebraic geometry, Preprint (2016), http://www.math.harvard.edu/~lurie/.
L. Moret-Bailly, Un probléme de descente, Bull. Soc. Math. France 124 (1996), 559-585.

A. Neeman, The chromatic tower for D(R), Topology 31 (1992), 519-532; with an appendix
by Marcel Bokstedt.

A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh
and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. Ec. Norm. Supér.
(4) 25 (1992), 547-566.

2366

https://doi.org/10.1112/50010437X17007394 Published online by Cambridge University Press


http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1306.5418
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1405.1888v2
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1606.08517
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/1211.5948
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.arxiv.org/abs/math/0412266
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
https://doi.org/10.1112/S0010437X17007394

Nee96
NeeOla
NeeOlb

Neell
Neeld

Ols07
Ryd11
Ryd15

SGAG6

Sta

Sum74
Sum75
Tho87

Tho97

TT90

Toél2
TVO08

Tot04

PERFECT COMPLEXES ON ALGEBRAIC STACKS

A. Neeman, The Grothendieck duality theorem wvia Bousfield’s techniques and Brown
representability, J. Amer. Math. Soc. 9 (1996), 205-236.

A. Neeman, On the derived category of sheaves on a manifold, Doc. Math. 6 (2001), 483-488;
(electronic).

A. Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148 (Princeton
University Press, Princeton, NJ, 2001).

A. Neeman, Non-left-complete derived categories, Math. Res. Lett. 18 (2011), 827-832.

A. Neeman, An improvement on the base-change theorem and the functor f', Preprint (2014),
arXiv:1406.7599.

M. Olsson, Sheaves on Artin stacks, J. reine angew. Math. 603 (2007), 55-112.

D. Rydh, Etale dévissage, descent and pushouts of stacks, J. Algebra 331 (2011), 194-223.

D. Rydh, Noetherian approzimation of algebraic spaces and stacks, J. Algebra 422 (2015),
105-147.

P. Berthelot, A. Grothendieck and L. Illusie (eds), Théorie des intersections et théoréme de
Riemann—Roch, in Séminaire de géométrie algébrique du Bois-Marie 1966-1967 (SGA 6),
Lecture Notes in Mathematics, vol. 225 (Springer, Berlin, 1971); with the collaboration of
D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud, and J. P. Serre.

The Stacks Project Authors, Stacks project, http://stacks.math.columbia.edu.

H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28.

H. Sumihiro, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975), 573-605.

R. W. Thomason, FEquivariant resolution, linearization, and Hilbert’s fourteenth problem over
arbitrary base schemes, Adv. Math. 65 (1987), 16-34.

R. W. Thomason, The classification of triangulated subcategories, Compos. Math. 105 (1997),
1-27.

R. W. Thomason and T. Trobaugh, Higher algebraic K-theory of schemes and of derived

categories, in The Grothendieck festschrift, Vol. III, Progress in Mathematics, vol. 88
(Birkh&user, Boston, MA, 1990), 247-435.

B. Toén, Derived Azumaya algebras and generators for twisted derived categories, Invent. Math.
189 (2012), 581-652.

B. Toén and G. Vezzosi, Homotopical algebraic geometry. 1I. Geometric stacks and applications,
Mem. Amer. Math. Soc. 193 (2008).

B. Totaro, The resolution property for schemes and stacks, J. reine angew. Math. 577 (2004),
1-22.

Jack Hall jackhall@math.arizona.edu

Department of Mathematics, University of Arizona,
Tucson, AZ 85721-0089, USA

David Rydh dary@math.kth.se

Department of Mathematics, KTH Royal Institute of Technology,
SE-100 44 Stockholm, Sweden

2367

https://doi.org/10.1112/50010437X17007394 Published online by Cambridge University Press


http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://www.arxiv.org/abs/1406.7599
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
https://doi.org/10.1112/S0010437X17007394

	1 Quasi-coherent sheaves on algebraic stacks
	1.1 Hypercoverings and simplicial sites
	1.2 Operations in unbounded categories of modules
	1.3 Direct and inverse images
	1.4 Comparison with definitions in derived algebraic geometry

	2 Concentrated morphisms of algebraic stacks
	3 Triangulated categories
	4 Perfect complexes, projection formulas, and finite duality
	4.1 Perfect complexes
	4.2 Compact complexes
	4.3 Supports and generation
	4.4 Projection formula
	4.5 Tor-independent base change
	4.6 Finite duality
	4.7 Coherent functors

	5 Presheaves of triangulated categories
	6 Descent of compact generation
	7 Algebraic stacks with the β-resolution property
	8 Crisp stacks
	9 Quasi-finite flat locality of β-crispness and applications
	Acknowledgements
	Appendix A  Generators from above
	References



