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Abstract. Weprove that themultiplicityofan arbitrarydominantweight foran irreduciblehighest
weight representation of the af¢ne Kac^Moody algebra A�1�r is a polynomial in the rank r. In the
process we show that the degree of this polynomial is less than or equal to the depth of theweight
with respect to the highest weight. These results allow weight multiplicity information for small
ranks to be transferred to arbitrary ranks.
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Introduction

The irreducible highest weight representations of af¢ne Kac^Moody algebras have
played an increasingly important role in diverse areas of mathematics and physics.
When its level is positive, such a representation is in¢nite-dimensional. It is
parameterized by a dominant integral highest weight and has ¢nite-dimensional
weight spaces. The formal character of such a representation records the
multiplicity of each weight, and the well-known Weyl^Kac character formula ([K2,
p. 173]) provides a precise expression for the character. The character formula
involves a sum over the Weyl group in both its numerator and denominator which
makes it impractical for explicitly computing multiplicities. However, when the
character formula is applied to the one-dimensional trivial representation, it gives
the denominator identity, and from the denominator identity Peterson [P] has
derived Freudenthal- type recursive formulas for calculating root and weight
multiplicities. These formulas enabled Kass, Moody, Patera, and Slansky [KMPS]
to develop tables of weight multiplicities for certain weights of low level irreducible
highest weight representations for af¢ne Kac^Moody algebras having rank less
than 8.
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In 1987 while analyzing the weight multiplicities of the irreducible highest weight
representations of the untwisted classical af¢ne Kac^Moody algebras, Benkart and
Kass (see [BK]) conjectured certain polynomial behavior for the weight
multiplicities of these representations and introduced the notion of a `rank-zero
string function'. The conjectures were con¢rmed in [BKM2] for any irreducible
highest weight representation of the af¢ne Kac^Moody algebras A�1�r for weights
having depth W 2. In fact, in [BKM2] the multiplicities of such weights were given
by explicit polynomials whose coef¢cients involve Kostka numbers. However, it
seems to be very dif¢cult to extend the methods of [BKM2], which were based
on the root multiplicity formula for Kac^Moody algebras obtained in [Ka2]
and the representation theory of sl�r� 1;C�, to prove the conjecture for arbitrary
depths.

In this paper, we adopt a completely different approach to prove that the
multiplicity of an arbitrary dominant weight for an irreducible highest weight
representation of the af¢ne Kac^Moody algebra A�1�r is a polynomial in the
rank r. Although the precise degree of these polynomials is not determined
in this work, an upper bound is obtained for the degree, and this upper bound
coincides with the degree conjectured by Benkart and Kass (see [BKM2], Con-
jecture A).

Brie£y, our argument proceeds as follows: Let L�l� denote the irreducible highest
weight A�1�r -module with highest weight l �Pr

i�0 aiLi ÿmd, where L0;L1; . . . ;Lr

are the fundamental weights and d is the null root. We consider the minimal graded
Lie algebra L with local part L�l� � A�1�r � L��l�, where L��l� is the ¢nite dual space
of L�l� (see Section 2). Then L is isomorphic to the inde¢nite Kac^Moody algebra
ĝ associated to the Cartan matrix Â � �ai;j�i;j�ÿ1;0;1;...;r, whose ¢rst column consists
of the entries 2, ÿa0, ÿa1, � � �, ÿar. When the ¢rst row and the ¢rst column of
Â are deleted, the result is the Cartan matrix of the af¢ne Kac^Moody algebra
A�1�r . Now any weight m of L�l� can be viewed as a root in ĝ, and its multi-
plicity as a root of ĝ is the same as its multiplicity as a weight of L�l�. We use
Peterson's recursive root multiplicity formula in conjunction with a tricky
inductive argument to establish the polynomial behavior of the dominant weights
of L�l�.

In a sequel to this paper [BKLS], weights for the other classical af¢ne algebras
are shown to exhibit polynomial behavior. The A�1�r case requires special treat-
ment because its Dynkin diagram is a cycle, so we address that case separately
in this work. The proof of the polynomial conjecture permits much of the in-
formation in [KMPS] to be extended to arbitrary ranks, and it provides a means
of relating string functions for various algebras. A better understanding of
the polynomial nature of the multiplicities for more general sequences of
Kac^Moody algebras (beyond the af¢ne cases treated here and in [BKLS]) would
allow results about multiplicities for af¢ne algebras to be transferred to
hyperbolic and inde¢nite Kac^Moody algebras, where only very limited infor-
mation is currently known.
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1. A¤ne Weight Lattice and the Conjecture

Suppose that I � f0; 1; . . . ; rg, and let A � �ai;j�i;j2I be the af¢ne Cartan matrix of
type A�1�r :

A �

2 ÿ1 0 0 � � � 0 ÿ1
ÿ1 2 ÿ1 0 � � � 0 0
0 ÿ1 2 ÿ1 � � � 0 0
0 0 ÿ1 2 � � � 0 0
..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 0 � � � 2 ÿ1
ÿ1 0 0 0 � � � ÿ1 2

0BBBBBBBB@

1CCCCCCCCA
: �1:1�

Let h be a vector space overC with a basis fh0; h1; . . . ; hr; dg. De¢ne linear functionals
ai 2 h� (i 2 I) by

ai�hj� � aj;i for j 2 I; ai�d� � di;0: �1:2�

Then the triple �h;P � faij i 2 Ig;P_ � fhij i 2 Ig� provides a realization of the
matrix A in the sense of [K2, Chap. 1]. The Kac^Moody algebra g associated with
the af¢ne matrix A is the af¢ne Kac^Moody algebra of type A�1�r . We denote by
ei, fi, hi �i 2 I� and d the generators of the algebra g. The subalgebra g0 of g generated
by ei, fi, hi (i � 1; . . . ; r) is a ¢nite-dimensional simple Lie algebra of type Ar which is
isomorphic to the Lie algebra sl�r� 1;C� of �r� 1� � �r� 1� complex matrices of
trace zero.

Let c � h0 � h1 � � � � � hr. Then �c; x� � 0 for all x 2 g, and c is the canonical
central element of g. Note that fh1; . . . ; hr; c; dg forms another basis of h. Since
the matrix A is symmetric, there is a nondegenerate symmetric bilinear form on
h which satis¢es

�hijhj� � ai;j for i; j � 1; . . . ; r;

�hijc� � �hijd� � 0 for i � 1; . . . ; r;

�cjc� � �djd� � 0; �cjd� � 1:
�1:3�

De¢ne linear functionals Li 2 h� �i 2 I� and d 2 h� by

Li�hj� � di;j; Li�d� � 0;
d�hj� � 0; d�d� � 1 for j 2 I :

�1:4�

Then d can be expressed as d � a0 � a1 � � � � � ar: It is easy to see that
fL0;L1; . . . ;Lr; dg and fL0; a0; a1; . . . ; arg are both bases of the complex vector space
h�, and

ai � ÿLiÿ1 � 2Li ÿ Li�1 � di;0d �i mod r� 1�: �1:5�

The af¢ne weight lattice P of integral weights is de¢ned to be
P � ZL0 � ZL1 � � � � � ZLr � Zd; and the elements of P� � fl 2 Pj l�hi�X 0
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for all i 2 Ig are the dominant integral weights for the algebra g. For l; m 2 P, we say
that m is related to l, which we denote by m � l, if lÿ m 2 Q, where Q �Lr

i�0 Zai is
the root lattice. For example, if m 2 P is a weight of the irreducible highest weight
module L�l� over g with highest weight l 2 P, then lÿ m 2 Q� �

Lr
i�0 ZX 0ai,

and hence m is related to l.
Let l be a positive integer. A dominant integral weight l 2 P� is said to have level l

if l�c� � l. The weight l can be uniquely expressed in the form

l � a0L0 � a1L1 � � � � � arLr ÿmd; �1:6�
where m 2 Z and ai 2 ZX 0 for i � 0; 1; . . . ; r. Since c � h0 � h1 � � � � � hr, we have

l�c� � a0 � a1 � � � � � ar � l: �1:7�

Let m 2 P be an integral weight and suppose m is related to l. We write

m � b0L0 � b1L1 � � � � � brLr ÿ nd; �1:8�
where n 2 Z and bi 2 Z for i � 0; 1; . . . ; r, and we set di � bi ÿ ai �i 2 I�. Since m is
related to l, we can write m � lÿPr

i�0 kiai for some ki 2 Z �i � 0; 1; . . . ; r�.
Therefore, since ai�c� � 0 for all i, we must have

m�c� � b0 � b1 � � � � � br � l;

which implies

d0 � d1 � � � � � dr � 0: �1:9�

Using the linear system

m�hj� � aj ÿ
Xr
i�0

kiaj;i � bj for j � 0; 1; . . . ; r;

m�d� � ÿmÿ k0 � ÿn;
�1:10�

we can solve for the ki's to obtain

k0 � nÿm;

ki � nÿm� di�1 � 2di�2 � � � � � �rÿ i�dr ÿ �rÿ i � 1� N
r� 1

for i � 1; . . . ; r;

�1:11�

where N � d1 � 2d2 � � � � � rdr. In particular,

kr � nÿmÿ N
r� 1

2 Z:

Thus

N � d1 � 2d2 � � � � � rdr � 0 mod r� 1: �1:12�
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Conversely, suppose m �Pr
i�0 biLi ÿ nd 2 P is an integral weight with bi 2 Z

�i 2 I� and n 2 Z which satis¢es (1.9) and (1.12) for di � bi ÿ ai �i 2 I�. Then we
can write m � lÿPr

i�0 kiai, where the ki are given by (1.11). Hence m is related
to l. Therefore, we obtain:

PROPOSITION 1.13.Let l �Pr
i�0 aiLi ÿmd �ai 2 ZX 0;m 2 Z� be a dominant inte-

gral weight of level l, and let m �Pr
i�0 biLi ÿ nd 2 P �bi 2 Z; n 2 Z� be an integral

weight. Then m is related to l if and only if

d0 � d1 � � � � � dr � 0;
d1 � 2d2 � � � � � rdr � 0 mod r� 1;

�1:14�

where di � bi ÿ ai �i 2 I�.

Now ¢x a positive integer l and a dominant integral weight l of level l given by
(1.6). Since l�c� � a0 � a1 � � � � � ar � l, there must be a gap in the expression (1.6)
for l if rX l. That is, there exist nonnegative integers s and t with s� tW r such that

asÿ1 6� 0; arÿt�1 6� 0; as � as�1 � � � � � arÿt � 0: �1:15�

The viewpoint we adopt here is that the weight l is completely determined by the
following data: (i) an s-tuple of nonnegative integers a � �a0; a1; . . . ; asÿ1� with
asÿ1 6� 0, (ii) a t-tuple of nonnegative integers a0 � �arÿt�1; arÿt�2; . . . ; ar� with
arÿt�1 6� 0, and (iii) an integer m. Note that this determining data is independent
of r. Thus, dominant integral weights will be regarded as the same for all rX l pro-
vided they have the same determining data. It is important to observe that a different
choice of gap in expression (1.6) yields a different weight. For example, consider
l � 2L2 � L4 ÿ d when r � 5. If we take s � 5 and t � 0, then the determining data
for l is a � �0; 0; 2; 0; 1�, a0 � ;, m � 1, and l can be written as
l � 2L2 � L4 ÿ d for all rX 5. On the other hand, we can choose a different gap
by taking s � 3, t � 2. In this case, the determining data for l is a � �0; 0; 2�,
a0 � �1; 0�, m � 1, and l can be expressed as l � 2L2 � Lrÿ1 ÿ d for all rX 5.

Suppose the dominant integral weight l is given by the determining data
a � �a0; a1; . . . ; asÿ1�, a0 � �arÿt�1; arÿt�2; . . . ; ar�, and m. Let m �Pr

i�0 biLi ÿ nd
�bi 2 ZX 0; n 2 Z� be a dominant integral weight of level l. Then m�c� �
b0 � b1 � � � � � br � l, and if rX l, there must be a gap in the expression (1.8)
for m. Moreover, if rX l � s� t, then the gap of l is suf¢ciently large that there
exists a gap of m which overlaps the gap of l. As a result, we can associate
determining data b � �b0; b1; . . . ; bs0ÿ1�, b0 � �brÿt0�1; brÿt0�2; . . . ; br�, and n 2 Z to
m, where bs0ÿ1 6� 0, brÿt0�1 6� 0, and s0, t0 are nonnegative integers satisfying
s0 � t0W r, s� t0W r, and s0 � tW r. Hence, if we let p � max�s; s0� and
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q � max�t; t0�, the weights l and m share a common gap:

ap � ap�1 � � � � � arÿq � 0;
bp � bp�1 � � � � � brÿq � 0:

�1:16�

(Note that pW rÿ t and sW rÿ q.)
From now on we assume that rX l � s� t. If m is related to l for in¢nitely many

values of rX l � s� t, then the congruence equation (1.14) holds for all those values
of r. Hence,

N � d1 � 2d2 � � � � � rdr
� ÿd1 � 2d2 � � � � � �pÿ 1�dpÿ1

�ÿ
ÿ ÿqdrÿq�1 � �qÿ 1�drÿq�2 � � � � � 2drÿ1 � dr

��
� �r� 1�ÿdrÿq�1 � drÿq�2 � � � � � dr

� �1:17�

is divisible by r� 1 for all such values of r, which implies

d1 � 2d2 � � � � � �pÿ 1�dpÿ1 � qdrÿq�1 � � � � � 2drÿ1 � dr: �1:18�

We now de¢ne

dl�m� � nÿmÿ �d1 � 2d2 � � � � � �pÿ 1�dpÿ1�
� nÿmÿ �qdrÿq�1 � � � � � 2drÿ1 � dr�;

�1:19�

and refer to dl�m� as the depth of m with respect to l. It follows from (1.11) and (1.19)
that

ki �

di�1 � 2di�2 � � � � � �pÿ i ÿ 1�dpÿ1 � dl�m�
for i � 0; 1; . . . ; pÿ 2;

dl�m� for i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1;
�i ÿ �rÿ q� 1��drÿq�1 � � � � � 2diÿ2 � diÿ1 � dl�m�

for i � rÿ q� 2; . . . ; rÿ 1; r:

8>>>>>><>>>>>>:
�1:20�

For i � 0; 1; . . . ; r, let mi � ki ÿ dl�m�, and de¢ne m0 � lÿPr
i�0 miai. Then

m � m0 ÿ dl�m�d and dl�m0� � 0. Note that m�hi� � m0�hi� � bi for all i �
0; 1; . . . ; r. By (1.20), we obtain

mi �

di�1 � 2di�2 � � � � � �pÿ i ÿ 1�dpÿ1
for i � 0; 1; . . . ; pÿ 2;

0 for i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1;
�i ÿ �rÿ q� 1��drÿq�1 � � � � � 2diÿ2 � diÿ1

for i � rÿ q� 2; . . . ; rÿ 1; r:

8>>>>>><>>>>>>:
�1:21�

In particular, the values of mi's do not depend on r.
To summarize the above discussion, we have
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PROPOSITION 1.22. Let l 2 P� be a dominant integral weight of level l > 0 with
determining data a � �a0; a1; . . . ; asÿ1�, a0 � �arÿt�1; arÿt�2; . . . ; ar�, and m 2 Z.
Assume that rX l � s� t and that m is a dominant integral weight of level l with
determining data b � �b0; b1; . . . ; bs0ÿ1�, b0 � �brÿt0�1; brÿt0�2; . . . ; br�, and n 2 Z such
that s0 � t0W r, s� t0W r, and s0 � tW r. If m is related to l for in¢nitely many values
of rX l � s� t, then m can be uniquely written as m � m0 ÿ dl�m�d, where dl�m�
and m0 � lÿPr

i�0 miai are determined by (1.19) and (1.21) for
di � bi ÿ ai �i 2 I�, and dl�m0� � 0.

The following lemma plays an important role in proving our main theorem
(Theorem 3.4).

LEMMA 1.23. Let l 2 P� be a dominant integral weight of level l > 0 with
determining data

a � �a0; a1; . . . ; asÿ1�; a0 � �arÿt�1; arÿt�2; . . . ; ar�; and m 2 Z:

Assume that rX l � s� t. Let m 2 P� be a dominant integral weight of level l with
determining data b � �b0; b1; . . . ; bs0ÿ1�, b0 � �brÿt0�1; brÿt0�2; . . . ; br�, and n 2 Z such
that s0 � t0W r; s� t0W r, and s0 � tW r. Let t 2 P� be a dominant integral weight
of level l with determining data

c � �c0; c1; . . . ; cs00ÿ1�; c0 � �crÿt00�1; crÿt00�2; . . . ; cr�; n0 2 Z

satisfying s00 � t00W r; s� t00W r, and s00 � tW r. If mW tW l, then dl�t�W dl�m�.
Proof. By Proposition 1.22, m and t can be expressed as follows:

m � lÿ
Xr
i�0

miai ÿ dl�m�d;

t � lÿ
Xr
i�0

m0iai ÿ dl�t�d:

The condition tX m implies

tÿ m �
Xr
i�0
�mi ÿm0i�ai � �dl�m� ÿ dl�t��d 2 Q�: �1:24�

Since aj � 0 for all j � s; s� 1; . . . ; rÿ t, we have

d 0j � cj ÿ aj � cj X 0 for all j � s; s� 1; . . . ; rÿ t: �1:25�

Let p � max�s; s0�; q � max�t; t0�; x � max�s; s00�, and y � max�t; t00�. Recall that
xW rÿ t and sW rÿ y, and assume that i 2 fsÿ 1; s; . . . ; rÿ t; rÿ t� 1g. It suf¢ces
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to consider the following three cases:

�i� sÿ 1W iW xÿ 2; �ii� xÿ 1W iW rÿ y� 1; �iii� rÿ y� 2W iW rÿ t� 1:

If sÿ 1W iW xÿ 2, then since xW rÿ t, it follows from (1.21) and (1.25) that

m0i � d 0i�1 � 2d 0i�2 � � � � � �xÿ i ÿ 1�d 0xÿ1 X 0:

If xÿ 1W iW rÿ y� 1, then by (1.21) m0i � 0. Finally, if rÿ y� 2W iW rÿ t� 1,
then because sW rÿ y, (1.21) and (1.25) yield

m0i � �i ÿ �rÿ y� 1��d 0rÿy�1 � � � � � 2d 0iÿ2 � d 0iÿ1 X 0:

Therefore, m0i X 0 for all i � sÿ 1; s; . . . ; rÿ t; rÿ t� 1. In particular, since pX s,
qX t, we conclude that m0i X 0 for all i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1.

Observe that in (1.24) the coef¢cient of ai in tÿ m for i � pÿ 1; p; . . . ; rÿ q;
rÿ q� 1 is

ÿm0i � dl�m� ÿ dl�t�X 0: �1:26�
Since m0i X 0 for i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1, it must be that dl�t�W dl�m�. &

The following is a more detailed formulation of a conjecture presented in [BK].

CONJECTURE. Let l 2 P� be a dominant integral weight of level l > 0 with
determining data a � �a0; a1; . . . ; asÿ1�, a0 � �arÿt�1; arÿt�2; . . . ; ar�, and m 2 Z.
Assume that rX l � s� t� 2, and let L�l� be the irreducible highest weight module
over the af¢ne Kac^Moody algebra g of type A�1�r with highest weight l. Let
m 2 P� be a dominant integral weight of level l with determining data
b � �b0; b1; . . . ; bs0ÿ1�, b0 � �brÿt0�1; brÿt0�2; . . . ; br�, and n 2 Z such that s0 � t0W r,
s� t0W r, and s0 � tW r. Suppose that m is related to l for in¢nitely many values
of rX l � s� t� 2. If m is a weight of the g-module L�l� for some
r0 X l � s� t� 2, then it is a weight of L�l� for all rX r0, and the multiplicity of
m in L�l� is given by a polynomial in r of degree dl�m�. If dl�m� < 0, then the multiplicity
of m in L�l� is zero.

In Section 3, we will prove a weaker version of the above conjecture. We will show
that the multiplicity of m in L�l� is given by a polynomial in r of degree W dl�m�. Our
approach is to apply Peterson's formula to a certain inde¢nite Kac^Moody algebraL
which will be constructed in the next section.

2. The Inde¢nite Kac^Moody Algebra L

Recall that the Cartan subalgebra h of the af¢ne Kac^Moody algebra g of type A�1�r
has the basis fh1; . . . ; hr; c; dg, where c � h0 � h1 � � � � � hr is the canonical central
element, and there is a nondegenerate symmetric bilinear form � j � on gwhose values

98 GEORGIA BENKART ET AL.

https://doi.org/10.1023/A:1017584131106 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017584131106


on h are given by (1.3). Since the form � j � is nondegenerate on h, for every m 2 h�

there is a unique element tm in h such that m�h� � �hjtm� for all h 2 h. Thus the form
� j � induces a nondegenerate symmetric bilinear form on h�, also denoted by
� j �, de¢ned by �mjn� � �tmjtn� for all m; n 2 h�. In particular, td � c. We take a basis
for h and extend it to a basis fxij i 2 Og of g by adding basis elements for each
of the root spaces ga. Since �gajgb� � 0 unless b � ÿa, the dual basis fyij i 2 Og
of g with respect to the form � j � also consists of vectors in h and root vectors.

Assume l �Pr
i�0 aiLi ÿmd is a dominant integral weight of level l > 0 for g as in

Section 1. Let L�l� be the irreducible highest weight g-module with highest weight l.
The ¢nite dual space L��l� is the irreducible lowest weight g-module with lowest
weight ÿl, where the g-module action is given by

hg � v�;wi � ÿhv�; g � wi �2:1�
for g 2 g, v� 2 L��l�, w 2 L�l� (see [K2, p. 149]). De¢ne a linear map c:L��l� 
 L
�l� ! g by

c�v� 
 w� � ÿ 2
�ljl�

X
i2O
hv�; xi � wiyi; �2:2�

where fxij i 2 Og and fyij i 2 Og are dual bases of g as above. Then c is a well-de¢ned
g-module homomorphism, (compare with [FF], [Ka1], [BKM1]), and hence the space
L�l� � g� L��l� has the structure of a local Lie algebra with the bracket de¢ned by

�v�;w� � c�v� 
 w�;
�g;w� � g � w; �g; v�� � g � v� �2:3�

for g 2 g, v� 2 L��l�, w 2 L�l� (see [K1]).
Let F� (resp. Fÿ) be the free Lie algebra generated by L��l� (resp. L�l�), and for

kX 1, let Fk (resp. Fÿk) be the subspace of F� (resp. Fÿ) spanned by the vectors
of the form �u1�u2�. . . �ukÿ1; uk� . . .��� with uj 2 L��l� (resp. L�l�). In particular,
F 1 � L��l� and Fÿ1 � L�l�. Let F 0 � g and de¢ne F � Fÿ � F 0 � F� �L

k2Z Fk: Then F is the maximal graded Lie algebra with local part L�l� � g� L��l�.
For kX 2, de¢ne the subspaces J�k of F�k by

J�k � fv 2 F�kj �u1�u2�. . . �ukÿ1; v� . . .��� � 0 forall ui 2 F�1g; �2:4�
and let J� �

L
kX 2 J�k. Then J� is a graded ideal of F�, and J � Jÿ � J� is the

maximal graded ideal of F which intersects the local part L�l� � g� L��l� trivially
([K1], [FF], [Ka1], [BKM1]). The Lie algebra L � F=J �Lk2Z Lk is the minimal
graded Lie algebra with local part L�l� � g� L��l�, where Lk � Fk=Jk for k 2 Z.
In particular, Lÿ1 � Fÿ1 � L�l�, L0 � g, and L1 � F 1 � L��l�.

Alternately, let aÿ1 � ÿl and consider the Cartan matrix Â � �ai;j�
�i; j � ÿ1; 0; 1; . . . ; r� given by

ai;j � 2�aijaj�
�aijai� for i; j � ÿ1; 0; 1; . . . ; r: �2:5�
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The ¢rst column of the matrix Â consists of the entries 2, ÿa0, ÿa1, . . ., ÿar, and
deleting the ¢rst row and the ¢rst column of Â gives the af¢ne Cartan matrix of
type A�1�r . If we let hÿ1 � ÿ2tl=�ljl�; where tl 2 h is such that l�h� � �hjtl� for all
h 2 h, then the triple �h;P � faÿ1; a0; a1; . . . ; arg;P_ � fhÿ1; h0; h1; . . . ; hrg� provides
a realization of the matrix Â. Let ĝ be the inde¢nite Kac^Moody algebra associated
with the Cartan matrix Â. It is a direct consequence of the Gabber-Kac theorem
(see [GK]) that the following holds:

PROPOSITION 2.6 ([FF], [Ka1], [BKM1]). Let v0 (resp. v�0) be the highest (resp.
lowest) weight vector of L�l� (resp. L��l�) such that hv�0; v0i � 1. If ĝ is the inde¢nite
Kac^Moody algebra with the Cartan matrix Â given by (2.5), then there is an
isomorphism of Lie algebras ĝ � L de¢ned by

ei 7!ei; fi 7!fi; hi 7!hi for i � 0; 1; . . . ; r;

eÿ1 7!v�0; fÿ1 7!v0; hÿ1 7! ÿ 2tl
�ljl� :

�2:7�

It follows from Proposition 2.6 that the subspace L�k is the sum of all the root
spaces ĝ�a, where a is of the form ��kaÿ1 �

Pr
i�0 kiai� with k; ki 2 ZX 0. In par-

ticular, the roots of the form��Pr
i�0 kiai� are roots of the af¢ne Kac^Moody algebra

g, and the roots of the form ÿaÿ1 ÿ
Pr

i�0 kiai are weights of the irreducible highest
weight g-module L�l�. Thus to compute the weight multiplicity of lÿPr

i�0 kiai
in L�l�, it suf¢ces to compute the root multiplicity of ÿaÿ1 ÿ

Pr
i�0 kiai in the inde¢-

nite Kac^Moody algebra L � ĝ.

3. The Weight Multiplicity Polynomials

In this section, we will prove our main result. Fix a positive integer l and a dominant
integral weight l of level l with determining data a � �a0; a1; . . . ; asÿ1�, a0 �
�arÿt�1; arÿt�2; . . . ; ar�, and m 2 Z. Assume that rX l � s� t� 2, and let L�l� be
the irreducible highest weight module over the af¢ne Kac^Moody algebra
g � A�1�r with highest weight l. Suppose m is a dominant integral weight of level
l with determining data b � �b0; b1; . . . ; bs0ÿ1�, b0 � �brÿt0�1; brÿt0�2; . . . ; br�, and
n 2 Z, where s0, t0 are nonnegative integers satisfying s0 � t0W r, s� t0W r, and
s0 � tW r. Since the determining data associated to l and m is ¢xed, the integers
s; t; s0; t0 are all ¢xed. In particular, the integers p � max�s; s0� and q � max�t; t0�
are ¢xed also. Suppose further that m is related to l for in¢nitely many values
of rX l � s� t� 2. Our aim is to prove that if m is a weight of L�l� for some
r0 X l � s� t� 2, then it is a weight of L�l� for all rX r0, and the multiplicity
of m in L�l� is a polynomial in r of degree W dl�m�, the depth of m with respect
to l.

Let L � ĝ be the minimal graded Lie algebra with local part L�l� � g� L��l� con-
structed in Section 2. Let Q̂ �Lr

i�ÿ1 Zai denote the root lattice of ĝ with respect to
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the Cartan subalgebra h. The roots of ĝ belong to Q̂� [ Q̂ÿ, where
Q̂� �

Lr
i�ÿ1 ZX 0ai � ÿQ̂ÿ: Furthermore, m � lÿPr

i�0 kiai � ÿaÿ1 ÿ
Pr

i�0 kiai 2
Q̂ÿ, where the coef¢cients ki are as in (1.20). The weight multiplicity of m in
L�l� is the same as the root multiplicity mult�m� of m in L, which can be computed
using the following Freudenthal-type recursive formula due to Peterson.

PROPOSITION 3.1 ([P], cf. [K2, Exercise 11.12]). For b 2 Q̂ÿ, de¢ne

cb �
X
nX 1

1
n

mult
b
n

� �
:

Then

�bjb� 2r�cb �
X

b0 ;b002Q̂ÿ
b�b0�b00

�b0jb00�cb0cb00 ; �3:2�

where r 2 h� is such that r�hi� � 1 for i � ÿ1; 0; . . . ; r.
We write m � m0 ÿ dl�m�d, where dl�m� and m0 � ÿaÿ1 ÿ

Pr
i�0 miai are given by

(1.19) and (1.21). Since the coef¢cient of aÿ1 in m is ÿ1, any decomposition is of
the form m � b0 � b00, where

b0 � ÿaÿ1 ÿ
Xr
i�0

siai and b00 � ÿ
Xr
i�0

tiai

with si; ti 2 ZX 0, or it has this form with the roles of b0 and b00 switched. Note that
cm � mult�m� and cb0 � mult�b0�, where mult��� is the multiplicity in L, which, for
m and b0, is the same as the multiplicity in L�l�. Thus, in order to have a nontrivial
contribution to cb0 and cb00 , b

0 must be a weight of L�l� and b00 � ÿka for some
kX 1, where a is a positive root of g.

LEMMA 3.3. Suppose dl�m� > 0. Then �mjm� 2r� is a polynomial in r of degree 1.
Proof. Since m � ÿaÿ1 ÿ

Pr
i�0 miai ÿ dl�m�d, we have

�mjm� 2r� � ÿaÿ1 ÿ
Xr
i�0

miai ÿ dl�m�dj ÿ aÿ1 ÿ
Xr
i�0

miai ÿ dl�m�d� 2r

 !

� ÿ2dl�m��r� 1� ÿ 2
Xr
i�0

miai ÿ 2
Xr
i�0

mi �
Xr
i;j�0

mimjai;j ÿ 2ldl�m��

� �aÿ1jaÿ1� ÿ 2�rjaÿ1�:
By (1.21), the terms

Pr
i�0 miai,

Pr
i�0 mi,

Pr
i;j�0 mimjai;j are all constants. Therefore

�mjm� 2r� is a polynomial in r of degree 1. &

We now state and prove our main result.
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THEOREM 3.4.Let g be the af¢ne Kac^Moody algebra of type A�1�r , and let l 2 P� be
a dominant integral weight of level l > 0 for g with determining data a �
�a0; a1; . . . ; asÿ1�, a0 � �arÿt�1; arÿt�2; . . . ; ar�, and m 2 Z. Assume that rX l�
s� t� 2, and let m 2 P� be a dominant integral weight of level l with determining
data b � �b0; b1; . . . ; bs0ÿ1�, b0 � �brÿt0�1; brÿt0�2; . . . ; br�, and n 2 Z such that
s0 � t0W r; s� t0W r, and s0 � tW r. Suppose that m is related to l for in¢nitely many
values of rX l � s� t� 2. If m is a weight of L�l� for some r0 X l � s� t� 2, then
it is a weight of L�l� for all rX r0, and the multiplicity of m in L�l� is given by a poly-
nomial in r of degree W dl�m�.

Proof. We will prove our assertion by induction on dl�m� and on the partial order-
ing on the af¢ne weight lattice. Write m � ÿaÿ1 ÿ

Pr
i�0 miai ÿ dl�m�d, where dl�m�

and the mi's are given by (1.19) and (1.21).
If dl�m� < 0, then for i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1, the coef¢cient of ai in m is

positive. Hence m cannot be a weight of L�l�, and therefore its multiplicity in
L�l� is zero.

Let p � max�s; s0�, q � max�t; t0�. Suppose that dl�m� � 0. Then

m � lÿ
Xpÿ2
i�0

miai ÿ
Xr

i�rÿq�2
miai:

The multiplicity of m in L�l� is the number of linearly independent vectors of the
form fi1fi2 � � � fik � v0, where v0 is the highest weight vector of L�l� and fj appears
mj times in the expression for each j 2 f0; 1; . . . ; pÿ 2; rÿ q� 2; rÿ q� 3; . . . ; rg.
Clearly, this number is independent of r (it may be 0). In particular, if this number
is nonzero for some r0 X l � s� t� 2, then it is nonzero and constant for all
rX r0. Therefore, if m is a weight of L�l� for some r0 X l � s� t� 2, then it is a
weight of L�l� for all rX r0, and the multiplicity of m is a constant. The same argu-
ment shows that any t 2 P such that dl�t� � 0 has a constant multiplicity (which
may be 0) in L�l�.

Suppose dl�m�X 1. Consider a dominant integral weight t of level l with
determining data c � �c0; c1; . . . ; cs00ÿ1�, c0 � �crÿt00�1; crÿt00�2; . . . ; cr�, and n0 2 Z such
that s00 � t00W r; s� t00W r, and s00 � tW r which is related to l for in¢nitely many
values of rX l � s� t� 2, and write t � t0 ÿ dl�t�d, where dl�t0� � 0. Assume that
if dl�t� < dl�m� or if dl�t� � dl�m� and t0 > m0, our assertion holds for t. That is,
we assume that if t is a weight of L�l� for some r0 X l � s� t� 2, then it is a weight
of L�l� for all rX r0, and the multiplicity of t in L�l� is a polynomial in r of degree
W dl�t�.
Consider a decomposition m � b0 � b00, where b0 2 ÿaÿ1 ÿQÿ � lÿQÿ and b00 is

a multiple of a negative root of g. Thus we may assume that b00 is one of the following:

�i� ÿ kd; �ii� ÿ kg; �iii� ÿ k�k0d� g�; �iv� ÿ k�k0dÿ g�; �3:5�

where k; k0X 1 and g is a positive root of g0 � Ar.

102 GEORGIA BENKART ET AL.

https://doi.org/10.1023/A:1017584131106 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017584131106


Note that b00 � ÿkd is an imaginary root of g for all kX 1, and its multiplicity in g

(and hence in L) is r (see [K1, Cor. 7.4]). It follows that

cÿkd �
X
mX 1

mult�ÿkd=m�
m

�
X
mjk

mult�ÿ�k=m�d�
m

�
X
mjk

r
m
� x�k�

k
r;

�3:6�

where x�k� denotes the sum of all factors of k. On the other hand, the roots g, k0d� g
are real, and their multiplicities in g (and hence in L) are all 1. Moreover, if kX 2, the
multiplicities of kg and k�k0d� g� in g are all 0. Therefore we have

cb00 �
1
k

if b00 � ÿkg or b00 � ÿk�k0d� g�: �3:7�

We now treat the four cases separately.

Case 1. Suppose ¢rst that b00 � ÿkd for kX 1. In this case,

b0 � ÿaÿ1 ÿ
Xr
i�0

miai ÿ �dl�m� ÿ k�d 2 Q̂ÿ:

Since mi � 0 for i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1, we must have dl�m� ÿ kX 0 in
order for b0 to belong to Q̂ÿ, which implies that k runs from 1 to dl�m�. Now

�b0jb00� � ÿaÿ1 ÿ
Xr
i�0

miai ÿ �dl�m� ÿ k�dj ÿ kd

 !
� k�aÿ1jd� � ÿkl;

where l denotes the level. As we have seen before, if b0 is not a weight of L�l�, then
cb0 � 0 and there is no contribution to the right-hand side of (3.2). So we may assume
that b0 is a weight of L�l� for some r0 X l � s� t� 2. Observe that b0 is dominant
since b0�hj� � m�hj�X 0 for all j 2 I . Since b0 is related to l for in¢nitely many values
of rX l � s� t� 2, and since dl�m� ÿ k < dl�m�, it follows from the induction
hypothesis that b0 is a weight of L�l� for all rX r0, and mult�b0� is a polynomial
in r of degree W dl�m� ÿ kW dl�m� ÿ 1: We have seen in (3.6) that cb00 � rx�k�=k,
which is a polynomial in r of degree 1. Therefore, the total contribution of the various
decompositions of this kind to the right-hand side of (3.2) is a polynomial in r of
degree W dl�m�.

Case 2. Suppose b00 � ÿkg for kX 1, where g is a positive root of g0 � Ar. Thus
g � au � au�1 � � � � � av with 1W uW vW r. In this case, we have

b0 � ÿaÿ1 ÿ
Xr
i�0

miai � kgÿ dl�m�d 2 Q̂ÿ:
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Note that for all i � u; u� 1; . . . ; v, the coef¢cient of ai in b0 must be W 0. That is,
ÿmi � kÿ dl�m�W 0 for i � u; u� 1; . . . ; v. Let M � maxfmij 0W iW rg. Then
kWM � dl�m�, and hence k ranges from 1 toM � dl�m�. Note thatM is independent
of the value of r. We also have

�b0jb00� � �ÿaÿ1 ÿ
Xr
i�0

miai � kgÿ dl�m�dj ÿ kg�

� k�aÿ1jg� � k
Xr
i�0

mi�aijg� ÿ k2�gjg�:

Hence �b0jb00� is a constant for each k, because �ljai� � ai � 0 and mi � 0 for
i � p; p� 1; . . . ; rÿ q,

Now by (1.5), g � au � au�1 � � � � � av � ÿLuÿ1 � Lu � Lv ÿ Lv�1. Observe that

ruÿ1�ÿLuÿ1 � Lu � Lv ÿ Lv�1� � ÿLuÿ2 � Luÿ1 � Lv ÿ Lv�1;

and

rv�1�ÿLuÿ1 � Lu � Lv ÿ Lv�1� � ÿLuÿ1 � Lu � Lv�1 ÿ Lv�2;

where ri denotes the simple re£ection corresponding to the root ai. Therefore for each
rX l � s� t� 2, we apply the simple re£ections ruÿ1, ruÿ2, . . ., r1, r0, rr, . . . and then
rv�1, rv�2, . . . ; rr, r0, r1, . . . in succession to get a dominant integral weight. (It
may take several rounds of applying the simple re£ections in this order to produce
a dominant integral weight.) Let wr denote the corresponding Weyl group element
of A�1�r . We can verify that wrb

0 has the form

wrb
0 �

Xr
i�0

b0i�r�Li ÿ n0�r�d;

where b0i�r� � 0 for i � p� 1; . . . ; rÿ qÿ 1: Moreover, it is tedious but
straightforward to show that the sequences of integers c�r� � �b00�r�;
b01�r�; . . . ; b0p�r�; b0rÿq�r�; b0rÿq�1�r�; . . . ; b0r�r�; n0�r�� are the same for all rX l � s�
t� 2. That is, the determining data of wrb

0 is given by c � �b00; b01; . . . ; b0x�,
c0 � �b0rÿy; b0rÿy�1; . . . ; b0r�, and n0 2 Z, where xW p, yW q and b0i � b0i�r�, n0 � n0�r�
(for all rX l � s� t� 2). Rather than writing wrb

0 in what follows, we denote
the dominant weight determined by this data as t.

Since t is related to l, t also has level l, and if we let d 0i � b0i ÿ ai for i � 0; 1; . . . ; r,
then ai � b0i � d 0i � 0 for i � p� 1; p� 2; . . . ; rÿ qÿ 1. Hence we may write

t � ÿaÿ1 ÿ
Xr
i�0

m0iai ÿ dl�t�d;

where ÿaÿ1 ÿ
Pr

i�0 m
0
iai has depth 0 with respect to l. In addition, since t is the

highest element among the Weyl group conjugates of b0, the inequality
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m < b0W t must hold, and hence

tÿ m �
Xr
i�0
�mi ÿm0i�ai � �dl�m� ÿ dl�t��d 2 Q̂�; �3:8�

and

tÿ b0 �
Xr
i�0
�mi ÿm0i�ai ÿ kg� �dl�m� ÿ dl�t��d 2 Q̂�: �3:9�

By the same argument as in Lemma 1.23, we can show that m0i X 0 for all
i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1 and, hence, dl�t�W dl�m�.

If dl�t� � dl�m�, then m0i W 0 by (1.26), and hence m0i � 0 for i � pÿ 1;
p; . . . ; rÿ q; rÿ q� 1. Since mi � 0 for i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1, (3.9) can
be written as

tÿ b0 �
Xpÿ2
i�0
�mi ÿm0i�ai �

Xr
i�rÿq�2

�mi ÿm0i�ai ÿ kg 2 Q̂�: �3:10�

Thus, in order for tÿ b0 to be an element of Q̂�, gmust be a linear combination of the
simple roots a1; a2; . . . ; apÿ2, or of arÿq�2; . . . ; arÿ1; ar. The number of such g is at
most

�pÿ 2��pÿ 1�
2

� �qÿ 1�q
2

;

which is independent of r. Since t > m and dl�t� � dl�m�, we have t0 > m0. Hence by
the induction hypothesis, if wr0b

0 is a weight of L�l� for some r0 X l � s� t� 2, then
t � wrb

0 is a weight of L�l� for all rX r0, and mult�b0� � mult�t� is a polynomial
in r of degree W dl�m�. Note that cb00 � 1=k for all k � 1; . . . ;M � dl�m�. Therefore,
the contribution of these partitions to the right-hand side of (3.2) is a polynomial
in r of degree W dl�m�.

Suppose that dl�t� < dl�m�. By the induction hypothesis, if wr0b
0 is a weight of L�l�

for some r0 X l � s� t� 2, then t � wrb
0 is a weight of L�l� for all rX r0, and

mult�b0� � mult�t� is a polynomial of degree W dl�t�W dl�m� ÿ 1. Since there are
�r�r� 1�=2� positive roots in g0 � Ar, a polynomial in r of degree 2, and since
cb00 � 1=k for all k � 1; . . . ;M � dl�m�, the contribution of these decompositions
to the right-hand side of (3.2) is a polynomial in r of degree W dl�m� � 1:

Therefore, the total contribution of the partitions in Case 2 to the right-hand side
of (3.2) is a polynomial in r of degree W dl�m� � 1.
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Case 3. Suppose that b00 � ÿk�k0d� g�, where k; k0X 1 and g is a positive root of
g0 � Ar. In this case,

b0 � ÿaÿ1 ÿ
Xr
i�0

miai � k�k0d� g� ÿ dl�m�d

� ÿaÿ1 ÿ
Xr
i�0

miai � kgÿ �dl�m� ÿ kk0�d 2 Q̂ÿ:

Observe that the coef¢cient of a0 in b0 isÿm0 ÿ dl�m� � kk0, which must be W 0. Thus
kk0Wm0 � dl�m�, and hence k; k0 range from 1 to m0 � dl�m�. We have

�b0jb00� � ÿaÿ1 ÿ
Xr
i�0

miai � kgÿ �dl�m� ÿ kk0�dj ÿ k�k0d� g�
 !

� ÿkk0l � k�aÿ1jg� � k
Xr
i�0

mi�aijg� ÿ k2�gjg�;

which can be seen to be a constant as in Case 2.
Moreover, by the same argument as in Case 2, for each rX l � s� t� 2, we can

verify that b0 is Weyl group conjugate to a dominant integral weight t � wrb
0 that

has the form t �Pr
i�0 b

0
iLi ÿ n0d; where b0i � 0 for i � p� 1; . . . ; rÿ qÿ 1. So if

we let d 0i � b0i ÿ ai �i � 0; 1; . . . ; r�, we may write

t � ÿaÿ1 ÿ
Xr
i�0

m0iai ÿ dl�t�d;

where ÿaÿ1 ÿ
Pr

i�0 m
0
iai has depth 0 with respect to l. In addition, we have

tÿ m �
Xr
i�0
�mi ÿm0i�ai � �dl�m� ÿ dl�t��d 2 Q̂�; �3:11�

and

tÿ b0 �
Xr
i�0
�mi ÿm0i�ai ÿ kg�

� �dl�m� ÿ dl�t� ÿ kk0�d 2 Q̂�:

�3:12�

By the same argument as in Lemma 1.23, we can show that m0i X 0 for all
i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1 and, hence, dl�m� ÿ dl�t� ÿ kk0X 0. Therefore,

dl�t�W dl�m� ÿ kk0W dl�m� ÿ 1:

By the induction hypothesis, if wr0b
0 is a weight of L�l� for some r0 X l � s� t� 2,

then t � wrb
0 is a weight of L�l� for all rX r0, and mult�b0� � mult�t� is a polynomial

in r of degree W dl�t�W dl�m� ÿ 1. Since there are �r�r� 1�=2� positive roots in g0 and
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since cb00 � 1=k for all k � 1; . . . ;m0 � dl�m�, the total contribution of the partitions
in this case to the right side of (3.2) is a polynomial in r of degree W dl�m� � 1.

Case 4. Suppose b00 � ÿk�k0dÿ g�, where k; k0X 1 and g is a positive root of g0 � Ar.
In this case,

b0 � ÿaÿ1 ÿ
Xr
i�0

miai ÿ kgÿ �dl�m� ÿ kk0�d 2 Q̂ÿ:

As in Case 3, by looking at the coef¢cient of a0 in the above expression, we can show
that k and k0 range from 1 to m0 � dl�m�. We have

�b0jb00� � ÿaÿ1 ÿ
Xr
i�0

miai ÿ kgÿ �dl�m� ÿ kk0�dj ÿ k�k0dÿ g�
 !

� ÿkk0l ÿ k�aÿ1jg� ÿ
Xr
i�0

mi�aijg� ÿ k2�gjg�;

which can be seen to be a constant as in Case 2.
By the identical argument as in Case 2 we can verify for each rX l � s� t� 2 that

b0 is Weyl group conjugate to a dominant integral weight t � wrb
0 that has the form

t �Pr
i�0 b

0
iLi ÿ n0d; where b0i � 0 for i � p� 1; . . . ; rÿ qÿ 1. So if we suppose as

before d 0i � b0i ÿ ai �i � 0; 1; . . . ; r�, then

t � ÿaÿ1 ÿ
Xr
i�0

m0iai ÿ dl�t�d;

where ÿaÿ1 ÿ
Pr

i�0 m
0
iai has depth 0 with respect to l. Moreover,

tÿ m �
Xr
i�0
�mi ÿm0i�ai � �dl�m� ÿ dl�t��d 2 Q̂�; �3:13�

and

tÿ b0 �
Xr
i�0
�mi ÿm0i�ai � kg � �dl�m� ÿ dl�t� ÿ kk0�d 2 Q̂�: �3:14�

Let us write g � au � au�1 � � � � � av with 1W uW vW r. Then (3.14) becomes

tÿ b0 �
Xr
i�0
�mi ÿm0i�ai ÿ k�a0 � a1 � � � � � auÿ1�ÿ

ÿ k�av�1 � � � � � ar� � �dl�m� ÿ dl�t� � kÿ kk0�d 2 Q̂�:

�3:15�

The argument in Lemma 1.23 proves that m0i X 0 for all i � pÿ 1; p; . . . ; rÿ q;
rÿ q� 1 and that dl�m� ÿ dl�t� � kÿ kk0X 0, which yields

dl�t�W dl�m� � kÿ kk0W dl�m�:
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If dl�t� � dl�m�, then we must have k0 � 1 and (3.15) can be written as

tÿ b0 �
Xr
i�0
�mi ÿm0i�ai ÿ

ÿ k�a0 � a1 � � � � � auÿ1� ÿ k�av�1 � � � � � ar� 2 Q̂�:

�3:16�

Recall that mi � 0 and m0i X 0 for i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1. Thus in order for
tÿ b0 to belong to Q̂�, it must be that m0i � 0 for all i � pÿ 1; p; . . . ; rÿ q; rÿ q� 1,
and uW pÿ 2, vX rÿ q� 1. Hence, the number of such g is at most �pÿ 2��qÿ 1�, a
constant. As t > m and dl�t� � dl�m� hold, we have t0 > m0. Hence, it follows from
the induction hypothesis that if wr0b

0 is a weight of L�l� for some
r0 X l � s� t� 2, t � wrb

0 is a weight of L�l� for all rX r0, and mult�b0� �
mult�t� is a polynomial in r of degree W dl�t� � dl�m�. Note that cb00 � 1=k for
all i � 1; . . . ;m0 � dl�m�. Therefore, the contribution of these decompositions to
the right-hand side of (3.2) is a polynomial in r of degree W dl�m�.

Suppose that dl�t� < dl�m�. Then by the induction hypothesis, if wr0b
0 is a weight of

L�l� for some r0 X l � s� t� 2, then t is a weight of L�l� for all rX r0, and
mult�b0� � mult�t� is a polynomial in r of degree W dl�t�W dl�m� ÿ 1. Since there
are �r�r� 1�=2� positive roots in g0 � Ar and since cb00 � 1=k for all
k � 1; . . . ;m0 � dl�m�, the contribution of these decompositions to the right side
of (3.2) is a polynomial in r of degree W dl�m� � 1.

Therefore, what the partitions in Case 4 contribute to the right-hand side of (3.2) is
a polynomial in r of degree W dl�m� � 1.

Consequently, the sum of all the contributions from Case 1 to Case 4, which is the
right side of (3.2), is a polynomial in r of degree W dl�m� � 1. By Lemma 3.3 and
(3.2), we have mult�m� � f =g, where f is a polynomial in r of degree W dl�m� � 1
and g is a polynomial in r of degree 1. Since mult�m� takes positive integral values
for in¢nitely many values of rX l � s� t� 2, it must be a polynomial in r (see [PS],
p. 130), and

deg�mult�m��W �dl�m� � 1� ÿ 1 � dl�m�:

This completes the proof of the theorem. &

EXAMPLE 3.17. Tables I^IV illustrate the polynomial behavior of the multiplicity
of the weight mÿ kd in the irreducible highest weight module L�l� over the af¢ne
Kac^Moody algebra A�1�r . The numerical data in these tables was taken from
[KMPS]. From now on, let a � �a0; a1; . . . ; asÿ1�, a0 � �arÿt�1; arÿt�2; . . . ; ar�, and
m 2 Z be the determining data for l, and let

b � �b0; b1; . . . ; bs0ÿ1�; b0 � �brÿt0�1; brÿt0�2; . . . ; br� and n 2 Z

be the determining data for m:

108 GEORGIA BENKART ET AL.

https://doi.org/10.1023/A:1017584131106 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017584131106


Table I.
l � m � L0 � Lr;

a � �1�, a0 � �1�, m � 0; b � �1�, b0 � �1�, n � 0;
dl�mÿ kd� � �kÿm� ÿ �d1 � 2d2 � � � � � �pÿ 1�dpÿ1� � k:

k n r 1 2 3 4 5 6 7 8 Polynomial

0 1 1 1 1 1 1 1 1 1
1 2 4 6 8 10 12 14 16 2r
2 4 13 27 46 70 99 133 172 1

2 �5r2 � 3r�
3 8 36 98 208 380 628 966 1408 1

3 �7r3 � 9r2 � 8r�
4 14 89 310 804 1740 3329 5824 9520 1

12 �21r4 � 44r3�
�87r2 � 16r�

5 24 204 888 2768 7012 15396 30436 55520 1
30 �33r5 � 100r4

�315r3 � 200r2 � 72r�

Table II.
l � 3L1; m � L0 � L1 � L2;

a � �0; 3�, a0 � ;, m � 0; b � �1; 1; 1�, b0 � ;, n � 0;

dl�mÿ kd� � �kÿm� ÿ �d1 � 2d2 � � � � � �pÿ 1�dpÿ1� � k:

k n r 2 3 4 5 6 7 Polynomial

0 1 1 1 1 1 1 1
1 4 6 8 10 12 14 2r
2 15 31 53 81 115 155 3r2 � r� 1
3 44 126 278 523 884 1384 1

6 �23r3 � 3r2 � 40rÿ 12�
4 121 456 1267 2901 5808 10541 1

24 �103r4 ÿ 54r3 � 533r2ÿ
ÿ294r� 144�

5 300 1477 5120 14166 33444 70188 1
120 �513r5 ÿ 800r4�
�5815r3 ÿ 6580r2�
�7412rÿ 22�

Table III.
l � 2L0; m � L1 � Lr;
a � �2�, a0 � ;, m � 0; b � �1�, b0 � �1�, n � 0;
dl�mÿ kd� � �kÿm� ÿ �d1 � 2d2 � � � � � �pÿ 1�dpÿ1� � kÿ 1.

k n r 2 3 4 5 6 7 8 Polynomial

0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 2r
3 12 25 43 66 94 127 165 1

2 �5r2 � r� 2�
4 32 87 186 343 572 887 1302 1

3 �7r3 � 3r2 � 17rÿ 6�
5 77 266 693 1513 2923 5162 8511 1

12 �21r4 � 16r3 � 129r2ÿ
ÿ46r� 36�
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