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STOCHASTIC MODELS FOR INTERFERENCE
BETWEEN SEARCHING INSECT PARASITES
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Abstract

Competition between a finite number of searching insect parasites is modelled
by differential equations and birth-death processes. In the one species case of
intraspecific competition, the deterministic equilibrium is globally stable and, for
large populations, approximates the mean of the stationary distribution of the
process. For two species, both inter- and intraspecific competition occurs and
the deterministic equilibrium is globally stable. When the birth-death process
is reversible, it is shown that the mean of the stationary distribution is approx-
imated by the equilibrium. Confluent hypergeometric functions of two variables
are important to the theory.

1. Introduction

Insect parasites (more strictly, parasitoids) are entomophagous insects. They
seek out certain states (egg, larvae) of an insect host and oviposit one or more
eggs on or into the host. Typically, these eggs hatch and the parasitic larvae
devour their host, pupate and the cycle begins anew.

Much of the behaviour of the actively searching parasitoids is apparently
determined by functional responses to the host and other members of their own
species, usually in a "patchy" environment of host dispersion ([5] and references
therein, [12]). Various mechanisms of mutual interference which can reduce
the available searching time, with a consequent effect upon searching efficiency,
have been suggested. Rogers and Hassell [13] have pointed out that any mutual
response among parasitoids raises the possibility of interference. They document
observations where traces, left by preceding parasitoids, reduced the available
searching time. The overall effect is that such mutual interference gives the
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[2] Models for interference between parasites 269

appearance of a phenomenological decrease in the efficiency of the parasites, and
the authors supply an elegantly simple static model to describe the effect.

Less is known about interspecific interference between different species of par-
asitoids. It has been observed that traces left by one species can inhibit another,
although the response need not be reciprocal [4], [7]. Actual physical combat,
in competition for hosts, has also been reported. It would seem very likely that
either of these mechanisms reduces the time available for seeking out and para-
sitising hosts.

This note addresses these interference effects by modelling parasitic responses
by deterministic and stochastic processes in which parasitoids can assume either
active or passive states. The passive state corresponds to individual searching
time lost, whereas the active state represents utilisation of actual searching time.
This is a finite state, continuous time birth-death process with linear birth rate,
quadratic death rate and reflecting barriers. The different degree of the rates
causes some technical problems, and the techniques of neither [8] nor [11] seem
applicable. Also, the rates are not density-dependent in the sense of Kurtz [10],
and consequently his conditions for approximation by an underlying determinis-
tic model are not satisfied. Instead, we show a weaker result: that the mean of
the stationary process is asymptotic (for large population size) to the globally
stable equilibrium point of a corresponding system of differential equations. For
the one-species model case of intraspecific interference this is always true, and
holds for the two-species model provided the process is reversible. The results
differ from [2] in so far as all death rates are here quadratic and the method of
partial differential-difference equations does not resolve the problem.

2. Single species

Assume that there are N parasites, P of which are actively searching and Pw

passive, indulging in no search for hosts: N = P + Pw. Suppose that a passive
insect resumes activity after a waiting time. In the deterministic case model,
this is taken as a constant T over the population for all time. For the stochastic
model, this waiting time is assumed to have an exponential distribution, of mean
T. A parasitoid in the active state will become passive only if it encounters
another, either through direct perception of another active parasite, or discovery
of some trace such as a previously parasitised host.

Make the approximation that the encounter rate in the time interval (t, t+dt),
per active parasite, is proportional to (P — l)dt + o(dt), and thus the chance
of one parasite becoming passive is proportional to P(P - l)dt + o(dt). This
is perhaps a good approximation in the first type of encounter but, depending
upon the duration for which a parasitised host carries some distinguishing feature
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270 Phil Diamond [3]

which searching parasitoids can recognise, is perhaps not quite as good for the
second type.

Consider first the deterministic case. Suppose that P(t) is the number of
actives at time t, and that N is large enough for P(t) to be considered as con-
tinuously differentiable, and P(0) = N. The dynamics of the interaction are
assumed to be as in the equilibrium case: no lag is considered, and there are no
terms in P(t — T). Thus, for the encounter rate b > 0.

P(t + dt) - P(t) = ((AT - P(t))/T - bP(t)(P(t) - 1)) dt + o{dt),

P'(t) = {N -P)/T-bP{P-l). (1)

It follows that limt_oo-f>(0 = ir+> where n+ is the positive zero of
<j>{u) = bu2 + u(l/T - b) - N/T. For, write </>(u) = b{u - TT+)(U - TT_) and let
V(u) = (u — ir+)(f>(u)/b. Then V(u) is positive definite in [0, OO)\{TT+} = /, and

V'(P) = P'4>{P)/b +(P- n+)4>'(P)P/b

= -<P(P)(2<f>(P) + (P- 7T+)2) < 0.

So V{u) is a strong Liapunov function on / and the equilibrium w+ is asymp-
totically stable. Finally, observe that

JV"1!^ = N-^-l + bT+ ((1 -bTf + AbTN)l'2)/2bT = (bTN)~1/2 + O(N~1)
(2)

for large iV.
Now suppose that the number of active parasites is governed by a birth-death

process: in ((, t + dt),

Pr{n -l-+n} = (N-(n-l)) dt/T + o(dt),
Pr{n + 1 -» n} = bn(n + 1) dt + o{dt);

let pn(t) = Pr{P(t) = ri). The assumptions concerning the way encounters occur
preclude the possibility of a 1 —» 0 transition, so po(t) = 0 for all t, and further
suppose that PN{0) = 1. Using the generating function G(x, i) — X)n=i Pn(t)^n,
we have

dG/dt = (x- \)NG/T + T~xx{l - x)dG/dx + te(l - x)d2G/dx2.

Look for separable solutions of the form y{x)g(t), so that

k

Then,

g'/g = {x - 1)N/T + x{l - x)y'/Ty + bx{l - x)y"/y = -A.

Clearly G is a sum of terms e~xty(x), where A is such that the equation

y"bx(l -x) + y'x(l - x)/T + (A + (x - l)N/T)y = 0 (3)
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has polynomial solutions of degree no greater than N. Amongst the eigenvalues
are Ao = 0, which corresponds to the stationary distribution, and A# = N/T.
Only the generating function of the stationary distribution is relevant to the
remainder of the discussion. For A = 0, put y = xu, x = —bTz in (3) to obtain
z d?u/dz2 + (2 — z) du/dz + (N — l)u = 0. Recall the associated Laguerre polyno-
mials ([3], vol. 2, §10.12, although there are other related definitions), L%(z) —
Em=o C-m) ( - ^ ) m / m ! ' w h i c h s a t i s fy z d2u/dz2 + (a + 1 - z) du/dz + nu = 0.
Thus u(z) = L1

N_1(z) and y{x) = (-x/bT)L1
N_1{-x/bT). This must be nor-

malised to act as a probability generating function, and then the stationary
probabilities pn = lim^ooPn{t), n = 1,2,..., N take the form pn = an8

n/f(0),
n = 1,2,...,N, 0 = 1/W, where f(0) = £ ^ = 1 an6

n = OL^i-O). The
factorial moments are given by H(r) = 0rf(r){0)/f{6). Recall ([3], vol. 2,
§10.12) that d{L%{0))/d0 = -L^t\{9)t and that 0L%+\0) = (n + a + l)L%{0)-
(n + 1)L%+1(0). It follows that the mean of the stationary distribution is /x =

^(1 - £Ar_a(-V&r)/£jv-i(-l/W)). and t h e variance a2 = fi - //2 +
N(N - 1)(1 - (2L1

N_2(-l/bT) - Ljv_3(

PROPOSITION 1. For large N, the mean searching efficiency of the stationary
process is asymptotic to N-1n+ of (2).

PROOF. Begin with the known recurrence

(n + 1)LZ+1(0) - (2n + 1 + a - O)L%(0) + (n + a^.tf) = 0.

Write qn{0) = Lll(0)/Llt_1(0) in this equation to obtain

2-0/(n + l)-l/qn{0). (4)

Now the expression for the mean order reads fi = N(l - l/gjv-i(—1/bT)), and
the mean searching efficiency is the average number of active parasites per head
of species population n/N. A rigorous argument along the lines of [15] pp.
223-225 justifies substituting qn{-0) = 1 + T.k>i Cfc""fc/2 in (4), from which
qn{-0) = 1 + 01/2n-1'2 + n - 7 4 + O{n~z'2) and so, as n ^ 00, l/qn{-0) =
1 - 0ll2n-ll2 + O{n~l), whence n/N = (bTN)'1/2 + O(7V-J) ~ n+/N.

NOTES. 1. The mean and variance of this distribution are slightly unusual in
being of order N1/2, whereas it is commonly expected by population biologists
that in natural populations these occur as O(N) [12].

2. If only visual or physical contact be assumed, and that both parasites
involved in the interaction then become passive, Po{t) is no longer zero because
of the occurrence of 2 —• 0 transitions. A similar analysis proceeds via confluent
hypergeometric polynomials. The mechanism produces much the same effect
upon searching efficiency as if one individual in the first model were to remain
passive for time 2T.
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3. The stationary process, in this one-species case, is reversible. This is
not automatically so in the two-species model of Section 4. There, reversibility
translates as a significant biological interaction between the species; see Lemma
1 of that section.

3. Two species: deterministic interaction

Suppose now that there are two distinct species of parasitoids: TV of type
1, of which P are actively searching, and M of type 2, of which Q are active.
Further, that passive insects of type 1 become active again after time 7\, those
of type 2 after time T2 and that these are constants for the populations over all
time and independent of whether passivity is induced by an intraspecific or an
interspecific interaction. Parasites are assumed to pass from the active to passive
state only after encountering directly, or detecting some trace of, another active
parasite of either species. Available evidence suggests that, by and large, some
account should be taken of different encounter rates for intra- and interspecific
interactions, although this is not always the case [4], [6], [7]. For i,j = 1,2,
denote by bij > 0 the encounter rate of species type i on type j , using the
convention that 6tt are intraspecific while 6tJ, i ^ j , are interspecific rates.

The differential equations governing the number of active parasites P(t), Q{t)
at time t are then

dP/dt = (N- P)/Ti - bnP(P - 1) - b12PQ,

dQ/dt = (M - Q)/T2 - b22Q(Q - 1) - b21QP (5)

Let r)(u) = {N - u)/Ti - buu{u - 1), ip{u) = (M - u)/T2 - b22u{u - 1), and let
7T+, p+ be the positive zeros of r)(u), rp respectively. The dP/dt — 0 isocline is
Q = v{P)/b12P = $ i (P) , and the dQ/dt = 0 isocline is P = tp{Q)/b21Q =
*(Q). It is easy to see that $i(P) = -(N+bnTiP7)/{baTiP3) < 0 in 0 < P <
cx>, and that Q = $i (P) crosses the P-axis at P = n+ and has the Q-axis as a ver-
tical asymptote as P -» 0+. Similarly, V'{Q) = -(M+b22T2Q

2)/(b21T2Q
2) < 0

in 0 < Q < oo. This defines Q - $2(P) = *~1(^>). which crosses the Q-axis at
Q = p+ and is horizontally asymptotic to the P-axis, P —» oo as Q —» 0+, and
$'2(P) = 1/*'(Q). See the figure for details.

PROPOSITION 2. Let &12&21 < bub22. Then (5) has a unique equilibrium point
(P* ,Q*) in the positive quadrant for all integers N, M, which is moreover asymp-
totically stable for all initial conditions in the positive quadrant.

PROOF. If the isoclines meet at a unique point in the positive quadrant, with
the geometry described above, then elementary considerations show this point
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16) Models for interference between parasites 273

FIGURE. The isoclines of the DE (5), with unique equilibrium point (P* ,Q*) in the positive
quadrant.

to be asymptotically stable. Since 0 < $i(P) < oo on (0,TT+], and $2{P) > 0
there, f(P) = $i{P) — $2{P) has at least one zero on (0,n+}. To show this
is unique, it is sufficient to show f'(P) < 0 on (O,TT+]. But for 0 < P < 7r+,
0 < Q < P+, ?'(P) = *'X(P) - 1/*'(Q), and

f'(P)(M + b22T2Pl)bl2Tl7rl = P2Q2(b12b21 - bnbl2) - bn^MP2

- b22T2NQ2 - MN < 0,

provided 612621 < 611622-
If 612621 = 611622, the asymptotic form of P*, Q* (M, N large) is relatively

simple. Write /3f2 = b\\T\, ft^2 = b22T2. Direct substitution in the isocline
equations Q = $i(P), P = *(Q) verifies

PROPOSITION 3 . Let 612621 = 611622, suppose that bn/bi2 = a and write
1/2. Then

P* = 02Nf(N, M) + (1 - tf)/2 + O(f(N, M)),
Q" = o/32Mf(N, M) + (1 - fi)/2 + O(f(N, M)).
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4. Two species: birth-death process

Now suppose that the numbers of active parasites are governed by a birth-
death process with rates bij as denned in the previous section. In (t, t + dt), up
to o(dt),

Pr{(n - l,m) - (n,m)} = (N - (n -

Pr{(n, m - 1) -+ (n, m)} = (M - (m - 1)) dt/T2,

Pr{(n + l,m) ->• (n,m)} = {bnn{n + 1) + bl2rn(n +

Pr{(n,m + 1) -* (ra,m)} = (b22rn(m + 1) + b2i(m + l)n) dt.

Let pnm(£) = Pr{P = n and Q = m at time £}. Observe that Poo(0 = 0
and pnm(<) = 0 if n > N or ro> M, while the initial condition is assumed
to be PNM{0) = 1 (i.e., all parasites commence in an active state). The gen-
erating function H(x,y,t) = X)m+n>i Pnm{t)xnym thus has initial condition
H(x,y,0) = xNyM, and satisfies

Ht = bux(l - x)Hxx + 6222/(1 - y)Hyy + (6iai/(l - *) + b2ix{\ - y))Hxy

+ x(l - x)Hx/Tx + y{\ - y)Hy/T2 - N(l - x)HITx - M{\ - y)H/T2

On writing H = U{t) V(x, y) there exists AtJ, i = 0 , 1 , . . . , N, j = 0 , 1 , . . . ,
M - \ (Aoo = 0, XNM = -(TV - 1)/Ti - (M - 1)/T2), so that the solution may
be expressed in the form

J V - l M - l

H(x,y,t) = J2 E exp(Aii«)KJ(x,?/).
«=o i=o

Here VtJ is a 2-variable polynomial of bi-degree no greater than (N, M), satis-
fying ^NM{V) — XijV. Let pnm = limt—oo Pnm(<) be the limiting distribution,
whose existence is guaranteed by the standard theory. Clearly the generating
function for the stationary distribution corresponds to the eigenvalue A = 0, and
so .2/VA/(V) = 0. Direct calculation shows that

(bwn(n + 1) + bi2m(n + l))pn + 1,m + (bi2rn(m + 1)

- {(N - n)/Ti + {M- m)/T2 + bun(n - 1)

+ b22m{m - 1) + (612 + b2i)mn)pnm

i,m/T1 + (M-(m- l))pn,m_i/T2 = 0. (6)

Now poi (M - 1)/T2 - b12pu - 2&22P02 = 0 expresses the balance for the (0,1),
(1,1) and (0,2) states at equilibrium, and pio(A^ - l)/7i - &21P11 - 2&11P20 = 0
between that of the (1,0), (1,1) and (2,0) states. Thus equation (6) may be
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split into two expressions, both equalling zero, and so

(n + l)(bnn 4- b12rn)pn+liTn + (m+ l)(b2in + 622m)Pn,m+i

- ((TV - n)/n + (M- n)/T2)pnm = 0. (7)

LEMMA 1. The stationary distribution is reversible if and only if each species
cannot distinguish between individuals of its own and the other species: bu = b\2

and 622 = b2\.

PROOF. We have reversibility if and only if both

(N - njPnm/Tx = {bu(n + \)n + b12(n + l)m)pn+1,m,

(8)

Passing from the (n+1, m+1) state to (n, m) by the two possible paths (n+1, m+
1) —• (n, m + 1) —• (n, m) and (n + 1, m + 1) —• (n + 1, m) —> (n,m) gives by (8)
that (bun + b\2(m + 1))(622^ + ^21") should agree with (bun + bi2m)(b22m +
b2i(n + 1)) for all n — 1, . . . , N, m — 1, . . . ,M. That is, 612622 = bi2b2i
and 621̂ 11 = &21 bi2. Under the assumption that was made, that 621, b\2 were
nonzero, it must follow that bu = b\2 and b22 = ^21-

In all that follows, the stationary distribution is supposed reversible. The
main difference from the one-species case is

PROPOSITION 4. Denote by VNM(x,y) the polynomial solution ofJt?NM(V) =
0. Then {VN>M} cannot form a system of orthogonal polynomials in two vari-
ables.

PROOF. The operator J^NM does not satisfy the necessary and sufficient condi-
tions of [9], Theorem 3.1.

PROPOSITION 5. The stationary probabilities of the reversible process are given
by Pnm = e?0?qnm/VN'M(l,l), where 6X = -/??, 92 = -ft and qnm =

PROOF. Follows from Lemma 1, (8) and verification that (7) is satisfied.
In Horn's list of hypergeometric functions of two variables ([3], §5.7.1) is the

function

$2(a, a', 7 ,x ,y )= £ (a)n(a ')mZnym/(n!m!(7)n+m).
n,m=0

Observe that
NM N,-M,l,x01,y92)-l (9)
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is a terminating polynomial for positive integers N, M. The following properties
of <$2 can be found in [1] or are easily verified from comparing coefficients of xnym

(the x, y arguments and subscript have been suppressed):

7$(a + 1, a', 7) - 7$ = x$(a + 1, a', 7 + 1), (10a)

7$(a, a' + 1,7) - 7$ = y$(a, a' + 1,7 + 1), (10b)

a'$(a,a' + 1,7+ l)/7, (11)

(a — 7)y$(a - 1, a', 7) + a' i$(a, a' - 1,7) — (zj/ + (2a — 7)3/ + 2a'i)<I>

+ ay$(a + 1, a', 7) + a'z$(a, a' + 1,7) = 0 (12a)

m/$(a — 1, a', 7) + (a' — 7)z3>(a, a' - 1,7) — (xy + 2ay + (2a' — 7)1)$

+ ay${a + 1, a', 7) + a'z$(a, a' + 1,7) = 0. (12b)

It follows from (13) that dVN'M/dx = -M?i<l>2(-./V 4- 1, -M, I,z0i,y02),
dVN'M/dy = —m62$2{—N,-M + l,l,x0i,y62). Considering p n m as a power
series distribution, the stationary mean number of actively searching parasites
of types 1, 2 respectively are

'M{l,l), (13a)

(-N, -M + 1,2,eue2)/V
N'M{\, 1). (13b)

Differentiating twice gives the covariance

c12 = NMe162^2(-N + 1, - M + 1,3,0!,02)/K"'M(l, I)2 -

From (9), (10) and (13)

^ ' " NM,1),

PROPOSITION 6. As N, M —* oo, tn </ie notation of Proposition 3 tvzt/i a = 1,

PROOF. Write f{N,M) = {p\N + PlM)-1'2 and let v
$2(_Ar _ i , -M,l ,0 i ,02) /*2, and tuM(^) = $2(- iV,-M - l , l ,
It is sufficient to show that vN{M) ~ 1 - 0{f{N, M), wM{N) ~ 1 - 0%f{N% M).
Note that by dividing (12a) throughout by $ and substituting the appropriate
parameters, one obtains

(N + l)fi/vN-i{M) + Mfi/wM-i(N) - {plft + (2N + 1)# + 2M/?2)
+ N0lvN{M) + M(3\wM{N) = 0. (12'a)
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A similar expression (12'b) results from performing the same operations on (12b).
Further, f{N - 1, M) ~ f{N, M) - ±/??/3 and f(N, M - 1) ~ / - \fifz. Sub-
stitution for VN, WM in (12'a), (12'b) gives asymptotic expressions as required,
after a tedious calculation.

REMARK. It is possible to extend these interference models to any number k
of species, and stationary distributions will exist. Means and covariances are
expressed in terms of confluent functions of k variables <&B, associated with the
Lauricella functions FQ [13] in much the same way as $2 is a confluence of Fi

[!]•
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