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"TOPOLOGICALLY INDEXED FUNCTION SPACES 
AND ADJOINT FUNCTORS" 

BY 

S. B . N I E F I E L D 

ABSTRACT. Let Top denote the category of topological spaces 
and continuous maps. In this paper we discuss families of function 
spaces indexed by the elements of a topological space T, and their 
relationship to the characterization of right adjoints Top/S —» Top/T, 
where S is also a topological space. After reducing the problem to 
the case where S is a one-point space, we describe a class of right 
adjoints Top -» Top/T, and then show that every right adjoint 
Top -» Top IT is isomorphic to one of this form. We conclude by 
giving necessary and sufficient conditions for a left adjoint Top/T-* 
Top to be isomorphic to one of the form - x T Y, where Y is a space 
over T, and x T denotes the fiber product with the product topology. 

Introduction. A great deal has been written about "suitable" topologies on 
function spaces. Although most of it appeared during the past two decades, 
many of the problems can be traced back to a 1945 paper of R. H. Fox, 
entitled "On topologies for function spaces" [4]. In this paper Fox writes 

Given topological spaces X, T and Y and a function h from X x T t o Y 
which is continuous in x for each fixed t, there is associated with h a function 
h* from T to F= Yx , the space whose elements are continuous functions 
from X to Y. The function h* is defined as follows: h*(t) = ht, where 
ht(x) = h(x, t) for every x in X . . . It would be desirable to so topologize F 
that the functions h* which are continuous are precisely those which corres­
pond to continuous functions h. It has been known for a long time that this is 
possible if X satisfies certain conditions, chief among which is the condition 
of local compactness... several years ago, in a letter, Hurewicz proposed to 
me the problem of defining such a topology for F when X is not locally 
compact. At that time I showed by an example that this is not in general 
possible. Recently I discovered that, by restricting the range of T in a very 
reasonable way, one of the standard topologies for F has the desired 
property even for spaces X which are not locally compact... 

The existence of a bijection between continuous h* and continuous h is 
equivalent to the statement that X is cartesian in Top (i.e. the functor 
- x X : Top —» Top has a right adjoint). The characterization of cartesian spaces 
was dealt with by R. Brown [2], P. Wilker [13] and finally completed by B. J. 
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Day and G. M. Kelly [3] in 1970. Day and Kelly essentially showed that a 
space Y is cartesian if and only if the collection O(Y) of open subsets of Y is a 
continuous lattice in the sense of Scott [10]. 

The question of the necessity of local compactness of a cartesian space Y 
was answered affirmatively for separable metrizable spaces by Fox [4], and 
HausdorfT spaces by Day and Kelly [3]. For a non-Hausdorff space Y there are 
two notions of local compactness, the existence of a compact neighbourhood 
for each element of Y, and the existence of arbitrarily small compact neighbor­
hoods for each element of Y. In [5], K. H. Hoffmann and J. D. Lawson showed 
that a sober space Y is cartesian if and only if Y is locally compact (in the 
latter sense). They also give an example of a cartesian space which is not locally 
compact. 

Fox's idea of "restricting the range of T" led to J. Kelley's introduction of 
fc-spaces [8], and later Steenrod's compactly generated spaces [12]. Each was 
an example of a cartesian closed subcategory of Top (i.e. one in which every 
object is cartesian). On the other hand, in "Quasi-topologies" [11], Spanier 
generalized the notion of topological space to obtain a cartesian closed categ­
ory containing Top. 

A third function space problem dealt with topologizing the sets X x Y and 
Top(Y, X), for a fixed space Y, and all spaces X, so that - x Y is left adjoint to 
Top(Y, — ) as endofunctors of Top (where Top(Y,X) denotes the set of 
continuous maps from Y to X). In particular, continuous maps with domain 
X x Y must be continuous in x for each y (cf. the above quote of Fox). This 
problem was considered by R. Brown [1], [2], P. Wilker [13], and J. Isbell [6]. 
In "Function spaces and adjoints", Isbell showed that every adjoint pair of 
endofunctors of Top is of this form. 

In [9], Day and Kelly's characterization is generalized to the category Top/T 
of spaces over a fixed space T. After hearing about these results, F. W. 
Lawvere mentioned Isbell's paper and suggested that the methods of [9] be 
used to characterize adjoint pairs of endofunctors of Top/T, as Isbell did for 
Top. 

The author is grateful to Lawvere for this suggestion, and to Barry Mitchell 
for his helpful comments and encouragement. 

1. The reduction. Throughout this section all categories have finite limits. If 
A is a category, then |A| denotes the class of objects of A, and A(X, Y) 
denotes the set of morphisms from X to Y in A. If F: A —> B is a functor, and 
G is a right adjoint for F, we write F-\G. 

If Te |A | , then A/T denotes the category whose objects are A-morphisms 
X—» T, and morphisms are commutative triangles. An object X over T will 
sometimes be denoted by X without explicit reference to the projection 
X—> T. Note that if 1 denotes the terminal object of A, then A/1 = A. 
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If p : S -» T is a morphism of A, then composition with p induces a functor 
2 P : A/S -* A/T, which is left adjoint to the functor p* : A/T-> A/S denned by 
pulling back along p. If T = 1 and p is the unique map S —» 1, 2P and p* are 
considered as functors A/S —» A and A —> A/S, respectively and are denoted by 
2 S and S*, respectively. Note that 2 S is the forgetful functor. 

Given a functor F : B —> A/S, by composing with 2S , we obtain a functor 
F : B -> A together with a morphism F l —» S (i.e. F l considered as a morphism 
of A). A natural transformation r\:F—>G induces a natural transformation 
r\ : F —» G such that the diagram 

F I ^ U G I 

\r 
s 

commutes. Moreover, it is not difficult to show that a functor F : B —> A/S has a 
right adjoint if and only if 2 S ° F has a right adjoint [9, proposition 1.1]. 

Therefore, the category of left adjoints B—>A/S is isomorphic to the 
category of left adjoints F : B —> A equipped with a morphism F l —» S, with the 
obvious morphism. In particular, taking B = A/T, we see that to characterize 
left adjoints A/T —» A/S it suffices to determine all left adjoints A/T—» A. 

2. A class of adjoint pairs. First, we consider a general construction. Let 
G : A —» Sets/T be a functor, where A is any category. In addition, suppose Z 0 

is a weak terminal object of A (i.e. A(Z, Z0) is non-empty, for all Z 6 |A|), and 
a topology is given for GZ0 such that the projection to T is continuous. If Z is 
any object of A, let GZ denote the set GZ with the topology induced by the 
collection of all maps Ga such that a : Z —> Z 0 is a morphism of A. Using the 
fact that Z 0 is a weak terminal object, we see that the projection GZ —» T is 
continuous. Thus, G : A —> Top/T is a functor. Note that the identity GZ —» 
GZ need not be continuous. 

Now, suppose that we are given a family {Yt} of spaces indexed by the 
elements of a space T For the moment, we impose no topology on the set 
y= UteT^t. If Z is a space, let Top({Yt},Z) = L[ teT Top(Yt, Z), i.e. the 
collection of pairs (cr, t), where a : Yt —» Z is a continuous map. Then it is easy 
to see that Top({Yt}, - ) defines a functor Top —» Sets/T. 

Let 2 denote the Sierpinski space {0,1} with {1} open but not {0}, and let 
0({Yi))= \lteTO(Yt), where 0(Yt) is the collection of open subsets of Yt. If 
Y is any space, there is a bijection between open subsets of Y and continuous 
maps Y - > 2 . Thus, Top({Yt},2) can be identified with 0({Yt}), and in accor­
dance with the above principle with Z 0 = 2, a topology % on 0({Yt}), such that 
the projection to T is continuous, induces a functor Top —» Top/T which we 
shall denote by Top^({Yt}, - ) . Explicitly, the topology on Top^({Yt}, Z) has as 
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a subbase consisting of the collection of subsets of the form 

(K,W) = {((T,t)\(cr-1W,t)eK} 

where K G ! and W is open in Z. 
If A is a set, let 0({Yt})A denote the product over T of A copies of 0({Yt}) 

with the product topology. Elements of 0({Yt}) will be denoted by ((£4, 0 } a e A . 
Then % is a topological topology if the map U A • 0({Yt})A -> 0({Yt}) is 
continuous for every set A, and the map H A ' 0({Yt})A -> 0({Yt}) is continu­
ous for every finite set A. If A is empty, then U A , H A : T^> 0({Yt}) are given 
by t •-» ((f), t) and t*-*(Yt,t), respectively. Hence, LU an<3 PU are continuous if 
and only if for every K open in 0({Yt}) 

{t\(4>,t)eK\ and { r | (Y t , t ) eK} 

are open in T, respectively. In fact, this is precisely what we need to show that 
0({Y t})-> Top^({Yt},2) is continuous. 

If p : X - * T is a space over T, let p x{Yt} = {(x, y) | y e Ypx}. We shall say 
that a subset W of px{Yt} is open if W[x] = {y | (x, y)e W} is open in Ypx, and 
x »-» W[x] defines a continuous map X—» 0({Yt}). If Wa, a G A is a family of 
open subsets of px{Yt}, then (J Wa and f] Wa (if A is finite) correspond to the 
compositesX-^ 0({Yt})A - ^ 0({Y t})andX-* 0({Yt})A - ^ > 0({Yt}),respec­
tively. Thus, if % is a topological topology, then the open subsets of px{Yt} 
define a topology, and we shall denote the resulting space by px^{Yt}. 
Conversely, if the open subsets of px{Yt} form a topology for every space X 
over T, then taking X = 0({Yt})A and the identity X ^ 0({Yt})A, we see that 
% is a topological topology. In this case, it is easy to see that a continuous map 
X —> X ' over T induces a continuous map p x^{ Yt} -» p' x^{ Yt}, and it follows 
that -x^{Y t } defines a functor Top/T-> Top. 

PROPOSITION 2.1. 1/ {Yt} is a family of spaces indexed by the elements of T, 
and jf{ is a topological topology on 0({Yt}), then — xx{Yt}-\ Top^({Yt}, - ) . 

Proof. Suppose that X is a space over T with projection p, and Z is a space. 
Let i7:X^Top^({Y t},px^{Y t}) and e : Top^({Yt}, Z ) x ^ { Y t } ^ Z be given 
by TJ(X) = ((x, - ) , px) and e((cr, t), y) = cry. 

If W is open in p x^{Y t}, let w : X - * 0({Yt}) and * w : X x ^ Y J - * 2 be the 
corresponding continuous maps. Consider the diagram 

X^^Top^{Ytlpx^{Yt}) 

w \ ToP3f ({Yt},xw) 

0({Y t})sToPa,({y,},2) 
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If KeX, then T]~\(K, W)) = T\-1 Top^({Yt},Xw)'\K) = w-1(K), and hence r\ 
is continuous since w is. 

Now, suppose that W is open in Z, and Xw '• Z —» 2 is the corresponding 
continuous map. Then 8_1(W) = e"1Xw(l) is open in Top^({Yt}, Z)x^{Yt} 
since the induced map Top^({Yt}, Z) —> 0({Yt}) = Top^({Yt}, 2) is 
Topx({Yt}, Xw)- To complete the proof one checks that the adjunction iden­
tities hold relative to TJ and e. 

3. The characterization. If p : X -* T is a continuous map and t G T, then the 
fiber o/ X over t is the set Xt = p~xt with the subspace topology. If t: 1—> T 
denotes the constant f valued map, then there is a bijection between elements 
of Xt, and morphisms f -> p of ToplT. 

Let G : Top —» Top/T be a functor with a left adjoint F Then there is a 
natural bijection 

0 : Top(Fp, Z) -> ToplT{p, GZ) 

which is natural in p : X—» T and Z. Taking p = f, we see that (GZ)t can be 
identified with Top (Ft, Z). Applying naturality to one point embeddings x : 1 —> 
X, considered as morphisms t-> p, we see that 6(f)(x) is identified with 
R - ^ F p - U x , where xeXt. 

LEMMA 3.1. Every space can be embedded as a subspace of a product of copies 
of the Sierpinski space 2 and the indiscrete space 2. 

Proof. It is well known that every T0 space can be embedded in a product of 
2's. For a non-T0 space, copies of the indiscrete space 2 are added to 
"separate" points. 

LEMMA 3.2 (Isbell [6]). If F is a left adjoint endofunctor of Top, then F 
followed by the forgetful functor Top -» Sets can be expressed in the form — x F l . 

Proof. If X is a space, then since F preserves epimorphisms, we have a 
continuous surjection F( l l x e X 1)—»FX. Then since F commutes with corn-
products we have a natural surjection 

(1) X x F l - ^ F X 

It is easy to see that (1) cannot identify distinct points with the same first 
coordinate, since every element of X is a retract as a space. 

Suppose D is a directed set, and X = D U 1 with the following topology. A 
subset U of X is open if 1 ^ U, or if 1 e U and U contains a subset of the form 
{x e D | x > d}, for some deD. For any distinct pair of elements, X can be 
written as a coproduct separating the given element. Then, since F preserves 
coproducts, it follows that if X is of this form, (1) cannot identify two elements 
with different first coordinates. 
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Finally, using the fact that directed sets (i.e. nets) are enough to determine 
topologies we see that every space can be expressed as a colimit of "directed 
sets", and since both sides of (1) are colimit preserving it follows that (1) is a 
bijection for any space X. 

Note that Isbell's proof of the above lemma uses Hausdorff ultraspaces 
rather than directed sets. 

Let T-Top denote the category whose objects are pairs ({Yt}, $f), where {Yt} 
is a family of spaces indexed by the elements of T, and $f is a topological 
topology on 0({Yt}). A morphism / : ({Yt},3f)-> ({YJ},3if') is a family of 
continuous maps ft : Yf —» Yt such that the induced map 0({Yt})—> 0({Yf}) is 
continuous. 

THEOREM 3.3. T-Top is equivalent to the category of right adjoints Top —> 
Top/T and natural transformations. 

Proof. Let T denote the following functor. If ({Yt}, %) is an object of T-Top, 
by Lemma 2.1, r({Yt}, jf{) = Top^({Yt}, - ) is a right adjoint Top —» Top/T A 
morphism / : ({ Yt}, JC) —> ({ YJ}, JC) induces a natural transformation 
r ( / ) : Topx({Yt}, -)-^Topx({Y't}9 - ) given by r ( / ) z ( ( a , 0) = (o"°/t, 0, where 
<T : Yt —» Z is a continuous map. 

First, we claim that T is full and faithful. A natural transformation 
T) : Top%r({Yt}, -)—» Topw'({Y't}, -) induces a natural transformation 
T} : - x^{Y{) —» - x^{Y t}, and hence a family of continuous maps f\t : Y\ —» Yt, 
since tx^{Yj}= YJ and tx^{Y t}= Yt. It is easy to see that the corresponding 
map 0({Yt})-^> 0({Y't}) is precisely rj2. Therefore T is full since 
{^t}:({Y t},^f)-^({Y;},^) is a morphism, and r({Tjt}) = r). To see that T is 
faithful, we note that if / : ({Yt}, X) -* ({Yf}, 3îf), then r(/)Y t((lY t , t)) = (ft, t). 

To see that T is an equivalence of categories it remains to show that every 
right adjoint G : Top -» Top/T is isomorphic to one of the form Top^({Yt}, - ) , 
where % is a topological topology. 

Suppose F -\G. As before, we can identify (GZ\ with Top(Ft,Z). Letting 
Yt=Ft and identifying 0(Yt) with (G2) t we obtain a family {Yt} of spaces 
together with a topology X on 0({Yt}) such that the projection to T is 
continuous. If / : Z—»2 is a continuous map, consider the diagram 

G Z _ i ^ 7 W { y t } ? Z ) 

(2) of ToMTO.f) 

G2^-rTopx({Yt},2) 

where the rows are bijections and all maps, except possibly <f>z, are continuous. 
But Top%r({Yt}, Z) has the topology induced by all maps 
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Topx({Yt}, f) : Top({Y t},Z)-»Top({Y t},2)-*G2, and so <f>z is continuous 
since Gf is. In particular, </>2 is a homeomorphism. 

We would like to show that <f>z is a homeomorphism for every space Z. First, 
we show that K is a topological topology. Consider 2 as a poset with the order 
topology. Then sup : 2A—»2 is continuous for every set A, and inf : 2 A - ^ 2 is 
continuous if A is finite. Applying the fact that G preserves products we get 

continuous maps ( G 2 ) A ^ G(2A) ^^U G2 and (G2) A -^ G(2A) ^ ^ - > G(2), 
and by commutativity of (2), we see 'that these composites are U A a n d 
HA> respectively. 

Finally, since G and Top^({Yt}, - ) preserve subspaces and products (being 
right adjoints), by Lemma 3.1, it suffices to show that <f>2 is a homeomorphism, 
where 2 denotes the indiscrete two point space. 

Recall that Top^({Yt}, Z) has a basic family of open subsets of the form 
<K, W> = {(or, t) | (a-1 W, t)eK}, where KeX and W is open in Z. When Z = 2, 
it is easy to see that every open subset is of the form IJteu Top(Yt, 2), where U 
is an open subset of T. 

^ G t* 

Now, consider the functor Top -* Top/T —> Top, where t : 1 —» T is the 
constant t valued map. By composition of adjoints, t* ° G has a left adjoint, 
and so using Lemma 3.2 it is not difficult to show that (G2)t = (t*° G)(2) is 
indiscrete, i.e. one shows that every map X—> (G2)t is continuous. Thus, every 
open subset of G2 is of the form U t eL7 (G2)t, where l / ç T. To see that V is 
open, it suffices to show that G2 admits a global section. But Top/T(lT, G2) = 
Top(FlT, 2) which is clearly nonempty. Therefore, <t>2 is a homeomorphism, 
and the proof is complete. 

COROLLARY 3.4. Every left adjoint F: Top/T —» Top followed by the forgetful 
functor Top —> Sets is of the form — xTY, for some space Y over T 

Proof. By Theorem 3.3, F= x^{Yt} where {Yt} is a family of spaces indexed 
by the elements of T, and % is a topological topology on 0({Yt}). Taking 
Y= LlteT^t with the coproduct topology and the obvious projection to T 
gives the desired result. 

If ({Yt}, 3f£) is an object of T-Top we can also obtain a topology on the set 
Y= l l t e T Yt by identifying it with 1T x^{Y t}. First, we discuss several proper­
ties of topological topologies. 

Let {Yt} be any family of spaces indexed by the elements of T. A subset K of 
0({Yt}) is saturated if whenever ((7, t)eK and [ / ç VeO({V t}), then (V, t)e 
K. K has the finite union property (fup) if whenever ( U A ^«> t)eK and 
{Ua}aeA Ç 0(Yt), then ( U F Ua9 t)eK, for some finite F^A. A topology % on 
0({Yt}) is saturated or has the finite union property if every KeX does. Note 
that when T = 1, then the collection of saturated subsets of O(Y) with /wp is 
known as the Scott-topology on the lattice 0(Y). 
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LEMMA 3.5. Let % be a topology on 0({Yt}) such that the projection to T is 
continuous. If U A : 0({Yt})A —> 0({Yt}) is continuous for all A (in particular, if 
% is topological), then % is saturated and has the finite union property. 

Proof. Suppose that (U, t)eKeJ{, and A is an infinite set. Let Ua = U for 
every aeA. Then since U A *S continuous and K is open in 0({Yt}), we can 
find a basic open neighbourhood of ((Ua, t))aeA which maps into K. If 
U^Ve 0(Yt), then some element ((Va, t))aeA of this neighbourhood is such 
that Va = U for all but one a, and Va = V for that a. Thus, (Vt,t) = 
U A (( K , t))aeA e K, and so K is saturated. 

To see that K has fup, suppose that {£/ a } a e A ç 0(Yt) and (UA Ua, t)eK. 
Then there is a basic open neighbourhood of ((14, f))«eA which maps into K 
under UA» a n d in this neighbourhood there is an element of the form 
((Va, t))aeA, where Va = 0 for all but finitely many a, and Va = Ua otherwise. 
Therefore, (\JF Ua, t)eK, for some finite F^A, proving that K has fup. 

Suppose that ({Yt},3f) is an object of T-Top, and let Y = l T x ^ { Y t } . It is 
easy to see that the projections p x^jYJ—» X and p x^{Y t}-> Y are continu­
ous for every p r X ^ ^ T in Top/T. In particular, when p = 1T we have con­
tinuity of the projection TT : Y-*T. Therefore, it follows that the identity map 
px^{Y t}—>XxTY is continuous. Now, the space Yt is not necessarily a 
subspace of Y, but the inclusion Yt^>Y is, in general, continuous. If - x^{Y t} 
preserves embeddings, then clearly, Yt is a subspace of Y If points of T are 
locally closed (i.e. for every t G T there exist U open and F closed in T such 
that {t}= UHF), then an open subset Ut of Yt comes from an open subset of 
Y, namely U= Ut U7r_1(Y\{F}) which is open in Y since the corresponding 
map T-> 0({Yt}) is continuous by Lemma 3.5 and the fact that {t \ (Yt, t)eK} 
and {t | (<£>, t) e K} are open in T whenever Keffl. Thus, we have the following 
corollary. 

COROLLARY 3.6. If points of T are locally closed, and F: Top/T —» Top is a 
left adjoint, then F followed by the forgetful functor is of the form — x T F ( l T ) , for 
some continuous map F(1T) —> T. Moreover, if S is any space, then every left 
adjoint F: Top/T -» Top/S can be expressed in the form 

Top/T^+ Top/Xs oF(lT)^>Top/S 

where f: 2 S °F(1T)—» T is a continuous map and the underlying set of " /*" is 
given by pulling back along f. 

LEMMA 3.7 (Isbell [7]). If Y is a space and % is a T0 topological topology on 
0(Y), then {0} = {V | V g U}, for every UeO(Y). 

Proof. First, we note that {V| V ç U}^{Û} since % is saturated. On the 
other hand, if Ve{Û}, then Ue{UU V} since % is saturated, and LTU Ve{0} 
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since U : 0 (Y)x 0 ( Y ) - H » O(Y) is continuous. But % is T0 topology, and so 
t /U V= U. Therefore, V ç [ / . 

Suppose that Y and Z are spaces. Recall that the pointwise topology on 
Top(Y, Z) is the topology induced by the collection of all evaluation maps 
evy : Top(Y, Z) —• Z, where y G Y. In particular, the pointwise topology on 
O(Y) is generated by all subsets of the form {Ue 0(Y) \ y G U}, for some fixed 
y G Y It is not difficult to show that the pointwise topology is necessarily T0. 

COROLLARY 3.8. Let F: Top/T —> Top be a functor with a right adjoint G. 
Then F= - x T Y for some cartesian space Y over T if and only if F preserves 
subspaces and (G2)t contains the pointwise topology for all t G T. 

Proof. Suppose that F=-xTY, for some cartesian space Y over T. Then 
clearly F preserves subspaces. To see that (G2)t contains the pointwise 
topology we note that the open subsets of (G2)t are precisely the saturated 
subsets of 0(Yt) which have the finite union property [9]. 

For the converse, suppose that ({Yt}, ^f) corresponds to the right adjoint G, 
and let Y=lTx^{Yt}. Then as before, the obvious projection IT: Y-+T is 
continuous. Now, by Lemma 3.1, every space over T can be embedded as a 
subspace of one of the form TT3 : 2

A x X x T—» T where A is a set, and X is an 
indiscrete space. Thus, since F and — x T Y preserve subspaces, it suffices to 
show that the induced continuous bijection TT3 X%.{ Yt} -> (2A x X x T) x T Y is a 
homeomorphism. 

Suppose that W is open in 7r3x^{Yt} and let w : 2 A x X x T - ^ 0({Yt}) be 
the continuous map given by w((sa), x, t) = {y \ (((sa), x, t), y)e W}. First, we 
note that if (sa), (s«) G 2 A where sa < s'a for all a, and x, x' e X, then by Lemma 
3.7 w«sa>, x, t) c w«si>, x', t), for every f G T. Fix («sa>, x, f), y) G W, and let K 
be an open subset of 0({Yt}) such that Kt={(U,t)\ye U}. Then by continuity 
of w there exists ( m a ) e 2 A such that m^^s^ for all a,mot = 0 for all but 
finitely many a, and w((ma), x, 0 ^ ^ - Now, the map / : Y-> 7r3xx{Yt} defined 
/(y) = (((nOjXj fry)» y) is continuous since it arises by applying -x^{Yt} to 
the obvious continuous map T -> 2 A x X x T over T. We claim that the 
neighbourhood V = ({(s'J \ ma < s'Jx X x T) x ^ " 1 W of («sa>, x, t), y) in (2A x 
X x T) x T Y is contained in W. To see this note that if («sj), x', f'), y') e V then 
y '€w((m a ) ,x , t ' )çw((s ; ) ,x ' , t ' ) , and so («s^>, x', 0 , y')G W. 
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