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CONTINUITY OF THE SUPERPOSITION OPERATOR
ON ORLICZ-SOBOLEV SPACES

G. HARDY AND H.B. THOMPSON

We give sufficient conditions for a homogeneous superposition operator to be a con-
tinuous mapping between Orlicz-Sobolev spaces. This extends a result of Marcus
and Mizel concerning mappings between Sobolev spaces.

1. INTRODUCTION

Let Q be a domain in R", let M(£l) be the space of real measurable functions
defined on O, and, for a Borel measurable function / : R —» K, define the homogeneous
superposition operator Tf : M(Q) —> M(£l) by

(1.1) Tfu = fou, u e ^ ( f i ) .

In [9], Marcus and Mizel show that (under certain conditions) Tf is continuous as
an operator from the Sobolev space WllP(£l) to the Sobolev space W1>r(Q). Here we
consider the continuity of Tf on Orhcz-Sobolev spaces, and show that results analogous
to those of Marcus and Mizel (for 1 < p < oo) hold for Orhcz-Sobolev spaces.

We remark that in both [5] and [8], results were obtained for the non-homogeneous
superposition operator Tf acting on vector-valued functions u = («i,- • • ,um), where
Tf is defined by

(T,u)(x) = f{x, u[x))

for / : fix Rm -> R. An example, given in Section 6, suggests that we cannot expect
to obtain theorems on continuity of the type found here and in [9] in the general case.

2. PRELIMINARIES

ORLICZ SPACES. We shall use the properties of N -functions and Orlicz spaces as given
in [7]. A brief summary of most of the definitions and theorems we need can also be
found in [2]. To set the notation, and for later reference, we list a few properties below,

(i) An TV-function M satisfies the A2-condition (or M £ A2) if there exists a
constant uo ^ 0 and a real-valued function jfejif such that

M(lu) ^ kM(l)M(u) for u ^ wo, I > 1-
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(ii) If M is an N -function, the Orlicz Space LM = LM(&), is the set of all functions
u, measurable on fi, such that there exists a constant A > 0 such that J"n M{Xu) < oo.

(iii) We shall use either the Luxemburg norm

\\H\M = IIMIIMn = mf { A > 0 : / M(u/X) ^ l)

or the equivalent Orlicz norm

\\U\\M = S U P w \ u v I r

according to convenience. (Here M(v) — sup{u | v \ — M(u)} denotes the N-function

complementary to M.)
We have the following expressions for the norms of the characteristic function of a

measurable set A C 0,:

( 0, if mN{A) = 0,
O = \ — -

1 / A\ Tp—1 f-| / _ _ / ^ J ^ l rn (A\ V (1

f 0, if TTIN{A) = 0,

where mjv(-) denotes Lebesgue measure in
(iv) Let P and M be TV-functions, where M G A2.
( a ) Suppose PoM~1 is an iV-function. If u G Zp(f2), then MouE -̂

and

ll|M(t0l||pOM-i ^ const (1 + *M(II«IOP))-

If further P o (M' ) - 1 is an N -function, and M'is strictly increasing, then

< const (l + *M,(|||u

(See [5].)
(v) If R and P are N -functions, we write R =4 P ii there exist constants u

Jfe such that R{u) ^ P(fcu) for all u > ii0; and R -< P if lim R(\u)/P(u) = 0 for all
A > 0 .

(vi) For il -< P, the multiplicator space LR : Lp is defined as the set of all
functions v on fi such that tiw G i/R for all u G £p . We define the N -function ii : P

by
(R : P){u) = sup{R(uv) - P{v)}

>0
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and then

LR : Lp — LIUP-

( See [1].)

(vii) Let P be a strictly convex N -function satisfying the A2-condition. If both

un -> u £~(ft)-weakly and | |u»Hp n -» IIMIIpn> t h e n l l l u n - « | l p n ^ 0 as n ^ 00.

(See [6].)

(viii) If P £ A2, then u £ Lp(Q) has an absolutely continuous Lp norm; that
is, given, e > 0, there exists 8 > 0 such that, for every measurable set E C fi with

< 6, we have

(The same result holds with |||-||| instead of ||-||.)

ORLICZ-SOBOLEV SPACES. We shall use the definitions and properties of Orhcz-
Sobolev spaces as given in [2].

(ix) The Sobolev conjugate N -function i3, of an N -function P is defined by

r\»\
~1(s)= / P" 1 ^)*- 1

Jo

where it is assumed that, if necessary, P(t) is redefined for small values of t (giving an
equivalent N -function) so that

(x) The Orlicz-Sobolev space WlLp{0.) is defined as the set of all functions u in
Lp(Q) whose distributional derivatives diu also belong to Zp(fl).

A norm Hu^ p [ ) = \\u\\i p may be defined on W1Lp(Q) by

N l i . p = m a x { N l p » \\diu\\p ,-•-, \\dNu\\p}.

(xi) If Q is a bounded domain in KN satisfying the cone condition, we have the
following continuous imbeddings:

(a) if P-1 (00) = oo, WlLp{tt)-+Lp.in);
(b) if p-\oo) < 00, w1LP{Si) -»ioo(n) n c (n) .

(xii) Let j4(f2) denote the set of all functions u, measurable on f2, such that for
almost all lines r parallel to any coordinate axis Xi, i = 1, • • • , N, u is locally absolutely
continuous on rd f i . The Orlicz-Sobolev spaces W1Xp(f2) may be given an alternative
characterisation in terms of the class A(£l), as follows:
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Let Q be a bounded domain in M.N with the cone property, and let P be an N-

function. A function u defined on fi is in W1 Lp(Q) if and only if there exists u 6 A(Q)

such that

(a) u — u almost everywhere in fi;

( b ) du/dxi e i p ( f i ) , (i = i,--,N).

Further du/dxi — d{U almost everywhere in fi. See [4] and [5].

3. SUPERPOSITION OPERATORS MAPPING

W1LP(p) INTO W1LP{to)

Let Q be a bounded open subset of KN, let / : R —> R be a uniformly Lipschitz
function, and let /* : R —» R be any Borel function (which may be taken to be bounded)
such that / * = / ' almost everywhere in R. By using the arguments in Section 2 of
[8] (replace their Lemma 1.5 by our 2(xii)) we can show that 2.1 in [9] holds for Orlicz
spaces; that is,

! f fou G W1Lp(Q) \

I ®i{f O t t ) = (/* ° w)9iU almost everywhere in fi. /

We can now modify the proof of Theorem 1 in [9] to obtain the following:

THEOREM 3 . 1 . Let fi and f be as above, and let P be a strictly convex N-
function satisfying the A2 -condition. Then the mapping Tf : W1Lp(Q) —» W1Lp(Q)
is continuous.

PROOF: Let un —> u in W1Lp(£l). By proceeding as in the proof of Theorem 1
(p > 1) in [9], we find that f oun —> f ou in Lp(Q) and that

(3.1) di(foun)-+di{fou) E~{Q)- weakly.

If /* is the characteristic function of a Borel set, g*(t) = f*(t) - 1/2, and g(t) =
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f(t)-t/2, then

\\9i{g oun)\\pn = sup \[g*(un)diun]v\

= SUP /

= SUP

= sup

(3.2) i

By 2.1 (vii), (3.1) and (3.2), di(g o un) -> #<(</ o u) in i P ( ^ ) , and so di{f o un) -»
9j(/ o w) in Lp(tt) , in this case.

The proof of Theorem 3.1 can now be completed as in the proof of Theorem 1
(p > 1) in [9]. D

4. VITALI'S THEOREM

We shall need a version of Vitali's convergence theorem for Orlicz spaces. The
following is adequate for our requirements.

THEOREM 4 . 1 . (Vitai'J. Let Cl C KN iave finite measure, let P be an N-
function, let {/n} be a sequence in Lp(Q), and let f be a measurable function on fh
Tien t ie following two conditions are sufficient for the convergence of {fn} to f in
LP({1):

(i) {/"} converges to f in measure.
(ii) For each e > 0 tiere is a 6 = S(e) > 0 suci tiat if A C RN and

mjv(>l) < 6, then

II/»XA||IPIO < e for all n 6 N,

wiere N denotes the set of all positive integers.

If P G A2, tien (i) and (ii) are necessary for {/„} to converge to f in Lp(Cl).

PROOF: It is convenient to introduce the following notation: for m ^ 1, n ^ 0,
and a > 0, let

(4.1) Amn = Amn{a) = {x<EQ: \fm(x) - fn(x)\ > a} .
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Observe that

(4-2) • l l l /m-/n| |p,n^a| | |x^mj | |p,n-

(a) Sufficiency. Suppose (i) and (ii) hold. Let e > 0, let 6 be as in (ii), and

let a — e/ |||xo||pn- From (i), there exists a positive integer K = K(e) such that if

m,n > K

(4.3) mN{Amn) < 6.

From (ii) and (4.3),

(4-4) \\\fiXAmJ\Pin<e

for all i £ N and m,n > K.

Thus, using (4.2) and (4.4), we have

Ill/m - /n|||p,n ^ | |(/m - /n)Xfi\Amn ||| p.f, + W\fmXAmn lllp.O + IU/nXAmn |||p,n

for TO, n > K.

Therefore {/n} is Cauchy in Lp(Q) and converges to a limit / in Lp(Q.). From
(4.2), with /o — / , it follows that {fn} converges to / in measure. Hence f = f

almost everywhere in fl, and so {/n} converges to / in Lp, as required.

(b) Necessity. Now suppose P £ A2 and |||/m - / | | | p n -> 0.

From (4.2), with /o = / , it follows that {fm} converges to / in measure. Thus

(i) holds.

We now show that (ii) holds. Let e > 0, and choose K so that

(4.5) | | |/m - /Hip,,, < e/2 for m > K.

From 2 (viii) we may choose 8 > 0 so that

(4-6) lll/||| < \

and

(4.7) l l l / ,
if mN(A) < 6. From (4.5) and (4.6),

11/mXAllp.n < \\\(fm ~ f)XA\\\p,0 + \\\fXA\\\P,a

(4.8) < e if m > K.

From (4.7) and (4.8), (ii) follows. D

The following lemma is needed in our application of Vitali's theorem - Lemma 4.3.

Lemma 4.3 is used in Theorem 5.4.
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LEMMA 4 . 2 . If \\\uxA\lQta < 1 for measurabie A C ft, and if M and Q are
N -functions such that Q o M~x is an N -function, then

(4-9)

P R O O F : Since HIUXAHIQ^ ^ 1,

|||«XA|||g,n = mf JO < A < 1 : jf Q ( ^ ) ^ l } .

For 0 < A ^ 1, M(u/>.) ^ M(u)/\, so

Q o M'1 o M(u/\) >Qo Af " ^

[ Q(u/\)> I Qo
JA JA

i n f | o < A ^ l : / Q ( u / A ) < l | ^ inf j o < A ^ l : / Q o A f - ^ A f ^ J / A ) < l | .

(4.9) follows readily from the last inequality. U

LEMMA 4 . 3 . Let Q, M, and R be N -functions such that

(i) QeA2;

(ii) Q o M~l is an N-function;

(iii) R^Qo M'1.

Let Cl C R w have Suite measure, and let f : E —» E be a continuous function such

that there exist constants a, b and c such that

(iv) \f(t) \^c + a\t | +bM{t) for all <<=E.

If un —m. in LQ(CI), then f(un) —* f(u) in LR(Q).

PROOF: Since un —> u in LQ(CI), by Theorem 4.1 there exists TJ > 0 such that if

< T] then

(4.10) llkou|IL,n *: 1 forallne

From (iv),

ll/(«»)XA||K,n ^ C\IXA\\\RIO + O | K

(4.H) +b\\\M(un)XA\\\R<n.

From Lemma 4.2, (4.11), and (iii), if mn(A) < rj

a < c o n s t
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Since (iii) implies that R =4 Q, for mN(A) < r\, we have

(4-12) I I I / («»)X^I0K, O ^ fl[||IXA|||QlO + IlknXAlIg.n]

for all n G N and some constant D.

We may partition Q into a finite number of subsets fi; such that m.N(Qi) < TJ.

From (4.12), f(un) £ ^ ( f i i ) , and hence f(un) £ LQ(Cl).

Since un —> u in measure and / is continuous, f(un) —* f{u) in measure.

We choose 8\ so that

I I H I < fo(A)<*

Using Vitali's theorem, we choose 82 so that

IllwnX l̂llp.n < 1^ for all n £ N and mN{A) < S2.

Thus, by (4.12),

ll/(«n)XA||H,o<e for all n 6 N,

if rriN^A) < 6 = min(77, Si, 82)-

By Vitali's theorem, / («„ ) —> f(u) in ifl(fi) , as required. D

5. SUPERPOSITION OPERATORS DEFINED BY FUNCTIONS

BOUNDED BY JV-FUNCTIONS

We first give a lemma, corresponding to Lemma 3 in [9].

LEMMA 5 . 1 . Let Q be a bounded domain in HLN satisfying the cone condition,

and let f : K. —» R be a locally Lipschitz function. Let P and R be N -functions.

Suppose that one of the following sets of conditions holds:

(a) P - ^ O O ) < 00 and R = P;

or

(b) P+
-1(oo) = 00 and there exists an N-function M € A2 such that M' is strictly

increasing and

(5.1) \f'(t)\^a + bM'(t),

where a and b are constants. Suppose further that P* o (M') - 1 and P* o M~1 are the

principal parts of N -functions (completed, if necessary, by the procedure described in

[5], page 16) and that

(5.2) R<P,

(5.3) R: P^P»o(M')~\

(5.4) R^P.oM-1.

(5.5) If u e W 1 L P ( Q ) , t h e n f o u £ W

https://doi.org/10.1017/S0004972700009576 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009576


[9] Orlicz-Sobolev spaces 67

and

(5.6) 9j(/ o«) = (/* o ti)9ju almost everywhere in Cl.

PROOF: Case (a) of the theorem follows from the Orlicz-Sobolev imbedding theo-
rem 2(xi)(b).

Now suppose the hypotheses (b) hold. Let v — f o u. By 2(xii), there ex-
ists u G A(fl) such that u = u almost everywhere in £2, and then v = f o u =
v almost everywhere in fl. From (5.1), (5.2) and (5.3),

dv
bM'

R,n
\

const
du

const I I N

»l l lp ,n

| | l i P i n

From the Orlicz-Sobolev imbedding theorem 2(xi)(a), |||u|||pt n < oo, so by 2(iv),

DWlpMMT1* < °°- T h u s w e h a v e

(5.7)
dv_\
dx{ fl,n

Integrating the inequality (5.1), we obtain

\f(t)-f(O)\^a\t\

Therefore, using (5.2) and (5.4),

(5.8)

^ const [||«|||Pin + |«M(u)|||PtoM_1)n]

< oo

from 2 (iv), because |lw|||p.in<oo • (5-7) and (5.8) establish (5.5), and then (5.6) follows

from 2(xii). •

EXAMPLES OF JV-FUNCTIONS SATISFYING THE CONDITIONS OF LEMMA 5.1.

EXAMPLE 5.2. Suppose q > 0, and for 1 < r < p < N, define r : p by

1 _ 1 _ 1
r : p r p

https://doi.org/10.1017/S0004972700009576 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009576


68 G. Hardy and H.B. Thompson [10]

and p* by

- 1 - I_ L
V* P N'

Now suppose that

(5-9) « - '
p* r : p

Let R(t) = l/r\t\r,P{t) = l/p\t\', and M(t) = l / (g + 1) |<|9+1. Then P.-^oo) =
oo, R -< P, M (E A2 and M'(t) is strictly increasing for t > 0. An elementary calcula-
tion (see 2(ix)) shows that

From (5.9), we have
R: P

It follows from (5.9) that

r v*
from which we obtain

This example shows that our Lemma 5.1 contains Lemma 3.1 (for r < p < N) in [8]
as a particular case. For p > N, and r = p, we obtain Marcus and Mizel's result by
defining P as before.

NOTE 1. There appears to be a typographical error in [9]. In the statement of Lemma
3, part (b), the case p<N "l/r^(q + l)/p" should read "1/r ^ (q + l)/p*".

NOTE 2. In the case of power functions (5.4) follows from (5.3). It would be interesting
to know if the same holds in the general case.

EXAMPLE 5.3. Suppose M, P, and R are N-functions such that

(i) M'{u) is continuous and strictly increasing for u > 0,

(ii) l £ A 2 ,
(iii) P,-i(oo) = oo,
(iv) R~l{t) - M' o P'1^) • P-1(<) for large t,
(v) P* o (M')~ is an N-function.

Since R -< P is equivalent to lim (P~1(<))/(i2~1(<)) = 0, (5.2) follows from (iv).

It was shown in [5] (Lemma 3.3) that (i), (iii), (iv) and (v) imply that

Mttvllo^ Const Ihllo . , „ „ - ! ollttlO,,,,
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whence (see 2(vi))
iP..(M')-»(n)^£*

and so (see [7], Theorem 13.1)

Thus (5.3) holds.

It was also shown in [5] that (i), (iii), (iv) and (v) imply that P* o M~l is the

principal part of an N-function and that R* ~ P* o M~1. (5.4) then follows from the

fact that R^ Rt. (See [3], Lemma 4.14.)

We can construct particular cases of N -functions satisfying (i) - (v) of Example

5.3 by taking M and P to be power functions, as in Example 5.2. (iv) then defines -R

as a power function.

It was shown in [5] that there exist N -functions satisfying (i) - (v), for which only
P was a power function: for 1 < p < N define P(t) by P(t) = c\t\p (c a constant),
for q > 0 define M by M(t) = \t\q+1 (In \t\ + 1) for large t and define R by (iv) for
large t. For the details, see [5].

Theorem 5.4 below corresponds to Theorem 2 in [9].

THEOREM 5 . 4 . Let f, M, P, R and fi be as in Lemma 5.1, and suppose further

that P G A2 and is strictly convex. Then the mapping Tf : W1LP(n) -> W1LR(n) is

continuous.

PROOF: Let / : R - » l be locally Lipschitz and un converge to u in W1Lp(Q).

We need to show that

(5.10) Tfun -» Tfu in W1LR(Q.).

We consider the case |||wn|||Loo/n\ is unbounded; the case llunlll^/n) *s bounded
follows similarly to that in Theorem 2 of [9].

Suppose that / , M, P and R are as in Lemma 5.1 (b), and that P 6 A2 and is
strictly convex.

Let w E W1Lp(Q) and c > 0. Following [9], we use the notation

SiW = (/* o w)diiv, i = 1, •• • , N

Ac(w) = { i £ f i : |io(z)| > c}

wc = hcow

where hc{t) = t for |t| ̂  c, hc(t) = +c(-c) for t > c(< - c ) . Then

Siiuc = 0 almost everywhere in Ac(w)

SiWc = SjW almost everywhere in fi \ Ac(w).
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For the details, see the proof of Theorem 2 in [9].

Since un —> u in Zp.(fi), Lemma 4.3 shows that Tjun —> T/u in LR(CI). By Theorem

3.1, un<c —> uc in Wr lXp(n), and so TfUn>c —> T/uc in PF1ip(J7). This implies that

(5.12) S;un,c -> 5,uc in Lfl(fi)

because R -< P.

Because tin converges in W1Lp(£l), the sequence |||Mn|||p n is bounded, from the
Orlicz-Sobolev inequality, and therefore so is the sequence \\\M'(un)|||p<o(jvfM-1 n >
2(iv). Then

|||ft««,c-5,-«B||JliO ^ |||5<«Bx^(.B)|||JIiO

where Ci, C2 and C3 are constants. Similar arguments show that

(5-14) |||5,-Uc - 5it»URin < C4 | | | |

where C4 is a constant.

Let e > 0. By Vitali's Theorem and 2(viii) we may choose 6 > 0 so that both

and

if mN(A) < S. As shown in [9], we may choose n(6) and c(6) so that mN(Ac(u)) < 8

and mjv(-Ac(ttn)) < 5 for n ^ n(^), c ^ c{8). We thus have

(5.15) \\SiUn,c - Siun\\Rja < e

and

(5-16) \\\Suc - 5 « | | H i 0 < e

for n ^ TI(6) and c ^ c(5).

(5.12), (5.15) and (5.16) show that

(5.17) Siun -» Sfu in

The theorem follows from (5.10) and (5.17).
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6. NONHOMOGENEOUS SUPERPOSITION OPERATORS

It is natural to ask if any of the continuity results for homogeneous superposition

operators extend to the nonhomogeneous case. We construct / : E ! - t R which is

uniformly Lipschitz continuous and a sequence u; converging to 0 in Wx'°°[—ir, •K]

such that Tf(u{) does not converge in W1'2[—TT, TT] to T/(0) = 0, where

Tf(u){x) = f(x, «(*)).

Then Tf : W1>oo[-ir, TT] -> Wll2[-ir,n]. If / is independent of x, then 2> is contin-

uous in W1>2[—7r,7r]. In view of these observations it is difficult to see what necessary

and sufficient conditions can be given for nonhomogeneous operators.

EXAMPLE6.1. For each natural number n set f(x,2~n) = 2~nsin2"a; and f{x,0) = 0.

Thus |/,.(a;,2~n)| = |cos2"z| < 1 for all n. Assuming n<m

| / ( x ,2~ n ) -f(x,2-m)\ < |2-nsin2na; | + |2~msin2" lx |

<; 2~n+1

^ 4 | 2 - n - 2 - " l |

and \f(x,2~n) - / ( x , 0 ) | = |2-"sin2nx| = |2~n - 0|.

Thus / is uniformly Lipschitz on the closed set

G = {(x, y) £ [-7r,7r] X R : J / = 2~", some n, or y - 0} .

Extend / to [—7r,7r] X R with the same Lipschitz constant. Let un = 2~n so un

converges to 0 in W^llO°[—7r,7r]. We show Tf(un) does not converge in PF1|2[—7r,7r] to

2/(0) = 0. Now | / ( x , u n ) | < 2~n and — / ( x , u n ) = sin2"x so -j-f(x,un) converges
ax ax

weakly to 0 in L2[—I",T] and
d — 7r. Thus — f(x,un) does not converge

L dx

in Ii2[—T,7r] and thus Tf(un) does not converge in W^1>2[—7r,7r].

REMARK. This counterexample also shows that necessary and sufficient conditions for

the continuity of homogeneous superposition operators on vector valued Sobolev spaces

are likely to be complicated. Just set T/(uj , «2)(x) = / (u i (x ) , 1*2(3;)). Thus Tf :

WllOO[—ir,7r] x W1|0O[-7r,7r] -> Wll2[-7r,7r]. Then / is uniformly Lipschitz continuous

and (u l n , u2n) = (x, 2~n) converges in ^ ^ " [ - T T . T T ] X W^ll<x>[-7r,7r] to (x,0) but

Tf(uin, U2n) does not converge to T/(x, 0).

REFERENCES

[l] J. Appell and G. Hardy, 'On products of Sobolev-Orlicz spaces', Bull. Austral. Math. Soc.
42 (1990), 427-437.

https://doi.org/10.1017/S0004972700009576 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009576


72 G. Haxdy and H.B. Thompson [14]

[2] T.K. Donaldson and N.S. Trudinger, 'Orlicz-Sobolev spaces and imbedding theorems', J.
Fund. Anal. 8 (1971), 52-75.

[3] J-P. Gossez, 'Non-linear elliptic boundary problems for equations with rapidly (or slowly)
increasing coefficients', Trans. Amer. Math. Soc. 190 (1974), 163-205.

[4] G. Hardy, 'Extensions of theorems of Gagliardo and Marcus and Mizel to Orlicz spaces',
Bull. Austral. Math. Soc. 23 (1981), 121-138.

[5] G. Hardy, 'Nemitsky operators between Orlicz-Sobolev spaces', Bull. Austral. Math. Soc.
30 (1984), 251-269.

[6] J. Hudzik and M. Mastylo, 'Strongly extreme points in Kothe-Bochner Spaces', Rocky
Mountain J. Math. 23 (1993), 899-909.

[7] M.A. Krasnosel'skil and Ya.B. Rutickil, Convex functions and Orlicz spaces, (translated
from the first Russian edition by Leo F. Boron) (NoordhofF, Groningen, 1961).

[8] M. Marcus and V.J. Mizel, 'Absolute continuity on tracks and mappings of Sobolev
spaces', Arch. Rational Mech. Anal. 45 (1972), 294-320.

[9] M. Marcus and V.J. Mizel, 'Every superposition operator mapping one Sobolev space into
another is continuous', J. Fund. Anal. 33 (1979), 217-229.

Department of Mathematics
The University of Queensland
Queensland 4072
Australia

https://doi.org/10.1017/S0004972700009576 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009576

