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AN EXTENSION OF MONTZ'S THEOREMS IN MULTIVARIABLES

SHIRO OGAWA AND KAZUAKI KITAHARA

Miintz's theorems give necessary and sufficient conditions

for a sequence of powers in one variable to be complete in the

spaces of all real-valued continuous functions or square

integrable functions with the usual norms.

The purpose of this paper is to give an extension of these

theorems.to multivariable cases. In other words, taking some

sequences of generalized multivariable polynomials, we obtain

some necessary and sufficient conditions for these sequences to

be complete in function spaces analogous to the above.

Let N be the set of all natural numbers and {x }. ̂  a sequence

of powers with a. eJR . Then, under what circumstances can continuous

functions or functions in Ir be approximated by linear combinations of

these powers? As is well known Miintz [4] studied -these problems in depth

and solved them. Nowadays these results are introduced as Miintz's

Theorems in Cheney [I], Davis [2], Watson [5] and so on.

The aim of this paper is to study the analogous problems for multi-

variables and to obtain more general results by replacing x by

Received 4 November 1986.

Copyright Clearance Centre, Inc. Serial-fee code; 0004-9729/87
$A2.00 + 0.00.

375

https://doi.org/10.1017/S0004972700003671 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003671


376 Sh i ro Ogawa and Kazuaki K i t aha ra

for some function ty(x) . In section 1, we present some lemmas which are

used later. In section 2, we study some necessary and sufficient condit-

ions for any continuous function defined on [0,-2] c R to be approx-

imated by a linear combination of some sequence of generalized powers in

the uniform norm. In Section 3, we treat the same problem in the

Ip-normtt < p < + <°) .

1. Preliminaries

We first define the notion of completeness.

DEFINITION. A set of vectors {V } in a Banach space B is said

to be complete in B , if every vector X of B can be approximated to

any degree of accuracy by a linear combination of {V } .

Let C[.0,ll be the vector space of all real-valued continuous

functions, defined on 10,11, with the uniform norm. Then, it is well known

that, by Weierstrass1 theprem, {1} u {x } „. is complete in CLO,11 .

Generalizing the above result, we consider the following problem. Let

{a.}. _. be a sequence of real numbers. Under what conditions is

ai 2
{x } - _ complete in CCO.,1] or in L 10,11 with the usual norms? The

answers to these problems, namely Miintz's Theorems (see Cheney [/] and

Davis [2]), are as follows.

THEOREM A. {x^}. with - 1/2 < a. •+ + » is complete in

2
L 10,11 vrlth the least-squares norm if and only if t,nl/a. = + °> .

a^fu ^
THEOREM B. {1} u { ^ ^ e J y with 0 < a1 < a2 < . . . is complete

in CLOyll with the uniform norm if and only if Z I/a. = + °° .
i i

Let N denote JV u {0}, I the unit interval, C(f') the space of

all real-valued continuous functions in n variables x?,..., x on I

and CQU*) the set {f(x2,...., x^j e C(f) \ f(0,..., 0) = 0} . Then we

can easily prove the following lemma using Weierstrass' theorem.
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LEMMA 1. ^ ^ . . . x ^ , . . . ^ . v i ; + . . . , ^ 0 ^

complete in CJi) with the uniform norm.

Using the fact that Cif1) is a dense subspace of lP(l) with the

Ip-norm, J < p < + « j we have

LEMMA 2. The set A in Lerrma 1 is complete in iPcf1) with the

Ip-norm, 1 < p < + » .

2. Extended Miintz's theorem in cif1) with the uniform norm.

We begin by introducing some notation denoting several sets of

powers involving n variables x^.,..., x

Notation 1. For the sake of simplicity, let us consider the case

(3)
n = 3 . For the variables x} y, za B~ is a set which is null or

cu b{, <^i
contains some of the three sequences {x }, {y }3 {z }̂  a., b.} c. e JR

Is Is U

for i e H . B. is a set which is null or includes some of the three

d-i e-7 fi 9-j hi k-i
double sequences {x y d }3 {y z

J}, {z x d } , d., e .,..., k . e. R for
•' 3 3

(3) J.-V mi nV
i, 3 e U . B is the null set or {x %y dz }, I., m., n, e M for

o 1, 3 K

i, 3i k £ W . Here each sequence {a.},..., in.} is positive and
2- 3

strictly monotonic increasing. Finally the family B or B. , is
[Xiy,zj

defined by B = B, . = Bl u B.3 u B. . In the general case
[x3yjZJ 1 z o

we introduce analogously the notation B? ,..., B with respect to

n variables x.,,..., x and put B = B = B\n) u ... u B , where

Then we have

PROPOSITION 1. In order that {1} u B(n) be complete in Ctf1)
x r

(n)

x
with the uniform norm || • || , it is necessary and sufficient that for
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each, i , -1 = 1, 2,..., n .

(i) B. includes all i-tuple sequences of the form in Notation 1

involving i variables of x-}..,3 x and

(1)
P,Vjt

(ii) in each i-tuple sequence of (i)3 for example {xJ*

(i)P-i(i) i fit)

x.3(v) }, t Wj(k) = + " for k - 1 , 2 , . . . , i .

Proof. For the sake of simplicity, we prove this proposition in the

case n = 3 and the proof of the general case is analogous. By Weierstrass'

theorem, S = {1} u {**, y1, J, arY, ylz3', Z1J , arV**>v „• j, c w

is complete in C(I ) with the uniform norm. If the conditions (i) and

(ii) are fulfilled, we can easily show that, by means of Theorem B, any

element of 5 can be approximated by a linear combination of {i} u B

Thus the conditions are sufficient.

(3) 3
Suppose that {1} u B is complete in C(I ) . Firstly we show

cu
that the condition (i) is satisfied. Assume that, for instance, {x }

is not in 5. . Then, for any e > 0 , there exists a function

p(x3y,z) e SpanC{i} u B ) such that ||a; - p(x3y1z)\\<a< e , which implies

\\x - •p(x}0,0) ||m < e . This is a contradiction, because p(x3y,z) does

ai
not contain any term of x and p(x}0,0) is a constant. Next suppose

that, for example, {a; %y 3} is omitted from B . Then, for any

e > 0 , there is a function q(x,y,z) e SpanC{J} u B ) such that

- q(xty,z) Ĥ  < e , which implies

(2.1) \\xy - q(x,y,0) ||.. < e .

n aj m b-
Since q(x,y,0) = pn + t q.x + I r.y , putting x = y = 0 in

0 i=l v i=l ̂

(2.1), we have |pJ < e and substituting x = 0 into (2.1), we have
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m b- m hj
|p. + Z r.y | < e for y e LO311 . Therefore || Z r.y || < 2e .

0 iml l i=l z

n a-
In the same way, we have || Z q. • x || < 2e . Thus ||<7fc.»2/.,0<'|| < 5e

iml Z

and by (2.1) ||a^||0O
< 6z , which leads to a contradiction. Other cases

can be proved similarly. Secondly we are going to show that the condition

(ii) is fulfilled under condition (i). For instance, let us consider

(3) H mi nk • "
B, = {x y Jz } . Suppose that Z l/l. < + » . Then, by Theorem B,
6 i=l *

there is a function f(x) e Cg(I) such that

(2.2) i n f i. \\f - g\\m- 6 > 0 .
g e SpanfU) u {a; };

Set h(x3y3z) = f(x)yz . For any e > 0 , by the assumption of complete-

(3) 3
ness of {1} u B in C(I ) , there exists a function r(x,yiz) e

SpanCU} u B ) such that §h(x,y,z) - v(x,y,z) || < e . If we express

H mi nk
the terms of the linear combination of {a; y J z } in r(x,y,z) as

%i m i n]<.
Z 8 . ., x y z 3 in the same way as in the proof of (i), we get

(2.3) || h(x,yta) - _ I 8 ^ xHy^z^ \\m < 30z .

I-
Putting y = z = 1 in (2.3), \\f(x) - Z 8. ., x \\ < 30e , which

contradicts (2.2). Other cases can be proved analogously. This completes

the proof.

To generalize Proposition 1, we need the following lemma.

LEMMA 3. Let ty(x) be a non-negative function in CAD .

aiThen {1} u {ty(x) }. j, with 0 < a^ < a, < ... is complete in C(I)

with the uniform norm ||> H^ if and only if \j>(x) is strictly monotonia
CO

and Z I/a. - + °> .
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aiProof. Assume that {1} u ii>(x) } is complete in CCD and that

is not monotonic. Then there exist two points a, 6 (a =/ BJ such
CLi,

that \fi(a) = ty(&) and, for any function f(x) e SpanCU} u {ty(x) }) ,

f(a) = f($) . For a function g(x) e C(I) such tha t g(a) ^ g(&) and

for any function f(x) e SpanfCZ} U {tyfx)^}), \\g(x) - fix) 1^ ^

1/2 • | g(o.) - g(8) | > 0 > which contradicts the assumption. Now suppose

t h a t {1} u {\ji(x) } i s complete in C(I) and iĵ Cxj i s monotonic. Put

t = tyCx) and 10,0] = 4>(I) . Then, by Theorem B, {1} u {t"^} i s
CO

complete in CL03al with the uniform norm if and only if Z I/a. =+ » .

Thus the assumption that {1} u {i/jfej } is complete in CYJj implies

that ty(x) is monotonic and Z I/a. = + °° . By putting t = ty(x) and
i=l %

by applying Theorem B, the converse is easily verified.

Let \j>.(x.), i = 1, 2,..., n be a non-negative continuous function

of the i-th of the n variables x^,..., x with ty.(O) = 0 . We write

simply ty.(x.) e Cn(I.) , i = 1, 2, ..., n . Then we introduce the

following notation.
"* (YI )

Notation 2. By B. , i = 1, 2,.. ., n , we denote the set which is

obtained by replacing x. in B. with i>.(x.) and we define B by

B(n
n) u ... U B M , where * = (ty-,..., * ) .

i n 1 YI

Then we have the f i r s t main theorem.

THEOREM 1. In order that {1} u B(*} be complete in Cif1) with

the uniform norm, it is necessary and sufficient that for each

i , i = 1, 2,..., n ,

(i) \ji.(x) is strictly monotonic,

(ii) B. includes all i-tuple sequences involving i of

tyi(x-),... , ty (x ) and
xi n n
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(iii) in each, i-tuple sequence of (ii) 3 for instance

j L J./'P , ,-t . T" CO J OF K. 1 y 25 j • • • J If

Proof. Suppose that {1} u B* is complete in CCf1) with the

uniform norm. Restricting the arguments on I., i=l, 2,..., n, in the
It

same way as in the proof of Lemma 3, we can prove condition (i). If we

set t. = i>.(x.)} i = 1, 2,.. . _, w j then under condition (i) we obtain that

{1} U S is complete in Cff1) with the uniform norm if and only if

{1} u B.n is complete in C(\_0}a~~\ x ... x [O^a ]J with the uniform norm,

where a. = 'if.(l), i = 1. 2,..., n and t = (£,,.... t ̂  . Hence from

vi* ' * 1 ' n

this fact and Proposition 1 conditions (ii) and (iii) follow. In the

same way, by conditions (i), (ii) , (iii) and Proposition 1, we can easily

verify the converse.

3. Extended Muntz's Theorem in iPcf1) with the £p-norm

In the first place, we start with

a.
LEMMA 4. {x'L}. with 0 < a1 < a0 ... is complete in lP(I)

CO

with the If-norm, 1 < p < + °° if and only if Z I/a. = + » .

Proof. Assume that {x%} is complete in lP(I) with the lP-

norm. Then, for any m e Jf , x can be approximated by a linear

combination of the family {a; } in the uniform norm. In fact, by

Holder's inequality, we obtain

m n H+l 1 n aj
\x - Z a.x | = I r (mt - Z a.(a. + l)t )dt

i=l l 0 i=1 i *

1 m-1 n a-'
j£ / \7ftb ~ 2 ex. (a,.
- o i=i % %

< (I \mt~ - Z a.(a_
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Therefore, by Theorem B, we have E l/(a. +1) = + °° and consequently

00 00

Z I/a. = + °° . Conversely, if £ I/a. = + » , then we can conclude
l ^ i *

aithat {x } is complete in Cn^D with the uniform norm. From this

fact and Lemma 2, the converse follows immediately.

We also have

PROPOSITION 2. B(n) is complete in iPif1) with the iP-nom

II- llp > 1 < P < + °° if and only if

(i) B is not the null set and

(1) Jn)
.... . _(n) e *(ii) i/n B = (x.

i = ly 23... j n .

Proof. For the sake of simplicity, we prove this proposition in

case n = 3 . Assume that B, . is complete in L (I ) with the

£ -norm and that S_ is the null set. Then any function
o

f(x,y,z) e IF (I ) can be approximated in the 2* -norm by a linear

combination of 57 u Bo . Consequently, A, • =l 6 \xsy,z)

{xV, y1, z } / / , y'z^, z
VaP}. . _. is complete in L (I ) with the

1 13
L -norm. Then, for the function xyz e L (I ) and for any e > 0 ,

there exists a polynomial p(x,y}z) e SpanM, ,) such that

(3.1) \\xyz - p(x3y,z) \\2 < e .

On the other hand, for any (t-t t^3 t-) e I ,

\(l/8)'t2.tit\ - St3 f*2 1*1 p(x,y,z) dxdydz \
1 * 6 Q 0 Q

(3.2) < 1*3 1*2 !tl\xyz - p(x,y3z) I dxdydz
~ 0 0 0
< | |xys - p(x,y,z)\\ 2 .
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If we put

(3.3) q(tn,t9,tJ = /*3 /*2 /*! p(x,y,z) dxdydz ,
1 6 o 0 0 0

q(t.,t.,tJ has a factor t^t.t- and we can express it as
1 a O J. Z 0

(3.4) ^V*2'V " *i*2*3 r f W V '
where r(t^,t.,tj e Spanfd., , , J . By (3.2), (3.3) and (3.4) ,1 2 3 (tvt2,t3)

(3.5) \(l/8).t\t\t\ - q(trt2>tz)\

If we put I = 10,1/21 and t. = 8. +1/2 , i = 1, 2, 3, since

| (s- +1/2) (8 g + 1/2) (83 + l/2) | > 1/8 for any (s .,8 p,8 J e l , by (3.5)

we have

| (1/8) (81 +1/2) (8? + 1/2) (s- + 1/2) - r(ej+1/2,8p + l/2,s-+ 1/2) \ < Se

"3for any (8^,8^8^ e I .

Then || (l/8)'8-8J3- - k(8-,so,8J\\ < 8e on I , where
-J. u O A. & Q ^

k(8^s8t>ts7) € Span({.2} u A, x) . This contradicts Proposition 1,
J. 6 O (8 -. y8 njS —/

thus B ' is not null.
o

(3) ^i mi nV °°
Next we show that, in B = {x y Jz } , E 1/i.. = + « ,

I 1/m. = + » and Z 1/n* = + °° . Suppose that

complete in If (I ) with the IT-norm and that ,f. iMy < + °° • Then

B3 U A(x u z) i s c o m P l e t e i n $ (I ) with the if '-norm. First we

show that, in il/2,11 , every function of the form

(x- l/2)a(y - 1/2) (z-l/2)°, a, b, a e H is approximated in the uniform

norm by a linear combination of {x y z }. . , _. , where

IQ = m. = M = 0 . By similar arguments to those in (3.1) to (3.5), each
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x ,y ,z , a, b, a € ffl. i s approximated by a linear combination of

Bg
3 u A(x z) uniformly on U/2,113 . Therefore, for any (x-l/2)C

b a
(y-1/2) (z-1/2) , a, b, a e H and any e > 0 , there exists a function

(3)
h(x,y,z) e SpanCU} u S^ u A/x_2/2 _j/2 z-1/2)* s u c h t h a t

(3.6) \\(x-l/2)a(y-l/2)b(z-l/2)a - h(x,y,z)\\oo < e on U/2,113 .

Further we set

H mi nk
(3.7) h(x,y,z) = _ E a^ x y Jz + q^x,y) + q^(y,z)

where qAx,y) e Spanf{ (x - 1/2)V (y - 1/2)^}), ... , p Ax) e Spanf{ (x-l/2)%)) ,

and di.TR. If we put x = y = 1/2 in (3.6) , then by (3.7) we have

| _ Z \ -k (1/2)
 Z(l/2) 3z k + p3(z) + d | < e

for all z e U/2,11 .

U m- n-j.
Hence if we set pJz) = - I a. .. (1/2) (1/2) Jz - d , then

\\p3(z) - p3(z)\\m < e on U/2,11 . In the other cases, by using the

similar method to the proof of Proposition 1, we can approximate each

polynomial of {p-,..., q~,... } by a linear combination of

I,- m- nj.
{x y °z }. .

nk
On the other hand, noting that {1} u {z }-, _. is incomplete in

Cll/2,11 with the uniform norm (see Watson [5] p. 82) , there exists a

0

r0polynomial (s - 1/2) , r e IV such that

(3.8) inf „. \\ (z-1/2) ° - f(z)\\ > S > 0 .
f(z) espanf{l}u{2 K})

r0For a polynomial (x - 1/2) (y - 1/2) (z - 1/2) and for any e > 0 ,
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H mi nkthere exists a function u(x3y3z) e Spanf{x y
 Jz ) • „• », m •* such that

(3.9) \\(x - 1/2) (y - 1/2) (z - 1/2) ° - u(x3y3z)\\m < e on U/231T .

Putting x = y = 1 in (3.9) , we have

\(l/4)-(z-l/2) ° - u(l3l,z)\ < e for all z e U/2311 ,

which contradicts (3.8). Thus the necessity follows.

Conversely, assume that S_ is not null and in B_ =

{x ̂ y 3z k } . . . m 3 Z l/l. = + <» 3 °Z 1/m. = + « and I 1/n, = + ~.
t-j3jKeJN i=2 I j=l 3 k=l K

I • m- n-.
Since by Lemma 4, each sequence of {x }3 {y "} and {z } is complete

in If (I) with the 2/-norm, clearly every monomial x y z t a3 b, c e JN.

2 2 2 ( ?)
with a +b +c ̂  0 is approximated by a linear combination of B' ' in

the I -norm. Hence, by Lemma 2, B_ satisfying condition (ii) is
o

complete in If (I ) . This completes the proof.

LEMMA 5. Let ty(x) be a strictly monotonic increasing and absolute-

ly continuous function in C (I) and put M = ess sup \ty'(x)\ < + <*>.
xel

Then, ityfx) v). j . with 0 < a. < ap < . . . is complete in lP(I) with

n °°
the If-norm, 1 < p < + °> if and only if £ I/a. = + °° .

i=l ^

Proof. Suppose that {ty(x) ̂ } is complete in iP(I) with the LP-

norm. If Z I/a. < + » , then by Lemma 4 {t } is not complete in

I [0,a] with the L -norm, where ty(l) = a > 0 . Consequently, there

n0exists a positive integer nn such that inf a . ||t -pftj|L
" Prtj£Spanr{* x}) J

6 > 0 . I t follows from this fact that by putting t = rji(x) ,
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6 < fa It"0 - p(t)\dt = f1 \ty(x)n° - p(ty(x))\ • i\,'(x)dx

- p(i\>(x))\ dx.

no
Hence inf n- [| i>(x) - q(x)\\1 >_ 6/M > 0 , which contradicts

ai °°
the completeness of ity(x) } . Conversely, assume that £ I/a. = + °° .

i=l t-ai
Then, by Lemma 3, {1} U ity(x) } is complete in C(I) with the uniform

norm and consequently each x , i e JV , is approximated by a linear

ai ai
combination of {̂ CxJ } uniformly on J . Hence, by Lemma 2, {\\i(x) }

is complete in li (I) with the Z; -norm.

Then we obtain the second main theorem.

THEOREM 2. Let ty.(x.), i = 1, 2t ..., n be functions satisfying

the condition in Lemma 5. Then B is complete in lP(i) with the

LF-norm, 1 < p < + <*> if and only if
~ (n)

(i) B is not null and

(ii) in ~B(
n

n)

(1) (n)

j

Proof. By Proposition 2 and Lemma 5, we can easily verify that

B is complete in iP (f1) with the LP-norm if and only if B is

complete in Jp(l.O,aA x . . . x \_0,a 1) with the L^-norm, where
l n

t . = iJi.CxJ, a. = ^.(1), i = 1, 2,..., n and t = (t.,..., t ) . Hence
i- i- i- t- is J. n

the conclusion follows immediately.
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