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Abstract

In this paper we adopt the perturbation approach of Landriault, Renaud and Zhou
(2011) to find expressions for the joint Laplace transforms of occupation times for
time-homogeneous diffusion processes. The expressions are in terms of solutions to
the associated differential equations. These Laplace transforms are applied to study
ruin-related problems for several classes of diffusion risk processes.
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1. Introduction

The occupation time is the amount of time a stochastic process stays within a certain range.
It is an interesting topic for stochastic processes. Many explicit results on Laplace transforms
for occupation times have been obtained for some well-known examples of diffusion processes;
see, e.g. [6] for a collection of such results. Some results related to occupation times for general
diffusion processes can be found in [18] and [19]. More recently, Laplace transforms have also
been obtained for occupation times of processes with jumps; see [7], [9], [14], [15], [17], [23],
and [24] for results along this line and their applications in risk theory and finance. To the best
of the authors’ knowledge, joint Laplace transforms have not been studied systematically for
general diffusion processes.

The standard way of finding the Laplace transform for occupation times is to solve the
associated (integro-) differential equation via the Feynman–Kac representation. The excursion
theory has also been applied to obtain occupation time related Laplace transforms; see [18]
and [19]. An alternative perturbation approach was recently proposed in [15] for the spectrally
negative Lévy processes. With this approach, the Laplace transforms for occupation times can
be obtained by an approximation argument based on the solutions to the exit problems, which
is an excursion theory argument at its heart. Since the exit problems for time-homogeneous
diffusion processes can also be solved explicitly, in this paper we adopt the strategy of [15] to
study the joint Laplace transforms for diffusion occupation times. These Laplace transforms are
expressed in terms of solutions to the differential equation associated to the diffusion generator.

The results in this paper find applications in the study of ruin problems for the so-called
diffusion risk process with random observation times and the so-called omega model, where,
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for both models, the ruin probability can be expressed in terms of its occupation time. Our results
can also be applied to study the Brownian surplus process with two-valued drift.

The rest of the paper is arranged as follows. In Section 2 we introduce the time-homogeneous
diffusion processes and their exit problems. In Section 3, the desired Laplace transforms of
diffusion occupation times are found. In Section 4, possible applications of the results obtained
in Section 3 to several diffusion risk processes are discussed. In Section 5, explicit expressions
are presented for the examples of Brownian motion with drift and Brownian motion with two-
valued drift.

2. Time-homogeneous diffusion processes

We now introduce the one-dimensional diffusion process X considered in this paper. For
−∞ ≤ l1 < l2 ≤ ∞, write I for the interval with endpoints l1 and l2. For simplicity, we
consider only the case in which both l1 and l2 are inaccessible, i.e. neither of them can be
reached in finite time. In the rest of paper, we mostly choose l1 = −∞ and l2 = ∞. The
I -valued regular time-homogeneous diffusion process X = {Xt, t ≥ 0}, defined on a filtered
probability space {�,P, {Ft , t ≥ 0}}, is specified by the stochastic differential equation

dXt = μ(Xt) dt + σ(Xt ) dWt, (2.1)

whereX0 = x0 is the initial value and {Wt, t ≥ 0} is a standard Brownian motion. Throughout
the paper, we assume that (2.1) allows a unique strong solution, which is guaranteed if there
exists a constant K > 0 such that, for all x, y ∈ I,

|μ(x)− μ(y)| + |σ(x)− σ(y)| ≤ K|x − y|, μ2(x)+ σ 2(x) ≤ K2(1 + x2). (2.2)

Let Tx = inf{t ≥ 0 : Xt = x} be the first hitting time of X at level x with the convention
that inf ∅ = ∞. The Laplace transforms associated with the two-sided exit problem for
the diffusion process X were first solved in [8]. Suppose that g−,r (·) and g+,r (·) are two
independent, positive, and convex solutions of the equation

1
2σ

2(x)g′′(x)+ μ(x)g′(x) = rg(x), r > 0, (2.3)

with g−,r (·) strictly decreasing and g+,r (·) strictly increasing. For many particular diffusions
of interest, the differential equation (2.3) yields explicit expressions for g−,r (·) and g+,r (·);
see [6]. Define a pair of Laplace exponents

ψ±
r (·) = ±g

′±,r (·)
g±,r (·) , r > 0. (2.4)

In particular, denoting by

G(x) = exp

[
−

∫ x 2μ(y)

σ 2(y)
dy

]
,

and letting r → 0+, we choose

g−,0(x)

⎧⎨
⎩

≡ 1 if
∫ ∞
x
G(y) dy = ∞,

=
∫ ∞

x

G(y) dy otherwise,
(2.5)
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and

g+,0(x)

⎧⎪⎨
⎪⎩

≡ 1 if
∫ x
−∞G(y) dy = ∞,

=
∫ x

−∞
G(y) dy otherwise.

(2.6)

Hence,

ψ−
0 (x) = G(x)∫ ∞

x
G(y) dy

and ψ+
0 (x) = G(x)∫ x

−∞G(y) dy
. (2.7)

Furthermore, for r > 0, define a function

fr(y, z) = g−,r (y)g+,r (z)− g−,r (z)g+,r (y). (2.8)

Note that the function fr(y, z) is strictly decreasing in y and strictly increasing in z, and
fr(y, z) = 0 if and only if y = z. For ease of notation, denote by

f1,r (y, z) = ∂

∂y
fr(y, z), f2,r (y, z) = ∂

∂z
fr(y, z), and f12,r (y, z) = ∂2

∂y∂z
fr(y, z).

Throughout the paper, for ease of notation, we write Ex0 [·] = E[· | X0 = x0] for the
conditional expectation, Px0{·} for the corresponding probability, and Ex0 [· ;C] = Ex0 [· 1C]
with 1C denoting the indicator function of a set C ⊂ �. Furthermore, we drop the subscript
indicating the initial value if x0 = 0.

For a < x < b, we have

Ex[e−rTa ; Ta < Tb] = fr(x, b)

fr(a, b)
and Ex[e−rTb ; Tb < Ta] = fr(a, x)

fr(a, b)
. (2.9)

In particular, letting r → 0+ in (2.9) yields the two-sided exit probabilities

Px{Tb < Ta} =
∫ x
a
G(y) dy∫ b

a
G(y) dy

and Px{Ta < Tb} =
∫ b
x
G(y) dy∫ b

a
G(y) dy

;

see, e.g. [6], [10], and [13]. Moreover, for r > 0, we have

lim
x→−∞ g−,r (x) = lim

x→∞ g+,r (x) = ∞ and lim
x→∞ g−,r (x) = lim

x→−∞ g+,r (x) = 0. (2.10)

In addition,
lim
r→∞ψ

±
r (·) = ∞; (2.11)

see Equation (12) of [19]. Therefore, letting b → ∞ in the first relation of (2.9) and a → −∞
in the second relation of (2.9), for a < x < b, we have

Exe−rTa = g−,r (x)
g−,r (a)

and Exe−rTb = g+,r (x)
g+,r (b)

. (2.12)

In the following, we collect some identities that will be used later. They can be easily verified
by (2.4) and (2.8).

Lemma 2.1. For any x �= y and r > 0, we have

f2,r (x, x)f1,r (y, y)− f2,r (x, y)f1,r (x, y) = −f12,r (x, y)fr(x, y), (2.13)

−f1,r (x, y)ψ
−
r (y)− f2,r (x, y)ψ

−
r (x) = f12,r (x, y)+ fr(x, y)ψ

−
r (x)ψ

−
r (y), (2.14)

and

f1,r (x, y)ψ
+
r (y)+ f2,r (x, y)ψ

+
r (x) = f12,r (x, y)+ fr(x, y)ψ

+
r (x)ψ

+
r (y). (2.15)
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3. The occupation times for diffusion processes

Throughout the paper, denote by eδ an independent, exponential random variable with rate
δ > 0 and assume that λ, λ1, λ2 > 0. We first solve for E exp[−λ ∫ eδ

0 1{Xs<0} ds] using the
perturbation approach from [15].

Theorem 3.1. It holds that

E exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
= δψ+

δ+λ(0)/(δ + λ)+ ψ−
δ (0)

ψ+
δ+λ(0)+ ψ−

δ (0)
.

Proof. Define an approximation Lδε for the occupation time
∫ eδ

0 1{Xs<0} ds intuitively as
follows. Up to time eδ , Lδε counts both the time X spends below level 0 and the time it takes to
move from level 0 to level ε, but not from ε to 0. To make it rigorous, let θ be the shift operator
such that Xt ◦ θs = Xs+t . Since X starts from 0, we put T 1

0 = 0, T 1
ε = Tε, and

T n+1
0 = T nε + T0 ◦ θT nε , T n+1

ε = T n+1
0 + Tε ◦ θ

T n+1
0
, for n ≥ 1.

Then

Lδε =
∞∑
n=1

(T nε ∧ eδ − T n0 ∧ eδ).

Hence, by the memoryless property we obtain

Ee−λLδε = E[e−λLδε ; Tε < eδ] + E[e−λeδ ; eδ < Tε]
= E[e−λTε ; Tε < eδ]Eεe−λLδε + Ee−λeδ − E[e−λeδ ; Tε < eδ]
= Ee−(δ+λ)TεEεe−λLδε + δ

δ + λ
(1 − Ee−(δ+λ)Tε )

= g+,δ+λ(0)
g+,δ+λ(ε)

Eεe
−λLδε + δ

δ + λ

(
1 − g+,δ+λ(0)

g+,δ+λ(ε)

)
, (3.1)

where the last step is due to (2.12). Similarly, we have

Eεe
−λLδε = Eε[e−λLδε ; T0 < eδ] + Eε[e−λLδε ; eδ < T0]

= Pε{T0 < eδ}Ee−λLδε + Pε{eδ < T0}
= Eεe

−δT0Ee−λLδε + 1 − Eεe
−δT0

= g−,δ(ε)
g−,δ(0)

Ee−λLδε + 1 − g−,δ(ε)
g−,δ(0)

. (3.2)

Substituting (3.2) into (3.1), solving for Ee−λLδε , and taking the limit, we obtain

E exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
= lim
ε→0+ Ee−λLδε

= lim
ε→0+

{[
δ

δ + λ

(
1− g+,δ+λ(0)

g+,δ+λ(ε)

)
+ g+,δ+λ(0)
g+,δ+λ(ε)

(
1− g−,δ(ε)

g−,δ(0)

)]

×
[

1 − g+,δ+λ(0)
g+,δ+λ(ε)

g−,δ(ε)
g−,δ(0)

]−1}

= δψ+
δ+λ(0)/(δ + λ)+ ψ−

δ (0)

ψ+
δ+λ(0)+ ψ−

δ (0)
.

This completes the proof of Theorem 3.1.
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Taking the limit as δ → 0+ in the equality in Theorem 3.1, we obtain the following result.

Corollary 3.1. It holds that

E exp

[
−λ

∫ ∞

0
1{Xs<0} ds

]
= ψ−

0 (0)

ψ+
λ (0)+ ψ−

0 (0)
,

where ψ−
0 (0) is specified in (2.7).

Corollary 3.2. In general, we have, for x > 0,

Ex exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
= g−,δ(x)
g−,δ(0)

δψ+
δ+λ(0)/(δ + λ)+ ψ−

δ (0)

ψ+
δ+λ(0)+ ψ−

δ (0)
+ 1 − g−,δ(x)

g−,δ(0)
, (3.3)

and, for x < 0,

Ex exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
= g+,δ+λ(x)
g+,δ+λ(0)

δψ+
δ+λ(0)/(δ + λ)+ ψ−

δ (0)

ψ+
δ+λ(0)+ ψ−

δ (0)

+ δ

δ + λ

(
1 − g+,δ+λ(x)

g+,δ+λ(0)

)
.

Proof. For x > 0, by comparing T0 with eδ and using the memoryless property, we obtain

Ex exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
= Px{T0 < eδ}E exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
+ Px{eδ < T0}.

Then (3.3) follows from (2.12) and Theorem 3.1. For x < 0,

Ex exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]

= Ex[e−λT0; T0 < eδ]E exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
+ Ex[e−λeδ ; eδ < T0]

= Exe−(δ+λ)T0E exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
+ δ

δ + λ
(1 − Exe−(δ+λ)T0).

Then (3.3) also follows from (2.12) and Theorem 3.1.

Using the Laplace transforms on exit times in Section 2, all the results below could be easily
extended to a general initial surplus x ∈ R. However, to keep the paper short, we skip this
minor generalization.

The strategy employed in the proof of Theorem 3.1 can be further exploited to find the joint
Laplace transforms on the occupation times in multiple regions.

Theorem 3.2. For any b > 0, we have

E exp

[
−λ1

∫ eδ

0
1{Xs<0} ds − λ2

∫ eδ

0
1{Xs>b} ds

]

=
[

δ

δ + λ1

(
f2,δ(0, b)

fδ(0, b)
+ ψ−

δ+λ2
(b)

)
ψ+
δ+λ1

(0)

−
(

λ2

δ + λ2

f2,δ(0, 0)

fδ(0, b)
+ f1,δ(0, b)

fδ(0, b)

)
ψ−
δ+λ2

(b)− f12,δ(0, b)

fδ(0, b)

]

×
[(
f2,δ(0, b)

fδ(0, b)
+ ψ−

δ+λ2
(b)

)
ψ+
δ+λ1

(0)− f1,δ(0, b)

fδ(0, b)
ψ−
δ+λ2

(b)− f12,δ(0, b)

fδ(0, b)

]−1
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and

Eb exp

[
−λ1

∫ eδ

0
1{Xs<0} ds − λ2

∫ eδ

0
1{Xs>b} ds

]

=
[(

λ1

δ + λ1

f1,δ(b, b)

fδ(0, b)
+ f2,δ(0, b)

fδ(0, b)

)
ψ+
δ+λ1

(0)

+ δ

δ + λ2

(
−f1,δ(0, b)

fδ(0, b)
+ ψ+

δ+λ1
(0)

)
ψ−
δ+λ2

(b)− f12,δ(0, b)

fδ(0, b)

]

×
[(
f2,δ(0, b)

fδ(0, b)
+ ψ−

δ+λ2
(b)

)
ψ+
δ+λ1

(0)− f1,δ(0, b)

fδ(0, b)
ψ−
δ+λ2

(b)− f12,δ(0, b)

fδ(0, b)

]−1

.

Proof. Similar to the proof of Theorem 3.1, for arbitrarily small ε > 0, we approximate
the occupation time

∫ eδ
0 1{Xs<0} ds by Lδε,0+, the sum of durations up to time eδ for all the

nonoverlapping excursions of the process X that start from 0 and end at ε. Similarly, we
approximate

∫ eδ
0 1{Xs>b} ds by Lδε,b−, the sum of durations up to time eδ for all the excursions

of X that start from b and end at b − ε.
For ease of notation, we define I0(x) = Ex exp[−λ1

∫ eδ
0 1{Xs<0} ds − λ2

∫ eδ
0 1{Xs>b} ds]

and its approximation Iε(x) = Ex exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−] for some x ∈ R. By the strong

Markov property, we have

Iε(0) = E[exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−]; Tε < eδ] + E[exp[−λ1L

δ
ε,0+ − λ2L

δ
ε,b−]; eδ < Tε]

= E[e−λ1Tε ; Tε < eδ]Iε(ε)+ E[e−λ1eδ ; eδ < Tε]
= Ee−(δ+λ1)Tε Iε(ε)+ δ

δ + λ1
(1 − Ee−(δ+λ1)Tε )

= g+,δ+λ1(0)

g+,δ+λ1(ε)
Iε(ε)+ δ

δ + λ1

(
1 − g+,δ+λ1(0)

g+,δ+λ1(ε)

)
, (3.4)

where the last step is due to (2.12). Furthermore,

Iε(ε) = Eε[exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−]; T0 < Tb ∧ eδ]

+ Eε[exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−]; Tb < T0 ∧ eδ]

+ Eε[exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−]; eδ < T0 ∧ Tb]

= Pε{T0 < Tb ∧ eδ}Iε(0)+ Pε{Tb < T0 ∧ eδ}Iε(b)+ Pε{eδ < T0 ∧ Tb}
= Eε[e−δT0; T0 < Tb]Iε(0)+ Eε[e−δTb ; Tb < T0]Iε(b)+ 1 − Eεe

−δ(T0∧Tb)

= fδ(ε, b)

fδ(0, b)
Iε(0)+ fδ(0, ε)

fδ(0, b)
Iε(b)+ 1 − fδ(0, ε)+ fδ(ε, b)

fδ(0, b)
, (3.5)

where the last step is due to (2.9). Substituting (3.5) into (3.4), solving for Iε(0), and taking
the limit, we obtain

I0(0) = lim
ε→0+ Iε(0)

= lim
ε→0+

{[
δ

δ + λ1

(
1 − g+,δ+λ1(0)

g+,δ+λ1(ε)

)

+ g+,δ+λ1(0)

g+,δ+λ1(ε)

(
fδ(0, ε)

fδ(0, b)
Iε(b)+ 1 − fδ(0, ε)+ fδ(ε, b)

fδ(0, b)

)]

×
[

1 − g+,δ+λ1(0)

g+,δ+λ1(ε)

fδ(ε, b)

fδ(0, b)

]−1}
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=
[

δ

δ + λ1
ψ+
δ+λ1

(0)+ f2,δ(0, 0)

fδ(0, b)
I0(b)− f1,δ(0, b)+ f2,δ(0, 0)

fδ(0, b)

]

×
[
ψ+
δ+λ1

(0)− f1,δ(0, b)

fδ(0, b)

]−1

. (3.6)

Here, (3.6) is the first equation of the target terms I0(0) and I0(b) we obtained.
Similarly,

Iε(b) = Eb[exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−]; Tb−ε < eδ]

+ Eb[exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−]; eδ < Tb−ε]

= Eb[e−λ2Tb−ε ; Tb−ε < eδ]Iε(b − ε)+ Eb[e−λ2eδ ; eδ < Tb−ε]
= Ebe

−(δ+λ2)Tb−ε Iε(b − ε)+ δ

δ + λ2
(1 − Ebe

−(δ+λ2)Tb−ε )

= g−,δ+λ2(b)

g−,δ+λ2(b − ε)
Iε(b − ε)+ δ

δ + λ2

(
1 − g−,δ+λ2(b)

g−,δ+λ2(b − ε)

)
. (3.7)

Furthermore,

Iε(b − ε) = Eb−ε[exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−]; Tb < T0 ∧ eδ]

+ Eb−ε[exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−]; T0 < Tb ∧ eδ]

+ Eb−ε[exp[−λ1L
δ
ε,0+ − λ2L

δ
ε,b−]; eδ < T0 ∧ Tb]

= Pb−ε{Tb < T0 ∧ eδ}Iε(b)+ Pb−ε{T0 < Tb ∧ eδ}Iε(0)+ Pb−ε{eδ < T0 ∧ Tb}
= Eb−ε[e−δTb ; Tb < T0]Iε(b)+ Eb−ε[e−δT0; T0 < Tb]Iε(0)+ 1 − Eb−εe−δ(T0∧Tb)

= fδ(0, b − ε)

fδ(0, b)
Iε(b)+ fδ(b − ε, b)

fδ(0, b)
Iε(0)+1− fδ(0, b − ε)+fδ(b − ε, b)

fδ(0, b)
. (3.8)

Substituting (3.8) into (3.7), solving for Iε(b), and taking the limit, we obtain

I0(b) = lim
ε→0+ Iε(b)

= lim
ε→0+

{[
δ

δ + λ2

(
1 − g−,δ+λ2(b)

g−,δ+λ2(b − ε)

)

+ g−,δ+λ2(b)

g−,δ+λ2(b − ε)

(
fδ(b − ε, b)

fδ(0, b)
Iε(0)+ 1 − fδ(0, b − ε)+ fδ(b − ε, b)

fδ(0, b)

)]

×
[

1 − g−,δ+λ2(b)

g−,δ+λ2(b − ε)

fδ(0, b − ε)

fδ(0, b)

]−1}

=
[

δ

δ + λ2
ψ−
δ+λ2

(b)− f1,δ(b, b)

fδ(0, b)
I0(0)+ f2,δ(0, b)+ f1,δ(b, b)

fδ(0, b)

]

×
[
ψ−
δ+λ2

(b)+ f2,δ(0, b)

fδ(0, b)

]−1

. (3.9)

Here, (3.9) is the second equation of the target terms I0(0) and I0(b) we obtained. Therefore,
solving the linear system composed of (3.6) and (3.9), and simplifying the result using identity
(2.13) with x = 0, y = b, and r = δ, we complete the proof of Theorem 3.2.

Remark 3.1. When λ2 → 0+, the first joint Laplace transform in Theorem 3.2 is reduced to
Theorem 3.1 using identity (2.14) with x = 0, y = b, and r = δ. Furthermore, when δ → 0+,
by (2.5), (2.6), and (2.8), both of the Laplace transforms in Theorem 3.2 are equal to 0.
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Let b → 0+ in Theorem 3.2, and by the facts that f12,δ(0, 0) = 0 and f1,δ(0, 0) =
−f2,δ(0, 0), we obtain the following compact expression.

Corollary 3.3. It holds that

E exp

[
−λ1

∫ eδ

0
1{Xs<0} ds − λ2

∫ eδ

0
1{Xs>0} ds

]

= δψ+
δ+λ1

(0)/(δ + λ1)+ δψ−
δ+λ2

(0)/(δ + λ2)

ψ+
δ+λ1

(0)+ ψ−
δ+λ2

(0)
.

By (2.11), letting λ2 → ∞ and λ1 → ∞ in the first and second equations of Theorem 3.2,
respectively, we obtain the following result.

Corollary 3.4. For any a < 0, we have

E

[
exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
; eδ < Tb

]
= δfδ(0, b)ψ

+
δ+λ(0)/(δ + λ)− f2,δ(0, 0)− f1,δ(0, b)

fδ(0, b)ψ
+
δ+λ(0)− f1,δ(0, b)

and

Eb

[
exp

[
−λ

∫ eδ

0
1{Xs>b} ds

]
; eδ < T0

]

= δfδ(0, b)ψ
−
δ+λ(b)/(δ + λ)+ f1,δ(b, b)+ f2,δ(0, b)

fδ(0, b)ψ
−
δ+λ(b)+ f2,δ(0, b)

.

Next we consider the joint Laplace transforms on the occupation times in a bounded region
and an unbounded region.

Theorem 3.3. For any a < 0, we have

E exp

[
−λ1

∫ eδ

0
1{a≤Xs<0} ds − λ2

∫ eδ

0
1{Xs<a} ds

]

=
[
δ(δ + λ2)f2,δ+λ1(a, 0)+ δ(λ1 − λ2)f2,δ+λ1(0, 0)

(δ + λ1)(δ + λ2)fδ+λ1(a, 0)
ψ+
δ+λ2

(a)− f1,δ+λ1(a, 0)

fδ+λ1(a, 0)
ψ−
δ (0)

+ ψ+
δ+λ2

(a)ψ−
δ (0)− δf12,δ+λ1(a, 0)

(δ + λ1)fδ+λ1(a, 0)

]

×
[
f2,δ+λ1(a, 0)

fδ+λ1(a, 0)
ψ+
δ+λ2

(a)− f1,δ+λ1(a, 0)

fδ+λ1(a, 0)
ψ−
δ (0)+ ψ+

δ+λ2
(a)ψ−

δ (0)

− f12,δ+λ1(a, 0)

fδ+λ1(a, 0)

]−1

and

Ea exp

[
−λ1

∫ eδ

0
1{a≤Xs<0} ds − λ2

∫ eδ

0
1{Xs<a} ds

]

=
[

δf2,δ+λ1(a, 0)

(δ + λ2)fδ+λ1(a, 0)
ψ+
δ+λ2

(a)− δf1,δ+λ1(a, 0)− λ1f2,δ+λ1(a, a)

(δ + λ1)fδ+λ1(a, 0)
ψ−
δ (0)

+ δ

δ + λ2
ψ+
δ+λ2

(a)ψ−
δ (0)− δf12,δ+λ1(a, 0)

(δ + λ1)fδ+λ1(a, 0)

]

×
[
f2,δ+λ1(a, 0)

fδ+λ1(a, 0)
ψ+
δ+λ2

(a)− f1,δ+λ1(a, 0)

fδ+λ1(a, 0)
ψ−
δ (0)+ ψ+

δ+λ2
(a)ψ−

δ (0)

− f12,δ+λ1(a, 0)

fδ+λ1(a, 0)

]−1

.
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Proof. For arbitrarily small ε > 0, we approximate the occupation time
∫ eδ

0 1{a≤Xs<0} ds
by Lδε,a,0, the sum of durations up to time eδ for all the excursions of X that either start from 0
and end at ε, avoiding a, or start from 0 and end at a, avoiding ε. Similarly, we approximate∫ eδ

0 1{Xs<a} ds by Lδε,a+, the sum of durations up to time eδ for all the excursions of X that
start from a and end at a + ε.

We define J0(x) = Ex exp[−λ1
∫ eδ

0 1{a≤Xs<0} ds − λ2
∫ eδ

0 1{Xs<a} ds] and its approxima-
tion Jε(x) = Ex exp[−λ1L

δ
ε,a,0 − λ2L

δ
ε,a+] for some x ∈ R. Then we have

Jε(0) = E[exp[−λ1L
δ
ε,a,0 − λ2L

δ
ε,a+]; Tε < Ta ∧ eδ]

+ E[exp[−λ1L
δ
ε,a,0 − λ2L

δ
ε,a+]; Ta < Tε ∧ eδ]

+ E[exp[−λ1L
δ
ε,a,0 − λ2L

δ
ε,a+]; eδ < Tε ∧ Ta]

= E[e−λ1Tε ; Tε < Ta ∧ eδ]Jε(ε)+ E[e−λ1Ta ; Ta < Tε ∧ eδ]Jε(a)
+ E[e−λ1eδ ; eδ < Tε ∧ Ta]

= E[e−(δ+λ1)Tε ; Tε < Ta]Jε(ε)+ E[e−(δ+λ1)Ta ; Ta < Tε]Jε(a)

+ δ(1 − Ee−(δ+λ1)(Tε∧Ta))
δ + λ1

= fδ+λ1(a, 0)

fδ+λ1(a, ε)
Jε(ε)+ fδ+λ1(0, ε)

fδ+λ1(a, ε)
Jε(a)+ δ

δ + λ1

(
1 − fδ+λ1(a, 0)+ fδ+λ1(0, ε)

fδ+λ1(a, ε)

)
.

(3.10)

Furthermore,
Jε(ε) = Pε{T0 < eδ}Jε(0)+ Pε{eδ < T0}

= Eεe
−δT0Jε(0)+ 1 − Eεe

−δT0

= g−,δ(ε)
g−,δ(0)

Jε(0)+ 1 − g−,δ(ε)
g−,δ(0)

, (3.11)

where the last step is due to (2.12). Substituting (3.11) into (3.10), solving for Jε(0), and taking
the limit, we obtain

J0(0) = lim
ε→0+ Jε(0)

= lim
ε→0+

{[
fδ+λ1(a, 0)

fδ+λ1(a, ε)

(
1 − g−,δ(ε)

g−,δ(0)

)
+ fδ+λ1(0, ε)

fδ+λ1(a, ε)
Jε(a)

+ δ

δ + λ1

(
1 − fδ+λ1(a, 0)+ fδ+λ1(0, ε)

fδ+λ1(a, ε)

)]

×
[

1 − fδ+λ1(a, 0)

fδ+λ1(a, ε)

g−,δ(ε)
g−,δ(0)

]−1}

=
[
ψ−
δ (0)+ f2,δ+λ1(0, 0)

fδ+λ1(a, 0)
J0(a)+ δ

δ + λ1

f2,δ+λ1(a, 0)− f2,δ+λ1(0, 0)

fδ+λ1(a, 0)

]

×
[
ψ−
δ (0)+ f2,δ+λ1(a, 0)

fδ+λ1(a, 0)

]−1

. (3.12)

Here, (3.12) is the first equation of the target terms J0(0) and J0(a) we obtained.
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Similarly,

Jε(a) = Ea[exp[−λ1L
δ
ε,a,0 − λ2L

δ
ε,a+]; Ta+ε < eδ]

+ Ea[exp[−λ1L
δ
ε,a,0 − λ2L

δ
ε,a+]; eδ < Ta+ε]

= Ea[e−λ2Ta+ε ; Ta+ε < eδ]Jε(a + ε)+ Ea[e−λ2eδ ; eδ < Ta+ε]
= Eae−(δ+λ2)Ta+εJε(a + ε)+ δ

δ + λ2
(1 − Eae−(δ+λ2)Ta+ε )

= g+,δ+λ2(a)

g+,δ+λ2(a + ε)
Jε(a + ε)+ δ

δ + λ2

(
1 − g+,δ+λ2(a)

g+,δ+λ2(a + ε)

)
. (3.13)

Furthermore,

Jε(a + ε) = Ea+ε[exp[−λ1L
δ
ε,a,0 − λ2L

δ
ε,a+]; Ta < T0 ∧ eδ]

+ Ea+ε[exp[−λ1L
δ
ε,a,0 − λ2L

δ
ε,a+]; T0 < Ta ∧ eδ]

+ Ea+ε[exp[−λ1L
δ
ε,a,0 − λ2L

δ
ε,a+]; eδ < Ta ∧ T0]

= Ea+ε[e−λ1Ta ; Ta < T0 ∧ eδ]Jε(a)+ Ea+ε[e−λ1T0; T0 < Ta ∧ eδ]Jε(0)
+ Ea+ε[e−λ1eδ ; eδ < Ta ∧ T0]

= Ea+ε[e−(δ+λ1)Ta ; Ta < T0]Jε(a)+ Ea+ε[e−(δ+λ1)T0; T0 < Ta]Jε(0)
+ δ

δ + λ1
(1 − Ea+ε[e−(δ+λ1)(Ta∧T0)])

= fδ+λ1(a + ε, 0)

fδ+λ1(a, 0)
Jε(a)+ fδ+λ1(a, a + ε)

fδ+λ1(a, 0)
Jε(0)

+ δ

δ + λ1

(
1 − fδ+λ1(a, a + ε)+ fδ+λ1(a + ε, 0)

fδ+λ1(a, 0)

)
. (3.14)

Substituting (3.14) into (3.13), solving for Jε(a), and taking the limit, we obtain

J0(a) = lim
ε→0+ Jε(a)

= lim
ε→0+

{[
g+,δ+λ2(a)

g+,δ+λ2(a + ε)

δ

δ + λ1

(
1 − fδ+λ1(a, a + ε)+ fδ+λ1(a + ε, 0)

fδ+λ1(a, 0)

)

+ δ

δ + λ2

(
1 − g+,δ+λ2(a)

g+,δ+λ2(a + ε)

)]

×
[

1 − g+,δ+λ2(a)

g+,δ+λ2(a + ε)

fδ+λ1(a + ε, 0)

fδ+λ1(a, 0)

]−1}

+ lim
ε→0+

{
Jε(0)

[
g+,δ+λ2(a)

g+,δ+λ2(a + ε)

fδ+λ1(a, a + ε)

fδ+λ1(a, 0)

]

×
[

1 − g+,δ+λ2(a)

g+,δ+λ2(a + ε)

fδ+λ1(a + ε, 0)

fδ+λ1(a, 0)

]−1}

=
[

δ

δ + λ1

−f1,δ+λ1(a, 0)− f2,δ+λ1(a, a)

fδ+λ1(a, 0)
+ δ

δ + λ2
ψ+
δ+λ2

(a)+ f2,δ+λ1(a, a)

fδ+λ1(a, 0)
J0(0)

]

×
[
ψ+
δ+λ2

(a)− f1,δ+λ1(a, 0)

fδ+λ1(a, 0)

]−1

. (3.15)
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Here, (3.15) is the second equation of the target terms J0(0) and J0(a) we obtained. Finally,
solving the linear system composed of (3.12) and (3.15), and simplifying the result using identity
(2.13) with x = a, y = 0, and r = δ + λ1, we complete the proof of Theorem 3.3.

Remark 3.2. When λ1 = λ2 = λ, the first joint Laplace transform in Theorem 3.3 is reduced
to Theorem 3.1 using identity (2.15) with x = a, y = 0, and r = δ + λ. Furthermore, when
λ1 → 0+, λ2 = λ, and a = 0, the second joint Laplace transform in Theorem 3.3 is reduced
to Theorem 3.1 using identity (2.14) with x = a, y = 0, and r = δ.

Letting δ → 0+ in Theorem 3.3, we obtain the following corollary.

Corollary 3.5. For any a < 0, we have

E exp

[
−λ1

∫ ∞

0
1{a≤Xs<0} ds − λ2

∫ ∞

0
1{Xs<a} ds

]

= −f1,λ1(a, 0)ψ−
0 (0)+ fλ1(a, 0)ψ+

λ2
(a)ψ−

0 (0)

f2,λ1(a, 0)ψ+
λ2
(a)− f1,λ1(a, 0)ψ−

0 (0)+ fλ1(a, 0)ψ+
λ2
(a)ψ−

0 (0)− f12,λ1(a, 0)

and

Ea exp

[
−λ1

∫ ∞

0
1{a≤Xs<0} ds − λ2

∫ ∞

0
1{Xs<a} ds

]

= f2,δ+λ1(a, a)ψ
−
0 (0)

f2,λ1(a, 0)ψ+
λ2
(a)− f1,λ1(a, 0)ψ−

0 (0)+ fλ1(a, 0)ψ+
λ2
(a)ψ−

0 (0)− f12,λ1(a, 0)
.

Letting λ2 → 0+ in Theorem 3.3, and using the identity f2,δ+λ(a, a) = −f1,δ+λ(a, a), we
obtain the following result.

Corollary 3.6. For any a < 0, we have

E exp

[
−λ

∫ eδ

0
1{a≤Xs<0} ds

]

=
[
δf2,δ+λ(a, 0)+ λf2,δ+λ(0, 0)

(δ + λ)fδ+λ(a, 0)
ψ+
δ (a)− f1,δ+λ(a, 0)

fδ+λ(a, 0)
ψ−
δ (0)+ ψ+

δ (a)ψ
−
δ (0)

− δf12,δ+λ(a, 0)

(δ + λ)fδ+λ(a, 0)

]

×
[
f2,δ+λ(a, 0)

fδ+λ(a, 0)
ψ+
δ (a)− f1,δ+λ(a, 0)

fδ+λ(a, 0)
ψ−
δ (0)+ ψ+

δ (a)ψ
−
δ (0)− f12,δ+λ(a, 0)

fδ+λ(a, 0)

]−1

and

Ea exp

[
−λ

∫ eδ

0
1{a≤Xs<0} ds

]

=
[
f2,δ+λ(a, 0)

fδ+λ(a, 0)
ψ+
δ (a)− δf1,δ+λ(a, 0)+ λf1,δ+λ(a, a)

(δ + λ)fδ+λ(a, 0)
ψ−
δ (0)+ ψ+

δ (a)ψ
−
δ (0)

− δf12,δ+λ(a, 0)

(δ + λ)fδ+λ(a, 0)

]

×
[
f2,δ+λ(a, 0)

fδ+λ(a, 0)
ψ+
δ (a)− f1,δ+λ(a, 0)

fδ+λ(a, 0)
ψ−
δ (0)+ ψ+

δ (a)ψ
−
δ (0)− f12,δ+λ(a, 0)

fδ+λ(a, 0)

]−1

.
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Letting δ → 0+ in Corollary 3.6, we obtain the following simplified expression.

Corollary 3.7. For any a < 0, we have

E exp

[
−λ

∫ ∞

0
1{a≤Xs<0} ds

]

= f2,λ(0, 0)ψ+
0 (a)− f1,λ(a, 0)ψ−

0 (0)+ fλ(a, 0)ψ+
0 (a)ψ

−
0 (0)

f2,λ(a, 0)ψ+
0 (a)− f1,λ(a, 0)ψ−

0 (0)+ fλ(a, 0)ψ+
0 (a)ψ

−
0 (0)− f12,λ(a, 0)

and

Ea exp

[
−λ

∫ ∞

0
1{a≤Xs<0} ds

]

= f2,λ(a, 0)ψ+
0 (a)− f1,λ(a, a)ψ

−
0 (0)+ fλ(a, 0)ψ+

0 (a)ψ
−
0 (0)

f2,λ(a, 0)ψ+
0 (a)− f1,λ(a, 0)ψ−

0 (0)+ fλ(a, 0)ψ+
0 (a)ψ

−
0 (0)− f12,λ(a, 0)

.

Remark 3.3. As a → −∞, by (2.10), the first Laplace transforms in Corollaries 3.6 and 3.7
are reduced to Theorem 3.1 and Corollary 3.1, respectively.

Letting λ2 → ∞ in the first equation of Theorem 3.3, by (2.11), we obtain the following
result.

Corollary 3.8. For any a < 0, we have

E

[
exp

[
−λ

∫ eδ

0
1{a≤Xs<0} ds

]
; eδ < Ta

]

= δ(f2,δ+λ(a, 0)− f2,δ+λ(0, 0))/(δ + λ)+ fδ+λ(a, 0)ψ−
δ (0)

f2,δ+λ(a, 0)+ fδ+λ(a, 0)ψ−
δ (0)

.

4. Some applications to diffusion risk processes

The Laplace transforms in Section 3 are motivated by the study of two classes of risk models
that we are going to introduce below.

4.1. The risk process with random observations

Let the surplus processX in a risk model be the time-homogeneous diffusion process defined
in (2.1) with initial value x0 > 0, and let N be an independent Poisson process with constant
rate λ > 0 of consecutive arrival times 0 < τ1 < τ2 < · · · . Suppose that the values of the
process X are only observed at the times (τi). The ruin time for this model is defined as

τλ = inf
i≥1

{τi : Xτi < 0},
with the convention that inf ∅ = ∞.

There is a natural connection between the survival probability for this risk process and the
occupation time for the underlying process X. Actually, for any t > 0,

Px0{τλ > t} = Ex0P{{τi} ∩ {s ≤ t : Xs < 0} = ∅ | X}
= Ex0E

[
exp

[
−λ

∫ t

0
1{Xs<0} ds

] ∣∣∣∣ X
]

= Ex0 exp

[
−λ

∫ t

0
1{Xs<0} ds

]
.
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Therefore, the Laplace transform for the ruin time τλ is

Ex0 e−δτλ = Px0{τλ < eδ} = 1 − Ex0 exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
.

Furthermore, by Corollary 3.2,

Ex0 e−δτλ = λ

δ + λ

g−,δ(x0)

g−,δ(0)
ψ+
δ+λ(0)

ψ+
δ+λ(0)+ ψ−

δ (0)
. (4.1)

Note that, when λ → ∞ and δ → 0+, (4.1) is reduced to the usual ruin probability by (2.5)
and (2.11).

Moreover, for b > 0, write

τλ,b = inf
i≥1

{τi : Xτi < 0 or Xτi > b}

for the ‘two-sided exit time’ of this model. Then, by conditioning, its Laplace transform is
given by

Ex0 e−δτλ,b = Px0{τλ,b < eδ} = 1 − Ex0 exp

[
−λ

∫ eδ

0
1{Xs<0} ds − λ

∫ eδ

0
1{Xs>b} ds

]
,

which can be found by Theorem 3.2.
Fixing a level a ≤ 0 and a positive integer m, for the abovementioned diffusion risk model

with exponential interobservation times, we can further propose another generalized ruin as
the event that either there is at least one observation of X below level a or there are at least m
observations of X between level a and level 0. Note that such a ruin has the spirit of a new
ruin model subject to Chapters 7 and 11 of the bankruptcy code which was first introduced in
[16]. Write τm,aλ for the first Poisson arrival time τi when such a ruin occurs. By definition,
τ

1,−∞
λ = τλ.

Conditioning on X and using the properties for Poisson processes, for any t > 0, we obtain

Px0{τm,aλ > t}

=
m−1∑
i=0

Ex0

[
(λ

∫ t
0 1{a≤Xs<0} ds)i

i! exp

[
−λ

∫ t

0
1{a≤Xs<0} ds

]
exp

[
−λ

∫ t

0
1{Xs<a} ds

]]

=
m−1∑
i=0

Ex0

[
(λ

∫ t
0 1{a≤Xs<0} ds)i

i! exp

[
−λ

∫ t

0
1{Xs<0} ds

]]
.

Therefore, the Laplace transform for the ruin time τm,aλ is

Ex0 e−δτm,aλ = Px0{τm,aλ < eδ}

= 1 −
m−1∑
i=0

Ex0

[
(λ

∫ eδ
0 1{a≤Xs<0} ds)i

i! exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]]
.

In order to find the above Laplace transform for the generalized ruin time τm,aλ , we only need to
recover the joint Laplace transform Ex0 exp[−λ1

∫ eδ
0 1{a≤Xs<0} ds − λ2

∫ eδ
0 1{Xs<a} ds],which

can be found by Theorem 3.3.
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Remark 4.1. Note that this generalized risk model with random observations was first
introduced in [2] and [3] for compound Poisson risk processes with independent Erlang(n)
interobservation times. Our model with exponential interarrival times is a special case with
n = 1. Unfortunately, it is not apparent that the ruin probability for this general risk model
with Erlang(n) interarrival times in [2] and [3] can be associated to the occupation times in a
nice way due to the lack-of-memoryless property.

4.2. The omega risk process

LetX be the time-homogeneous diffusion process defined in (2.1) with initial value x0 > 0.
The so-called omega model was first introduced in [4]. We refer the reader to [1] and [12]
for more recent results on the omega model. The event of bankruptcy is introduced for such
a model. In contrast to traditional ruin, the bankruptcy is not immediate even if the surplus is
negative. To specify the bankruptcy probability, a bankruptcy rate function ω(x) ≥ 0, x ≤ 0,
is introduced, which is typically a decreasing function. Then, whenever the surplus is at level
x ≤ 0, ω(x) dt is the probability of bankruptcy within dt time units. To be more precise, we
can define an auxiliary process N on the same probability space as X so that, given X, process
N follows the law of a Poisson process with time-dependent intensity ω(Xs) 1{Xs<0}, s > 0,
i.e. N is a Cox process. We then define the bankruptcy time, denoted by τω, as the first arrival
time for N . One can also simply define

τω = inf

{
t ≥ 0 :

∫ t

0
ω(Xs) ds > e1

}

for an independent rate-one exponential random variable e1; see [17]. Then the risk model
considered in [15] corresponds to the omega risk process with a constant rate function ω.

The probability of bankruptcy for the omega risk process can be determined as follows: for
any t > 0,

Px0{τω > t} = Px0{Nt = 0} = Ex0 exp

[
−

∫ t

0
ω(Xs) 1{Xs<0} ds

]
.

Therefore, the Laplace transform for the bankruptcy time τω is

Ex0 e−δτω = Px0{τω < eδ} = 1 − Ex0 exp

[
−

∫ eδ

0
ω(Xs) 1{Xs<0} ds

]
. (4.2)

For a constant bankruptcy rate ω(x) ≡ ω, the bankruptcy probability of the omega risk
process coincides with the ruin probability of the risk process with random observations, which
has been pointed out in [12]. Therefore, by (4.1) and (4.2),

Ex0 e−δτω = 1 − Ex0 exp

[
−ω

∫ eδ

0
1{Xs<0} ds

]
= ω

δ + ω

g−,δ(x0)

g−,δ(0)
ψ+
δ+ω(0)

ψ+
δ+ω(0)+ ψ−

δ (0)
.

For a piecewise-constant bankruptcy rate

ω(x) = λ1 1{a≤x<0} +λ2 1{−∞<x<a} for some a < 0;
the corresponding Laplace transform (4.2) can be found by Theorem 3.3.

The omega risk process with rate functionω(x) = λ 1{a≤x<0} +∞ 1{−∞<x<a} is of particular
interest. For this process, bankruptcy occurs at rate λ when the surplus is between a and 0,
and bankruptcy occurs immediately once the surplus reaches level a. It can also be treated as
a Chapters 7 and 11 type ruin of [16] for the current model. For such an omega risk process
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with diffusion surplus process, the Laplace transform for the bankruptcy time is given by

lim
λ2→∞ Ex0 exp

[
−λ

∫ eδ

0
1{a≤Xs<0} ds − λ2

∫ eδ

0
1{Xs<a} ds

]

= Ex0

[
exp

[
−λ

∫ eδ

0
1{a≤Xs<0} ds

]
; eδ < Ta

]
,

which can be found by Corollary 3.8.

5. Examples

We apply the results in Section 3 to two examples in order to obtain more explicit expressions
and to compare them with the known results.

5.1. Brownian motion with drift

LetXt = μt+Wt be a Brownian motion with drift. The corresponding differential equation
(2.3) is reduced to

1
2g

′′(x)+ μg′(x) = rg(x), r > 0.

Defining
β±
r = −μ±

√
μ2 + 2r,

we have
g±,r (x) = eβ

±
r x and ψ±

r (·) ≡ ±β±
r .

Moreover,

fr(y, z) = eβ
−
r y+β+

r z − eβ
−
r z+β+

r y,

f1,r (y, z) = β−
r eβ

−
r y+β+

r z − β+
r eβ

−
r z+β+

r y,

f2,r (y, z) = β+
r eβ

−
r y+β+

r z − β−
r eβ

−
r z+β+

r y,

and
f12,r (y, z) = −2reβ

−
r y+β+

r z + 2reβ
−
r z+β+

r y .

By Theorem 3.2, we obtain

E exp

[
−λ1

∫ eδ

0
1{Xs<0} ds − λ2

∫ eδ

0
1{Xs>b} ds

]

= C1eβ
+
δ b + C2eβ

−
δ b + λ2(β

+
δ − β−

δ )β
−
δ+λ2

/(δ + λ2)

D1eβ
+
δ b +D2eβ

−
δ b

,

where

C1 = δ

δ + λ1
β+
δ β

+
δ+λ1

+ β−
δ β

−
δ+λ2

− δ

δ + λ1
β+
δ+λ1

β−
δ+λ2

+ 2δ,

C2 = − δ

δ + λ1
β−
δ β

+
δ+λ1

− β+
δ β

−
δ+λ2

+ δ

δ + λ1
β+
δ+λ1

β−
δ+λ2

− 2δ,

D1 = β+
δ β

+
δ+λ1

+ β−
δ β

−
δ+λ2

− β+
δ+λ1

β−
δ+λ2

+ 2δ,

and
D2 = −β−

δ β
+
δ+λ1

− β+
δ β

−
δ+λ2

+ β+
δ+λ1

β−
δ+λ2

− 2δ.
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By Theorem 3.3, we obtain

E exp

[
−λ1

∫ eδ

0
1{a≤Xs<0} ds − λ2

∫ eδ

0
1{Xs<a} ds

]

= C3eβ
+
δ+λ1

a + C4eβ
−
δ+λ1

a + δ(λ1 − λ2)(β
+
δ+λ1

− β−
δ+λ1

)β+
δ+λ2

/(δ + λ1)(δ + λ2)

D3eβ
+
δ+λ1

a +D4eβ
−
δ+λ1

a
,

where

C3 = −β−
δ β

+
δ+λ1

+ β−
δ β

+
δ+λ2

− δ

δ + λ1
β−
δ+λ1

β+
δ+λ2

− 2δ,

C4 = β−
δ β

−
δ+λ1

− β−
δ β

+
δ+λ2

+ δ

δ + λ1
β+
δ+λ1

β+
δ+λ2

+ 2δ,

D3 = −β−
δ β

+
δ+λ1

+ β−
δ β

+
δ+λ2

− β−
δ+λ1

β+
δ+λ2

− 2(δ + λ1),

and
D4 = β−

δ β
−
δ+λ1

− β−
δ β

+
δ+λ2

+ β+
δ+λ1

β+
δ+λ2

+ 2(δ + λ1).

In the following we present several results on the occupation times ofX with relatively short
expressions.

By Corollary 3.1, we have

E exp

[
−λ

∫ ∞

0
1{Xs<0} ds

]
= 2μ

μ+ √
μ2 + 2λ

if μ ≥ 0,

which agrees with Formula 1.4.3 of [6, p. 255].
By Corollary 3.2, we have

Ex exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − λ

δ + λ

β+
δ+λ

β+
δ+λ − β−

δ

eβ
−
δ x if x ≥ 0,

δ

δ + λ
+ λ

δ + λ

−β−
δ

β+
δ+λ − β−

δ

eβ
+
δ+λx if x ≤ 0,

which agrees with Formula 1.4.1 of [6, pp. 254, 255].
By Corollary 3.3,

E exp

[
−λ1

∫ eδ

0
1{Xs<0} ds − λ2

∫ eδ

0
1{Xs>0} ds

]
= 2δ

−β−
δ+λ1

β+
δ+λ2

,

which agrees with Formula 1.6.1 of [6, p. 258].
By Corollary 3.4,

E

[
exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
; eδ < Tb

]

= (δβ+
δ+λ/(δ + λ)− β−

δ )e
β+
δ b + (β+

δ − δβ+
δ+λ/(δ + λ))eβ

−
δ b − β+

δ + β−
δ

(β+
δ+λ − β−

δ )e
β+
δ b + (β+

δ − β+
δ+λ)eβ

−
δ b

.
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By Corollary 3.7,

E exp

[
−λ

∫ ∞

0
1{a≤Xs<0} ds

]
= μβ+

λ eβ
+
λ a − μβ−

λ eβ
−
λ a

(μβ+
λ − λ)eβ

+
λ a − (μβ−

λ − λ)eβ
−
λ a

if μ ≥ 0,

which agrees with Formula 1.7.3 of [6, p. 262].
By Corollary 3.8,

E

[
exp

[
−λ

∫ eδ

0
1{a≤Xs<0} ds

]
; eδ < Ta

]

= (β−
δ − δβ−

δ+λ/(δ + λ))eβ
+
δ+λa + (δβ+

δ+λ/(δ + λ)− β−
δ )e

β−
δ+λa − δ(β+

δ+λ − β−
δ+λ)/(δ + λ)

(β−
δ − β−

δ+λ)e
β+
δ+λa + (β+

δ+λ − β−
δ )e

β−
δ+λa

,

which agrees with Formula 2.7.1(1) of [6, p. 301].

5.2. Brownian motion with two-valued drift

Let X be a Brownian motion with two-valued drift, specified by the stochastic differential
equation

dXt = (μL 1(−∞,0)(Xt )− μR 1(0,∞)(Xt )) dt + dWt, (5.1)

where μL,μR ∈ R and Wt is a standard one-dimensional Brownian motion. The Brownian
motion with two-valued drift, referred to as refracted Brownian motion, is also of interest to
risk theory; see, for example, [5] and [11]. Although the Lipschitz assumption (2.2) for the drift
function μ(·) = μL 1(−∞,0)(·)−μR 1(0,∞)(·) fails, (5.1) still has a unique strong solution; see
[20] and [22]. We refer the reader to [21] for recent work on Brownian motion with two-valued
drift.

In this two-valued drift model, for r > 0, suppose that g−,r (·) and g+,r (·) are two indepen-
dent, positive, and convex solutions of the equation

1
2g

′′(x)+ (μL 1(−∞,0)(x)− μR 1(0,∞)(x))g
′(x)− rg(x) = 0,

with g−,r (·) strictly decreasing and g+,r (·) strictly increasing. We choose

g−,r (x) = exp[(μR −
√
μ2
R + 2r )x] 1{x>0}

+ [c− exp[(−μL +
√
μ2
L + 2r )x]

+ (1 − c−) exp[(−μL −
√
μ2
L + 2r )x]] 1{x<0} (5.2)

and

g+,r (x) = [c+ exp[(μR +
√
μ2
R + 2r )x] + (1 − c+) exp[(μR −

√
μ2
R + 2r )x]] 1{x>0}

+ exp[(−μL +
√
μ2
L + 2r )x] 1{x<0}, (5.3)
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where

c− =
μR −

√
μ2
R + 2r + μL +

√
μ2
L + 2r

2
√
μ2
L + 2r

and c+ =
−μL +

√
μ2
L + 2r − μR +

√
μ2
R + 2r

2
√
μ2
R + 2r

,

so that the functions g±,r (·) are differentiable at 0. Hence, it is easy to see that

ψ−
r (0) = −g

′−,r (0)
g−,r (0)

= −μR +
√
μ2
R + 2r and ψ+

r (0) = g′+,r (0)
g+,r (0)

= −μL +
√
μ2
L + 2r.

By Theorem 3.1, we obtain

E exp

[
−λ

∫ eδ

0
1{Xs<0} ds

]
= δψ+

δ+λ(0)/(δ + λ)+ ψ−
δ (0)

ψ+
δ+λ(0)+ ψ−

δ (0)

=
δ(−μL +

√
μ2
L + 2(δ + λ) )/(δ + λ)− μR +

√
μ2
R + 2δ

−μL +
√
μ2
L + 2(δ + λ)− μR +

√
μ2
R + 2δ

and

E exp

[
−λ

∫ eδ

0
1{Xs>0} ds

]
= δψ−

δ+λ(0)/(δ + λ)+ ψ+
δ (0)

ψ−
δ+λ(0)+ ψ+

δ (0)

=
δ(−μR +

√
μ2
R + 2(δ + λ) )/(δ + λ)− μL +

√
μ2
L + 2δ

−μR +
√
μ2
R + 2(δ + λ)− μL +

√
μ2
L + 2δ

.

We have thus recovered Equation (15) of [21]. Furthermore, we can obtain the probability den-
sity functions for the occupation times

∫ t
0 1{Xs<0} and

∫ t
0 1{Xs>0} by inverting the corresponding

Laplace transform as in [21].
In addition, by (5.2) and (5.3), we can easily derive all the joint Laplace transforms in

Theorems 3.2 and 3.3 for Brownian motion with two-valued drift.
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