FINITE SOLVABLE c-GROUPS

ALBERT D. POLIMENI

(Received 24 June 1966)

Introduction

A group G is called a c-group if each of its subnormal subgroups is characteristic in G. It is the object of this note to give a characterization of finite solvable c-groups.

All groups considered are assumed finite. Let $L(G)$ denote the first term of the lower nilpotent series of G, G^{\prime} the commutator subgroup of G, and $Z(G)$ the center of G. Then we wish to prove the following theorems:

Theorem 1. Let G be a solvable group whose 2-Sylow subgroups are abelian. Then G is a c-group if and only it the following hold:

1. $G=G^{\prime} K$, where $G^{\prime} \cap K=(1)$ and G^{\prime} is a cyclic Hall subgroup of G;
2. $G^{\prime} Z(G)$ is cyclic;
3. G / G^{\prime} is cyclic.

Theorem 2. Let G be a solvable group whose 2-Sylow subgroups are nonabelian and which possesses no non-trivial abelian direct factor. Then G is a c-group it and only if the following hold:

1. The 2-Sylow subgroups of G are generalized quaternion;
2. G has exactly one element u of order 2;
3. $G=L(G) \cdot K$ where $L(G) \cap K=(\mathbf{1})$ and $L(G)$ is a cyclic Hall-subgroup of G;
4. $G /\langle u\rangle$ is a c-group.

Preliminaries. It should be remarked that if G is a solvable c-group then G is supersolvable. This follows from the fact that the chief factors of G are abelian.

A group G is called an A-group if each of its Sylow subgroups is abelian. If G is a solvable A-group then [5] $G^{\prime} \cap Z(G)=(1)$ and $G^{\prime} Z(G)$ is the Fitting subgroup of G.

Finally, a group G is called a t-group if each of its subnormal subgroups is normal in G. A theorem of Gaschutz [3] states that if G is a solvable t-group, then $L(G)$ is a Hall-subgroup of G of odd order.

Before proceeding to the proofs of Theorems 1 and 2, we prove the following

Lemma 1. Let G be a nilpotent group. Then G is a c-group if and only if G is cyclic.

Proof. If G is cyclic then it is clear that G is a c-group. Suppose G is a c-group. Since G is nilpotent, every subgroup of G is subnormal in G. Hence every subgroup of G is characteristic in G. It follows that G is abelian or Hamiltonian. If G is Hamiltonian then $G=A \times B \times Q_{n}$, where A is abelian of odd order, B is an elementary abelian 2 -group, and $Q_{n}=\langle a, b\rangle$ with $a^{2^{8-1}}=b^{4}=1, a b=b a^{-1}, a^{2^{n-2}}=b^{2}$, and $n \geqq 3$. The map $\theta: Q_{n} \rightarrow Q_{n}$ given by

$$
\begin{aligned}
& a^{\theta}=a \\
& b^{\theta}=a b
\end{aligned}
$$

defines an automorphism of Q_{n} which can be lifted to G. Thus $\langle b\rangle \neq\langle a b\rangle$ and $\langle b\rangle^{\theta}=\langle a b\rangle$ and we have a contradiction. It follows that G is abelian. Let G_{p} be a p-Sylow subgroup of G, say

$$
G_{v}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{s}\right\rangle,
$$

with $s>1$. We can assume without loss that x_{1} is of maximal order in G_{p}. Then the map $\phi: G_{p} \rightarrow G_{p}$ given by

$$
x_{1}^{\theta}=x_{1} x_{2}
$$

$$
x_{i}^{\theta}=x_{i}, \quad i \geqq 2,
$$

is an automorphism of G_{p} which can be lifted to G. But $\left\langle x_{1}\right\rangle \neq\left\langle x_{1} x_{2}\right\rangle$ and $\left\langle x_{1}\right\rangle^{\theta}=\left\langle x_{1} x_{2}\right\rangle$ and we have a contradiction. So G_{p} is cyclic, and hence, so is G.

Proof of theorem 1. First suppose G is a c-group, say $|G|=p_{1}^{\alpha_{1}} p_{2}^{\alpha} \cdots p_{r}^{\alpha_{r}}$ is the canonical factorization of $|G|$ such that $p_{1}<p_{\mathbf{2}}<\cdots<p_{r}$. Since G is supersolvable, it has a normal series

$$
\begin{equation*}
G=H_{0}>H_{1}>\cdots>H_{r-1}>H_{r}=(1), \tag{1}
\end{equation*}
$$

where $\left|H_{i-1}: H_{i}\right|=p_{i}^{\alpha_{i}}$ for $i=1, \cdots, r$. Thus if $2\left||G|\right.$, then G / H_{1} is isomorphic to a 2 -Sylow subgroup of G. Since G is a c-group and H_{r-1} is a nilpotent normal subgroup of G of odd order, H_{r-1} is abelian. Similarly, H_{i-1} / H_{i} is abelian for $i=2, \cdots, r-2$. So G is an A-group. Thus $G^{\prime} \cap Z(G)=(1)$ and $G^{\prime} Z(G)$ is the Fitting subgroup of G. Hereafter, let $Z=Z(G)$ and $L=L(G)$.

Since G is supersolvable, G^{\prime} is nilpotent and hence, abelian. Since G / L is nilpotent, it must be abelian, thus $G^{\prime}=L$. So [3] G^{\prime} is a Hallsubgroup of G and $G=G^{\prime} K$ with $G^{\prime} \cap K=(1)$. Since G^{\prime} is abelian, the automorphisms of G must induce power automorphisms on G^{\prime}. We claim that G^{\prime} is cyclic. Let $\theta \in$ Aut $\left(G^{\prime}\right)$ and let $g \in G$, say $g=a \cdot b$ where $a \in G^{\prime}$
and $b \in K$. Define $\boldsymbol{\theta}: G \rightarrow G$ by $g^{\boldsymbol{\theta}}=a^{\theta} b$. Then θ is an automorphism of G. Hence G^{\prime} is cyclic.

We now show that Z is cyclic. Since $Z \cap G^{\prime}=(1), Z \leqq K$. Let p be any prime divisor of $|Z|$ and let K_{p} be the p-Sylow subgroup of K, say

$$
K_{p}=\left\langle u_{1}\right\rangle \times\left\langle u_{2}\right\rangle \times \cdots \times\left\langle u_{t}\right\rangle
$$

with $t\rangle$. Let b be an element of Z of order p. Assume $b \notin\left\langle u_{1}\right\rangle$ and define $\alpha: K_{p} \rightarrow K_{p}$ by

$$
\begin{aligned}
& u_{1}^{\alpha}=b u_{1} \\
& u_{i}^{\alpha}=u_{i}
\end{aligned}
$$

$$
i>1
$$

then α can be extended to an automorphism $\bar{\alpha}$ of G which induces the identity on G^{\prime}. Say $G^{\prime}=\langle c\rangle$. Then $H_{1}=\left\langle c, u_{1}\right\rangle$ and $H_{2}=\left\langle c, b u_{1}\right\rangle$ are normal in G and $H_{1} \neq H_{2}$. But $H_{1}^{\widetilde{a}}=H_{2}$ so we have a contradiction. Thus K_{p} is cyclic. In particular, Z is cyclic. Since G^{\prime} is a Hall-subgroup of G and $G^{\prime} \cap Z=(1), G^{\prime} Z$ is cyclic.

Since $G^{\prime} Z$ is the Fitting subgroup of $G, G / Z$ has a trivial center. Hence K / Z acts faithfully on $G^{\prime} Z \mid Z$, a cyclic group of odd order. Thus K / Z is cyclic. Hence, it follows that G / G^{\prime} is cyclic.

Conversely, suppose conditions $1-3$ hold and let H be a subnormal subgroup of G. We can assume $H \nsubseteq G^{\prime} Z$ and $G^{\prime} \$ H$. Consider $H / H \cap G^{\prime}$; $H / H \cap G^{\prime}$ is subnormal in $G / H \cap G^{\prime}$ and hence in $H G^{\prime} \mid H \cap G^{\prime}$. Thus there is a chain of subgroups

$$
H_{s}=H G^{\prime}>H_{s-1}>\cdots>H_{2}>H_{1}=H
$$

such that

$$
H_{i} / H \cap G^{\prime} \triangleq H_{i+1} / H \cap G^{\prime} \text { for } i=1, \cdots, s-1 .
$$

Since

$$
\left(\left|H_{2}: H\right|,\left|H: H \cap G^{\prime}\right|\right)=1, H / H \cap G^{\prime}
$$

is characteristic in $H_{2} / H \cap G^{\prime}$. So $H / H \cap G^{\prime} \triangleq H_{3} / H \cap G^{\prime}$. Proceeding in this fashion we get that $H / H \cap G^{\prime}$ is characteristic in $H G^{\prime} \mid H \cap G^{\prime}$. Since $H G^{\prime}$ is characteristic in G, it follows that H is characteristic in G. So G is a c-group.

Proof of theorem 2. Assume G is a c-group and let $L=L(G)$, $Z=Z(G)$. Then L is a Hall-subgroup of G of odd order. Hence, L is abelian and $G=L \cdot K$ with $L \cap K=(1)$. As in the proof of Theorem 1, we have that L is cyclic. G / L is non-abelian since the 2 -Sylow subgroups of G are non-abelian. Hence, L is a proper subgroup of G^{\prime}. Let S be a 2 -Sylow subgroup of G, then $S=B \times Q_{n}$ where B is an elementary abelian 2 -group and Q_{n} is generalized quaternion of order 2^{n}. So $S / S \cap G^{\prime} \cong S G^{\prime} / G^{\prime}$ and therefore $S \cap G^{\prime} \neq(1)$. So if $Q_{n}=\langle a, b\rangle$ with $b^{4}=1$, then $b^{2} \in G^{\prime}$. Thus
$b^{2} \in G^{\prime} \cap Z$ since $\left\langle b^{2}\right\rangle \triangleq G$. Now $G / L \cdot\left\langle b^{2}\right\rangle$ is nilpotent and all of its Sylow subgroups are abelian, so $G^{\prime}=L \cdot\left\langle b^{2}\right\rangle$.
$G \mid\left\langle b^{2}\right\rangle$ is an A-group so $Z\left(G \mid\left\langle b^{2}\right\rangle\right) \cap G^{\prime} \mid\left\langle b^{2}\right\rangle=(1)$. Hence, $G^{\prime} \cap Z=\left\langle b^{2}\right\rangle$. Let $Z_{1} /\left\langle b^{2}\right\rangle=Z\left(G /\left\langle b^{2}\right\rangle\right)$. Then $G^{\prime} Z_{1} /\left\langle b^{2}\right\rangle$ is the Fitting subgroup of $G /\left\langle b^{2}\right\rangle$. Since $b^{2} \in Z, G^{\prime} Z_{1}$ is the Fitting subgroup of G. Since $G^{\prime} Z_{1} / Z_{1} \cong L$, we have that $G / G^{\prime} Z_{1}$ is cyclic. Since Z_{1} is a nilpotent normal subgroup of $G, Z_{1}=A_{1} \times B_{1} \times Q_{m}$ where A_{1} is an abelian group of odd order, B_{1} is an elementary abelian 2-group and Q_{m} is generalized quaternion of order 2^{m}. So $B_{1} \leqq Z$ and $A_{1} \leqq Z$. Hence, it follows that B_{1} is an abelian direct factor of G. So $B_{1}=(1)$ and $Z_{1}=A_{1} \times Q_{m}$. Moreover, since K / Z_{1} is cyclic, its 2 -Sylow subgroups are cyclic. Now Q_{m} is a proper subgroup of Q_{n}, for otherwise Q_{n} would be a direct factor of G and G would not be a c-group. Thus the 2 -Sylow subgroups of G have form Q_{n}. So G has exactly one element of order 2.

Using methods similar to those used in the proof of Theorem 1, one gets that A_{1} is cyclic and hence that $Z_{1} /\left\langle b^{2}\right\rangle$ is cyclic. In the process we also find that if p is a prime divisor of $\left|A_{1}\right|$, then the p-Sylow subgroup of K is cyclic. Thus the Sylow subgroups of G / G^{\prime} are cyclic and hence G / G^{\prime} is cyclic. Thus, $G /\left\langle b^{2}\right\rangle$ is a c-group.

Conversely, suppose conditions $1-4$ hold and let H be a subnormal subgroup of G. Let $\theta \in$ Aut (G). Then since $G /\langle u\rangle$ is a c-group, $H\langle u\rangle \mid\langle u\rangle$ is characteristic in $G \mid\langle u\rangle$. Now either $2||H|$ and hence, $u \in H$, or $2 \nmid| H \mid$. If $u \in H$ then $H^{\theta}=H$. If $2 \nmid|H|$, let $y \in H$ and suppose $y^{\theta}=y_{1} u^{8}$. Here $s=0$ or 1 and $y_{1} \in H$. If $y^{\theta}=y_{1} u$, then $\left|y^{\theta}\right|=2\left|y_{1}\right|$ and we have a contradiction. So $y^{\theta} \in H$ and $H^{\theta}=H$. So G is a c-group.

Corollary l. If G is a solvable c-group and G has an abelian direct factor, then this factor is a Hall-subgroup of G.

Proof. Let A be an abelian direct factor of G, say $G=A \times B$. Thus A must be cyclic by Lemma 1 . We can assume that B has the form given in Theorem 1 or 2 and that B has no abelian direct factor. Then we still have $G=L \cdot K$ with $K \cap L=(1)$ and L a cyclic Hall-subgroup of G. Suppose p is a prime divisor of $(|A|,|B|)$. Let K_{v} be the p-Sylow subgroup of K. If p is odd then K_{p} is abelian, say

$$
K_{p}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times\left\langle x_{t}\right\rangle
$$

Let a be the element of A of order p. Since $p \mid(|A|,|B|), t>1$, say $a \in\left\langle x_{i}\right\rangle$. Then the $\operatorname{map} \theta: K_{p} \rightarrow K_{p}$ given by

$$
\begin{aligned}
& x_{1}^{\theta}=a x_{1} \\
& x_{i}^{\theta}=x_{i}
\end{aligned} \quad i>1
$$

is an automorphism of K_{p} which can be lifted to $\bar{\theta} \in$ Aut (G). Then, if
$L=\langle c\rangle, H_{1}=\left\langle c, x_{1}\right\rangle$ and $H_{2}=\left\langle c, x_{1} a\right\rangle$ are normal subgroups of G and $H_{\mathbf{1}}^{\overline{0}}=H_{\mathbf{2}}$. Hence, we have a contradiction. A similar technique can be applied if $p=2$.

References

[1] W. Burnside, The theory of groups of finite order. (Dover Publications, Inc., New York, 1955).
[2] R. W. Carter, 'Splitting properties of solvable groups'. J. London Math. Soc. 36 (1961), 89-94.
[3] W. Gaschutz, 'Gruppen, in denen das Normalteilersein transitiv ist'. J. Reine Angew. Math. 198 (1956), 87-92.
[4] M. Hall, The theory of groups. (Macmillan, New York, 1959).
[5] D. R. Taunt, 'On A-groups'. Proc. Cambridge Philos, Soc. 45 (1949), 24-42.
University of Michigan
Ann Arbor, Michigan

