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Introduction

A group G is called a c-group if each of its subnormal subgroups is
characteristic in G. It is the object of this note to give a characterization
of finite solvable c-groups.

All groups considered are assumed finite. Let L(G) denote the first
term of the lower nilpotent series of G, G' the commutator subgroup of G,
and Z{G) the center of G. Then we wish to prove the following theorems:

THEOREM 1. Let G be a solvable group whose 2-Sylow subgroups are
dbelian. Then G is a c-group if and only if the following hold:

1. G = G'K, where G' nK = (1) and G' is a cyclic Hall subgroup of G;
2. G'Z(G) is cyclic;
3. G/G' is cyclic.

THEOREM 2. Let G be a solvable group whose 2-Sylow subgroups are non-
abelian and which possesses no non-trivial abelian direct factor. Then G is a
c-group if and only if the following hold:

1. The 2-Sylow subgroups of G are generalized quaternion;
2. G has exactly one element u of order 2;
3. G = L(G) • K where L(G) n K = (1) and L(G) is a cyclic Hall-sub-

group of G;
4. Gj(u} is a c-group.

PRELIMINARIES. It should be remarked that if G is a solvable c-group
then G is supersolvable. This follows from the fact that the chief factors of
G are abelian.

A group G is called an A -group if each of its Sylow subgroups is abelian.
If G is a solvable ;!-group then [5] G' n Z{G) = (1) and G'Z(G) is the
Fitting subgroup of G.

Finally, a group G is called a 2-group if each of its subnormal subgroups
is normal in G. A theorem of Gaschutz [3] states that if G is a solvable
tf-group, then L (G) is a Hall-subgroup of G of odd order.

Before proceeding to the proofs of Theorems 1 and 2, we prove the
following
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LEMMA 1. Let G be a nilpotent group. Then G is a c-group if and only if
G is cyclic.

PROOF. If G is cyclic then it is clear that G is a c-group. Suppose G is
a c-group. Since G is nilpotent, every subgroup of G is subnormal in G.
Hence every subgroup of G is characteristic in G. It follows that G is abelian
or Hamiltonian. If G is Hamiltonian then G = AxBxQn, where A is
abelian of odd order, B is an elementary abelian 2-group, and Qn = <a, by
with a2""1 = b* = 1, ab = ba-1, a*"1 = b*. and n ^ 3. The map 6 : Qn-+Qn

given by
a9 = a
be = ab

defines an automorphism of Qn which can be lifted to G. Thus <6> ^ <«&>
and (b}e = (aby and we have a contradiction. It follows that G is abelian.
Let Gv be a ^-Sylow subgroup of G, say

with s > 1. We can assume without loss that x1 is of maximal order in Gp.
Then the map <f>: G, -> G, given by

A = xo i ^ 2,

is an automorphism of Gv which can be lifted to G. But <«!> ^ <a;xa;2>
and <»!>* = (x^x^y and we have a contradiction. So Gv is cyclic, and hence,
so is G.

PROOF OF THEOREM 1. First suppose G is a c-group, say |G|=PllPf "'Ptr

is the canonical factorization of \G\ such that pl < pt < • • • < pr. Since
G is supersolvable, it has a normal series

(1) G = H0>H1>---> Hr_x >HT= (1),

where \Ht_r: Ht\ = pa
t' for i = 1, • • •, r. Thus if 2| \G\, then G/i^ is iso-

morphic to a 2-Sylow subgroup of G. Since G is a c-group and HT_X is a
nilpotent normal subgroup of G of odd order, HT_t is abelian. Simi-
larly, Hi_^\Hi is abelian for i = 2, • • •, r—2. So G is an .4-group. Thus
G' n Z(G) = (1) and G'Z(G) is the Fitting subgroup of G. Hereafter, let
Z = Z(G) and L = Z.(G).

Since G is supersolvable, G' is nilpotent and hence, abelian. Since
G\L is nilpotent, it must be abelian, thus G' = L. So [3] G' is a Hall-
subgroup of G and G = G'iC with G' n K = (1). Since G' is abelian, the
automorphisms of G must induce power automorphisms on G'. We claim
that G' is cyclic. Let 6 e Aut (G') and let g eG, say g = a • b where a eG'
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and b e K. Define 6 : G -> G by g8 = a°b. Then 6 is an automorphism of G.
Hence G' is cyclic.

We now show that Z is cyclic. Since Z n G' = (1), Z <:K. Let p
be any prime divisor of \Z\ and let Kv be the />-Sylow subgroup of K, say

with tf > 1. Let b be an element of Z of order >̂. Assume b $ <«x> and
define a : Kp -> Kt by

then a can be extended to an automorphism a of G which induces the
identity on G'. Say G' = <c>. Then H1 = <c, %> and H2 = <c, buj} are
normal in G and H1^ H2. But / 7 | = H2 so we have a contradiction. Thus
ifp is cyclic. In particular, Z is cyclic. Since G' is a Hall-subgroup of G and
C ' n Z = ( l ) , G'Z is cyclic.

Since G'Z is the Fitting subgroup of G, G\Z has a trivial center. Hence
K\Z acts faithfully on G'ZjZ, a cyclic group of odd order. Thus K\Z is
cyclic. Hence, it follows that GjG' is cyclic.

Conversely, suppose conditions 1—3 hold and let H be a subnormal
subgroup of G. We can assume H ?g G'Z and G' $ /?. Consider #//? n G';
#/.ff n G' is subnormal in G\H n G' and hence in HG'/H n G'. Thus there
is a chain of subgroups

#, = HG' > ^ ! >--->H2>H1 = H,

such that
# , / # n G'<HiJrXIH n G' for » = 1, • • •, s - 1 .

Since
(\H% :H\, \H :H n G'|) = 1, ^/Zr n G'

is characteristic in HJH n G'. So i?/Zf n G' <^ H3/H n G'. Proceeding in
this fashion we get that HjH n G' is characteristic in HG'jH n G'. Since
HG' is characteristic in G, it follows that # is characteristic in G. So G is
a c-group.

PROOF OF THEOREM 2. Assume G is a c-group and let L — L(G),
Z = Z(G). Then L is a Hall-subgroup of G of odd order. Hence, L is abelian
and G = L • K with Z. n if = (1). As in the proof of Theorem 1, we have
that L is cyclic. G/L is non-abelian since the 2-Sylow subgroups of G are
non-abelian. Hence, L is a proper subgroup of G'. Let S be a 2-Sylow sub-
group of G, then S = BxQn where B is an elementary abelian 2-group
and Qn is generalized quaternion of order 2". So SjS n G' ^ SG'/G' and
therefore S n G' ^ (1). So if Qn = <a, &> with 64 = 1, then b2 e G'. Thus
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Z>2 e G' n Z since <62> < G. Now G/Z, • <62> is nilpotent and all of its Sylow
subgroups are abelian, so G' = L • <62>.

G/<62> is an ,4-group so Z(G/<6«» n G'/<i2> = (1). Hence,
G' nZ = <62>. Let ZJ<fi*> = Z(G/<62». Then G'Zx/<62> is the Fitting
subgroup of G/<62>. Since b2 e Z, G'ZX is the Fitting subgroup of G. Since
G'ZX\ZX ~ L, we have that GjG'Z1 is cyclic. Since Zx is a nilpotent normal
subgroup of G, Zx = ^ X Bx X @m where .4 x is an abelian group of odd order,
Bx is an elementary abelian 2-group and Qm is generalized quaternion of
order 2m. So Bx ^ Z and 4̂X ̂  Z. Hence, it follows that Bx is an abelian
direct factor of G. So Bx = (1) and Zx — AxxQm. Moreover, since K\ZX

is cyclic, its 2-Sylow subgroups are cyclic. Now Qm is a proper subgroup
of Qn, for otherwise Qn would be a direct factor of G and G would not be
a c-group. Thus the 2-Sylow subgroups of G have form Qn. So G has exactly
one element of order 2.

Using methods similar to those used in the proof of Theorem 1, one
gets that Ax is cyclic and hence that Z1/<62> is cyclic. In the process we also
find that if p is a prime divisor of \AX\, then the ^>-Sylow subgroup of K
is cyclic. Thus the Sylow subgroups of G/G' are cyclic and hence G/G'
is cyclic. Thus, G/<£2> is a c-group.

Conversely, suppose conditions 1—4 hold and let if be a subnormal
subgroup of G. Let 6 e Aut (G). Then since G/<» is a c-group, £?<«>/<«>
is characteristic in G/<«>. Now either 2| \H\ and hence, ueH, or 2-j'|.ff'|.
UueH then # 9 = # . If 2f |# | , let */ e tf and suppose y» = ^w". Here
s = 0 or 1 and yx e H. If ye = yxu, then |y*| = 2\yx\ and we have a contra-
diction. So y9 e H and He — H. So G is a c-group.

COROLLARY 1. 7/ G is a solvable c-group and G has an abelian direct
factor, then this factor is a Hall-subgroup of G.

PROOF. Let A be an abelian direct factor of G, say G = A x B. Thus
A must be cyclic by Lemma 1. We can assume that B has the form given
in Theorem 1 or 2 and that B has no abelian direct factor. Then we still
have G — L • K with K c\L = (1) and L a cyclic Hall-subgroup of G.
Suppose p is a prime divisor of {\A\, \B\). Let Kv be the />-Sylow subgroup
of K. If p is odd then Kv is abelian, say

K9 = <*1> X <*2> X • • • X <!Bt>.

Let a be the element of A of order p. Since p\ (\A\, \B\), t > 1, say a e (xt~).
Then the map 6 : K9 -> i£,, given by

is an automorphism of Kv which can be lifted to 6 e Aut (G). Then, if
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L = <c>, Hx = <c, xxy and H2 = <c, a^a) are normal subgroups of G and
H\ = Ht. Hence, we have a contradiction. A similar technique can be
applied if p = 2.
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