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Working in homotopy type theory, we provide a systematic study of homotopy limits of

diagrams over graphs, formalized in the Coq proof assistant. We discuss some of the

challenges posed by this approach to the formalizing homotopy-theoretic material. We also

compare our constructions with the more classical approach to homotopy limits via

fibration categories.

1. Introduction

Homotopy type theory is based on the discovery that formal dependent type theory has a

natural homotopy-theoretic interpretation (Awodey and Warren 2009; Voevodsky 2006).

Since a number of interactive proof assistants implement versions of dependent type

theory, these observations open the possibility of developing parts of homotopy theory

formally with the help of such assistants; see Pelayo and Warren (2012) for a helpful

overview.

In this spirit, we carry out a number of homotopy-theoretic constructions in a core

system of homotopy type theory. In particular, we define and investigate (homotopy)

pullbacks, equalizers, limits over graphs, pointed spaces, and fibre sequences. The entire

development is formalized with the Coq interactive proof assistant. Besides the formal-

ization itself, we also compare the semantics of type theory with fibration categories, a

standard homotopy-theoretic setting for the construction of homotopy limits.

We assume some familiarity with type theory, but not specifically with the homotopical

version; we do not assume any previous acquaintance with homotopy limits.

We should mention that many of the facts we present below are already known in

folklore; in any case, none of them will be unexpected to researchers in the field. Rijke

and Spitters (2014) have also independently investigated limits and colimits over graphs

within a similar type theory. We hope it will prove useful, however, to have a systematic

treatment of these basic results, fully formalized in Coq and available as a library for

future use. We also hope that the practical lessons we learned during the formalization

process may be useful to others.
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Our Coq development builds on a library for homotopy type theory developed jointly

by various people, under the leadership of Bauer, Lumsdaine, and Shulman (HoTT group

2013). Another extensive library has been developed by Voevodsky (2013) and some of

our verified results overlap his.

1.1. Outline

In Section 2, we set out the formal framework of our work: the type theory under

consideration, and its intended interpretation. Along with this, we very briefly review

homotopy limits in the classical setting. In Section 3, we recall some key constructions

from the type-theoretic development of homotopy theory, and use these to show that every

categorical model of the theory carries the structure of a fibration category. Section 4

presents the main body of our formalization: a concise treatment of the content, in

traditional mathematical prose. Finally, in Section 5 we share some reflections on practical

aspects of the formalization process.

Our formal development in Coq can be found in the files associated with the journal

publication of this paper, and also online at

https://github.com/peterlefanulumsdaine/hott-limits/tree/v1.

The Github version will be maintained for compatibility with Coq and the HoTT library.

References to the formal code are typeset in a teletype font. For brevity, we omit

the .v extension from filenames, so that, for example, Fundamentals.v is cited as

Fundamentals. Often a single lemma in the informal presentation below translates to a

cluster of formal lemmas in our files, in which case we simply cite a representative element

of that cluster.

2. Background

In this section, we first lay out the specific logical system in which we will work. We then

review its intended semantics, insofar as they are relevant to working within the theory,

and fix the basic notation and terminology we will use, based on the intended semantics.

Finally, we very briefly review classical homotopy limits.

2.1. Logical setting

We assume familiarity with some form of dependent type theory. Specifically, we will work

in the system of (predicative) Martin-Löf type theory (Martin-Löf 1984). The following

types, and associated rules, form a minimal core to that system:

1. dependent products Πx:AB, and the associated introduction, elimination and computa-

tion rules;

2. dependent sums Σx:AB, and the associated introduction, elimination and computation

rules;

3. identity types IdA, and the associated introduction, elimination and computation rules.
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Most developments in homotopy type theory add at least the following rule:

4. function extensionality: for any type A, any type B depending on x : A, and functions

f, g : Πx:AB, if fx = gx for every x : A, then f = g.

The system based on these rules is used in Awodey et al. (2012), where it is denoted

by H; it also forms a sufficient basis for much of the present formalization. Some of our

constructions, in addition, depend on:

5. the type Nat of natural numbers, with the usual introduction, elimination and compu-

tation rules,

from which the empty type, unit type and other finite types can be defined; and finally,

some definitions presuppose the existence of:

6. a universe U of types, containing Nat, and closed under the formation of dependent

products, sums and identity types.

We use quantification over the universe to define the universal properties of pullbacks

and limits, but also give equivalent formulations that do not make use of such a universe.

Besides these, the version of Coq we used implements η-conversion for functions,

λx.fx = f, as a built-in conversion rule. As a propositional equality, it is derivable from

function extensionality, so we do not believe its use is essential; however, since it is

unavoidably present in the proof assistant, we include it in our formal theory.

In sum, if we take axioms (1)–(3) to represent the core of Martin-Löf type theory, ML,

it is then reasonable to denote our overall framework as

ML + (funext) + (η) + (Nat) + (U).

For brevity, we refer to this in the present paper as H′; thus, the formal content of our

work is that the constructions and assertions of Sections 3 and 4 are consequences of

this formal theory. As noted above, however, most of our results do not require Nat, and

many do not require U.

We do not consider in the present work extra axioms such as univalence, resizing or

higher inductive types.

One final comment about the formal verification: rather than providing Id, Nat, Bool

and so on individually, Coq provides a general mechanism for defining inductive types,

which these are then defined as instances of. However, the resulting eliminators for these

types correspond precisely to the rules for them described above. Coq also provides

(dependent) record types, as syntactic sugar for certain inductive types; in some cases,

using record types made type checking more efficient, and brought notational benefits as

well. As these may be routinely translated into (iterated) Σ-types, their use has no bearing

on the question of derivability in H′.

2.2. Semantics

2.2.1. General algebraic semantics. The fully general semantics of dependent type theories

are, from a purely algebraic point of view, well-understood. Essentially, a model of any

dependent type theory T with the same basic judgements and structural rules as H′ may

be defined as a contextual category – that is, a category equipped with structure sufficient

to model the structural rules – along with further algebraic structure corresponding to
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the logical constructors and axioms of T. For the details of this definition, see Streicher

(1991); for brevity, we will refer to such a structure as a categorical model of T.

The justification for calling such structures models comes from the fact that the syntax

of the theory forms an initial such structure:

Definition 2.2.1. Given any dependent type theory T, the syntactic category C(T) is given

as follows:

— objects of C(T) are contexts [x1:A1, . . . , xn:An] of T, up to definitional equality and

renaming of free variables;

— maps of C(T) are context morphisms (a.k.a. substitutions), again up to definitional

equality and renaming of free variables. That is, a map

f : [x1:A1, . . . , xn:An]→ [y1:B1, . . . , ym:Bm(y1, . . . , ym−1)]

is represented by a sequence of terms

x1:A1, . . . , xn:An � f1 : B1

...

x1:A1, . . . , xn:An � fm : Bm(f1, . . . , fm−1).

Moreover, C(T) may naturally be given the structure of a contextual category; for each

logical rule of T, C(T) carries the corresponding algebraic structure.

Fact 2.2.2 (Streicher (1991)†). C(T) is initial among categorical models of T.

Thus any other categorical model C has a canonical structure-preserving functor from

C(T) – that is, an interpretation function, interpreting the syntax of T in C.

2.2.2. Homotopical semantics. Homotopy type theory is based on the realization (Awodey

and Warren 2009; Hofmann and Streicher 1998; van den Berg and Garner 2012;

Voevodsky 2010) that various homotopy-theoretic settings give natural examples of such

categorical models. Very roughly, a type A denotes a space; a family B(x) of types,

depending on some variable x of type A, denotes a fibration over A; a term t(x) of type

A′, again dependent on a variable x : A, denotes a continuous map from A to A′; a term

t(x) of type B(x), dependent on x : A, denotes a section of the corresponding fibration

over A; and so on.

The main motivating interpretation, for us, is the model in simplicial sets – one of

the most well-studied models of spaces in homotopy theory. The full details of this

interpretation are rather technical, so since we never require them, we omit them here;

† Unfortunately, to our knowledge, no general form of this result exists in the literature; it is shown for

certain specific type theories in Streicher (1991) and elsewhere, and its extension to other combinations of

the standard rules (such as H′) is well known in folklore.

https://doi.org/10.1017/S0960129514000498 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000498


J. Avigad, K. Kapulkin and P. LeF. Lumsdaine 1044

see Kapulkin et al. (2012) for a complete presentation of the simplicial set model, and

Shulman (2012) for more general related models. We sketch here just the main ingredients

of the interpretation, insofar as they justify the intuition and terminology for working

within the theory.

In this model, closed types (and, more generally, contexts) are interpreted as Kan

complexes; dependent types, as Kan fibrations. Most type formers – Π-types, Σ-types,

Nat, etc. – are interpreted as in the more familiar topos logic: Π-types by the right

adjoint to pullback, Σ-types by the left, Nat by the natural numbers object and so

on.

The main novelty, however, is the interpretation of the identity type IdA(x, y) with

variables x and y from A. In set- and topos-theoretic models, one would interpret it as

the diagonal map A→ A× A. However, in simplicial sets (and other homotopy-theoretic

settings) this map is hardly ever a fibration. It can, however, be replaced by a fibration

P (A) → A × A, where P (A) is the path object of A; this is then used to interpret the

identity type of A. Thinking of a simplicial set as a space, P (A) represents the space

of paths in A, with the fibration P (A) → A × A giving the indexing of paths over their

endpoints. In particular contrast to the set-theoretic situation, for given x, y : A the space

P (A)(x, y) of paths from x to y may be not a mere proposition, but a non-trivial space in

its own right.

2.3. Notation and terminology

Our choices of notation and terminology are guided by the homotopical interpretation. In

particular, we will write p : (x� y) for the identity type, to emphasize that we consider

it as the type of paths from x to y. The homotopy type theory library uses the notation

x = y for this type, and in our Coq development, we stick with this. However, in the

informal presentation below, we find it most natural to understand our constructions as

constructions of paths, rather than equality proofs; and so we settle on the latter notation,

and favour the word ‘path’ over ‘equality.’

In other respects, however, we have found it more convenient to leave the homotopy-

theoretic interpretation implicit. For example, the natural definitions of pullbacks, equal-

izers and limits in type-theoretic notation turn out to characterize homotopy pullbacks,

homotopy equalizers and homotopy limits in the homotopy–theoretic interpretation.

Having kept the notion of ‘path’ prominent, sprinkling the word ‘homotopy’ everywhere

seemed to impose an unnecessary burden; thus, both in code and in prose we refer just

to ‘pullbacks,’ ‘equalizers,’ and ‘limits.’ (This is customary in higher category theory (see,

e.g., Lurie (2009)), when one uses, for example, the word ‘limit’ for an object that in strict

terms is only a homotopy limit.)

For the sake of readability, we will use standard mathematical terminology and notation

in Sections 3 and 4, rather than attempting to adhere closely to the notation used in the

Coq code. The following table lists some of the basic notions of our development,

comparing the notations used in our presentation here with those used in the Coq

formalization:
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Informal Mathematical Coq

notion notation notation

p is a path from x to y p : (x� y) p : x = y

Identity path at x refl(x) idpath x

Concatenation of p and q p � q p @ q

Inverse of p p !p

B is a fibration over A B � A B : A -> Type

Total space of B over A Σx:AB(x) { x : A & B x }

Dependent product of B over A Πx:AB(x) forall x : A, B x

e is an equivalence from A to B e : A � B e : A <~> B

Inverse of e e−1 e^-1

A universe of small types U UU

The natural numbers Nat nat

As usual in homotopy type theory, we represent logic using propositions-as-types, with

implication, conjunction and universal and existential quantification interpreted in terms

of function, product, Π- and Σ-types, respectively. Thus, for example, the functional

extensionality axiom (Axiom 4 in Section 2.1 above), is formally a constant of type:

funext :
∏

A:Type
B:A→Type

∏
f,g:

∏
x:A

B(x)

(∏
x:A

(fx� gx)
)
→ (f � g).

Notice that Σ-types provide a useful way of ‘packaging’ related pieces of data into a

single type: to illustrate this, consider Definition 4.1.5 below. Formally, a cospan consists

of types A, B and C , and maps f : A → C , g : B → C . Given a type X, a cone over this

cospan with vertex X consists of maps h : X → A and k : B → C , and a family of paths

(f(hx)� g(kx)) for each x in X. In other words, such a cone is an element of the type∑
h:X→A
k:X→B

∏
x:X

(f(hx)� g(kx)).

Thus, our formal definition in Coq reads as follows:

Definition cospan_cone {A B C : Type} (f : A -> C)

(g : B -> C) (X : Type)

:= { h : (X -> A) & { k : (X -> B)

& forall x, paths (f(h x)) (g(k x)) }}.

The curly braces around the arguments A, B and C indicate that these are treated as

implicit arguments. This means that the user may write just cospan_cone f g X, leaving
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the system to infer A, B and C from the types of f and g. Sometimes one needs to turn this

feature off, and specify such arguments; writing @cospan_cone A B C f g X tells Coq

to expect all the arguments of cospan_cone to be given explicitly.

2.4. Classical homotopy limits

For the reader unfamiliar with the classical theory of homotopy limits, we briefly survey

here a few of its key points.

These may be seen as a solution to the problem that ordinary (‘strict’) limits are not

invariant under homotopy equivalence: for instance, the two cospans below are homotopy

equivalent, but their strict pullbacks are not.

∗ ∗

∗∗

∗ [0, 1]

∗∅

0

1

This may be resolved by instead defining the homotopy pullback A×h
B C , as the space of

triples (a, c, p), where a ∈ A, c ∈ C and p is a path in B from f(a) to g(c); the equalities

in the definition of the strict pullback have been replaced by paths.

More generally, the homotopy limit of a functor F : I → Top may be defined using the

end formula
∫
i∈I F(i)B(I/i). This has the effect of replacing equalities by homotopies, in

a coherent fashion; the coherence is encoded by the use of the classifying spaces B(I/i).
This generalizes to other settings, first by a similar concrete construction (in e.g. simplicial

settings (Bousfield and Kan 1972)), and more abstractly in terms of derived functors (for

general homotopical categories (Dwyer et al. 2004)).

In the ∞-categorical setting, one may take an alternative approach, defining the

(homotopy) limit by an ∞-categorical universal property directly generalizing that of

ordinary 1-categorical limits (see e.g. Lurie (2009)). In homotopy type theory, we do the

same. It turns out, in fact, that at least for diagrams over graphs, what looks like the

ordinary definition of a strict set-theoretic limit actually defines the homotopy limit – both

as an explicit construction, and as a characterization via a universal mapping property.

3. Fibration categories from type theory

In this section and the next, we develop the basic theory of homotopy limits and related

notions in H′. We have already explained, in Section 2, how the basic ingredients are

represented in the language of Coq, and complete details of the whole development can

be found in the files comprising our formal verification. Especially in Section 4, therefore,

we will generally only sketch most proofs, leaving out steps that are straightforward and

routine (and even some that are not).
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3.1. Basic constructions

Our formal work builds on the HoTT library (HoTT group 2013) for homotopy theory

developed by Bauer, Lumsdaine, Shulman and others. We begin by summarizing some of

the basic components of this library that are used throughout.

3.1.1. Operations on paths. Given any x, y : X, we write p : (x� y) to denote that p is

a path from x to y. For every x, there is an ‘identity path’ refl(x) : (x� x). The central

property characterizing the type of paths is its elimination principle, which says roughly

that to construct an object of a type C(x, y, p) depending on a path p from x to y, it

suffices to construct an element of C(x, x, refl(x)), in which p has been ‘contracted’ to an

identity path.

Paths admit various operations familiar from homotopy theory and higher category

theory. Any two paths p : (x� y) and q : (y � z) can be concatenated, yielding a path

p � q : (x� z). Moreover, refl(x) : (x� x) is a unit element for this operation, and every

path admits an inverse p̄ : (y � x). These operations satisfy the groupoid laws, but, as in

homotopy theory, only up to a higher path. For example, we can find an inhabitant of the

type (p � p̄� refl(x)). In fact, every type, together with the tower of its paths, forms an

∞-groupoid of some sort; precise statements along these lines can be found in Lumsdaine

(2009) and van den Berg and Garner (2011).

Moreover, the maps between types respect the paths and the structure on them. That

is: given any p : (x� y) in X and f : X → Y , we obtain a path f[p] : (f(x)� f(y)); and

this is functorial, in the up-to-homotopy sense that there is, for example, an inhabitant of

the type (f[p � q]� f[p] � f[q]).

3.1.2. Equivalences and truncatedness. The notion of paths allows us to recover several

familiar notions from algebraic topology.

We can, for example, say that a type X is contractible if there is some x0 : X, and a

function giving for each x : X a path (x� x0). Formally, the proposition ‘X is contractible’

is defined as follows:†

isContr(X) :=
∑
x0:X

∏
x:X

(x� x0).

One can also construct the homotopy fibre of a map f : X → Y over an element y : Y

by:

hfib(f, y) :=
∑
x:X

(f(x)� y).

Given these we say that a map f : X → Y is an equivalence if for all y : Y the

homotopy fibre of f over y is contractible. The HoTT library provides many crucial

† One might at first read this as a definition of connectedness – for each x, there exists some path from x to

x0 – but remember that one should think of the function sending x to the path as continuous, so as giving a

contraction of X to x0. Precisely, in the simplicial and similar interpretations, the Π-type becomes a space

of continuous functions, and so isContr gets interpreted as the property of contractibility; and moreover,

working within the theory, the logic forces isContr to behave like contractibility, not like connectedness.
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results on equivalences. For example, a map is an equivalence exactly if it has a two-sided

inverse (up to homotopy), or alternatively two one-sided inverses.

Another notion that smoothly transfers from algebraic topology to HoTT is the notion

of an n-type. Classically, an n-type is a space whose homotopy groups vanish above

dimension n. In HoTT we define an analogous hierarchy.

Precisely, n-truncatedness is defined by induction for n � −2. A type X is (−2)-truncated

if it is contractible; and is (n + 1)-truncated if for all x, y : X, the type (x� y) of paths

from x to y is of n-truncated. For short, we refer to n-truncated types as n-types. In

particular, (−1)-types may be considered as propositions, carrying no more information

than the fact of being inhabited; and 0-types as (up-to-homotopy) discrete sets. We call

such types propositions (or mere propositions, for emphasis) and sets, respectively.

3.1.3. Functional extensionality. Given two types X and Y , the type X → Y of maps

between them can be equipped with the notion of a path (or rather, a ‘homotopy’) in

two different ways. First, for any f, g : X → Y , one can form (f � g), in the usual way.

On the hand, one can also compare two functions pointwise, asking for an element of∏
x:X (f(x)� g(x)); we call such a function h a homotopy from f to g, and write h : f ⇒ g.

Given any p : (f � g), we obtain by the elimination principle for paths an element of

the type f ⇒ g. The functional extensionality axiom implies that this assignment is an

equivalence; that is, that given a pointwise homotopy between two maps, we can always

find a path between them in the function type inducing the original homotopy. More

generally, functional extensionality implies this equivalence between paths and homotopies

in dependent function types
∏

x:A B(x).

3.1.4. Dependent sums. The interaction between dependent sums and paths is crucial

in our work. Let B(x) be a type depending on x : A. It is easy to see that then a

path p : (a� a′) in A induces an equivalence p! : B(a) → B(a′), which we call transport

between fibres. As everything before, this commutes appropriately with the operations

on paths; for example, for any p : (a� a′) and q : (a′ � a′′), and b : B(a) we have

((p � q)!b� q!(p!b)).

This also provides a means to construct paths between two elements of a Σ-type. Given

a path p : ((a, b)� (a′, b′)) in a
∑

x:A B(x), we get a pair of paths: p1 : (a� a′) and

p2 : ((p1)!b� b′); and conversely, given such a pair of paths, we can recover the original

path p. This construction is ubiquitous in the formalization, since so many objects are

defined using Σ-types; for more discussion, see Section 5.3 below.

3.2. Fibration category structure

In this section, we show that any categorical model of H′ (so, in particular, its syntactic

category) satisfies the axioms of a fibration category, following the lines of results such

as Gambino and Garner (2008) and Lumsdaine (2011). After this, we look at how some

standard properties of fibration categories translate in terms of the type theory.

The results follow from a combination of internal reasoning – proving certain statements

in the type theory – and external (meta-theoretic), showing how in models, the internal
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statements translate into the desired axioms. Since we will be switching back and forth

frequently between these two different logical settings, we use sans serif text in this

section to distinguish the internal reasoning from the external. The internal portions are

formalized in the file Fundamentals.

We start by recalling the definition of a fibration category (for more on which, see

Brown (1973) and Baues (1989)):

Definition 3.2.1. A fibration category is a category C together with two distinguished

classes of maps, W (the weak equivalences) and F (the fibrations) satisfying the following

conditions:

1. Weak equivalences satisfy the two-out-of-six condition; i.e., given a composable triple

of morphisms

W
f
→ X

g
→ Y

h→ Z,

if g · f and h · g are weak equivalences, then so are f, g, h and h · g · f.

2. F is closed under composition.

3. Calling a map that is both a weak equivalence and a fibration an acyclic fibration, all

isomorphisms are acyclic fibrations.

4. C has a terminal object 1.

5. Pullbacks along fibrations exist; fibrations and acyclic fibrations are stable under

pullback.

6. For any object X ∈ C, the diagonal morphism Δ: X → X × X can be factored as a

weak equivalence followed by a fibration:

X → PX → X ×X.

(Such a factorization, and by abuse of language also the object PX, is called a path

object for X.)

7. Every object is fibrant; that is, the unique map X → 1 is a fibration, for any X ∈ C.

Remark 3.2.2. This is slightly stronger than the original definition given by Brown, in that

it requires the class W to satisfy the two-out-of-six axiom rather than just the more familiar

two-out-of-three. However, once C satisfies all the other axioms, the following conditions

are equivalent (the result is due to Cisinski; see Radulescu-Banu (2006, Theorem 7.2.7)):

1. W satisfies two-out-of-six;

2. W satisfies two-out-of-three and is saturated; that is, if a map w of C becomes an

isomorphism in Ho(C), then w ∈W .

In this section, we show that any categorical model of H′ (in the sense of Section 2.2)

carries the structure of a fibration category; and so, in particular, the syntactic category

C(H′) does. From here on, fix some categorical model C of H′.
For convenience of exposition, we also assume in this section strong η-rules for Σ-types,

so that every context is isomorphic to (a context consisting of just) a single iterated

Σ-type: for instance,

[x:A, y:B(x)] ∼=

[
p :

∑
x:A

B(x)

]
.
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This allows us to work just with types, rather than with general contexts. However,

nothing here depends on that assumption; one may simply replace types with contexts

and Σ-types with context extensions, in particular in the definition of the fibrations:

Definition 3.2.3 (Gambino and Garner (2008)). A map of C is a fibration if it is isomorphic

to some composite of first projections from Σ-types,∑
x:A

B(x)→ A.

Denote the class of fibrations by F .

(This is a slight simplification of Gambino and Garner’s original definition, which also

closes F under retracts.) Note that ‘isomorphic’ here refers to the external notion of

isomorphism in C, involving definitional equality of maps; and so one cannot represent

this definition internally in the type theory, since definitional equality is not represented

by a type. Indeed, there is no way of defining these fibrations internally: every statement

of the type theory respects equivalence, and we see in Lemma 3.2.11 below that every

map is equivalent to a fibration.

Weak equivalences, by contrast, are defined first internally, as in Section 3.1 above:

Definition 3.2.4 (Voevodsky (2013)). A map f : A → B is an equivalence if for each

b : B the homotopy fiber hfib(f, b) is contractible.

(Note that this is simply a property of f, not extra structure, since being an

equivalence is a proposition in the sense of Section 3.1.2.)

Take a map f : A→ B in C to be in W if ‘(λx. f(x)) is an equivalence’ holds in C.

With these definitions, we are now ready for the main theorem of the section:

Theorema 3.2.5. C, with W and F as described above, is a fibration category.

We consider the various axioms in turn.

Lemma 3.2.6. W satisfies the two-out-of-six property.

Proof. We first show the analogous statement internally (Lemmas two_of_six_hgf,

two_of_six_h, two_of_six_g and two_of_six_f in the formalization).

Let f, g, h be composable maps, and suppose f · g and g · h are equivalences. Then:

— (g · f)−1 · g · (h · g)−1 gives a quasi-inverse for h · g · f;

— (h · g)−1 · h and f · (g · f)−1 give left and right inverses for g;

— (g · f)−1 · g gives a quasi-inverse for f;

— g · (h · g)−1 gives a quasi-inverse for h.

This immediately implies the desired external statement, since internal and external

composition agree.

Lemma 3.2.7. Pullbacks of fibrations exist.
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Proof. The pullback of a dependent projection is given by substituting into the

corresponding dependent type; that is, the following square is a pullback:

∑
x:A′

B(fx)

��

�� ∑
x:A

B(x)

��
A′

f �� A.

The two pullbacks lemma implies that pullbacks of their composites then also exist.

Note that this is an external statement: these really are strict pullbacks, in contrast

to the internally defined pullbacks of Section 4.1, which from an external point of view

become homotopy pullbacks.

Lemma 3.2.8 (fiber_to_hfiber_equiv). Let π1 :
∑

x:A B(x) → A be a fibration. For

any a : A, we have B(a) � hfib(π1, a).

Proof. Take any a : A. For the map B(a)→ hfib(π1, a), send b : B(a) to ((a, b), refl(a)).

Conversely, send ((a′, b), p) : hfib(π1, a) (where b : B(a′) and p : (a′ � a)) to the

transported element p!(b) : B(a). The verification that these are mutually inverse

is straightforward.

Lemma 3.2.9. Fibrations and acyclic fibrations are preserved under pullback.

Proof. Preservation of fibrations is clear by construction from the proof of Lemma 3.2.7.

For acyclicity, suppose π = π1 :
∑

x:A B(x) → A is an acyclic fibration, and f : A′ → A is

a map. Write f∗π for the pullback fibration π1 :
∑

x:A′ B(f(x))→ A′. Then for any x : A′,

hfib(f∗π, x) � B(f(x)) � hfib(π, f(x))

by Lemma 3.2.8; and hfib(π, f(x)) is contractible by hypothesis, so since equivalence

preserves contractibility, hfib(f∗π, x) is again contractible. So f∗π is again acyclic, as

required.

Lemma str_pullback_pres_acyclic_fib provides the internal part of this argument.

Definition 3.2.10. The path type of a type A ∈ C is constructed from its identity types:

PA :=
∑
x,y:A

(x� y).

It is equipped by construction with a fibration π to A×A, and there is also a natural map

r : A → PA sending a to ((a, a), r(a)). Moreover, the map PA → A sending ((a, a′), p) to a

(or to a′) gives a quasi-inverse for r; so together, we have a factorization of the diagonal

of A as a weak equivalence followed by a fibration:

PA
π

����
��

��
��

�

A
Δ

��

r

����������
A× A
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We have now amassed all the ingredients of a fibration category:

Proof of Theorem 3.2.5. Immediate from the preceding lemmas.

Besides the basic structure, we consider how a few more useful constructions from the

theory of fibration categories play out in C:

Lemma 3.2.11 (Factorization lemma, Gambino and Garner (2008, Lemma 11)). For every

morphism f : A→ B in C, there exists a factorization:

Pf
pf

���
��

��
��

A
f

��

σf
���������

B

with σf ∈W and pf ∈ F .

Proof. We take

Pf :=
∑

y:B,x:A

(fx� y).

and

σf(x) := (fx, x, refl(fx)).

By definition, pf is in F; and it is easy to check that σf ∈W .

(W ,F) factorizations may be constructed in this way in any fibration category. In the

type-theoretic case, however, they crucially satisfy an additional property, corresponding

to the Id-elimination rule: σf is weakly left-orthogonal to fibrations, and so fibrations

form the right class of a weak factorization system. We will not, however, go into this

point here; see Gambino and Garner (2008) for details.

Lemma 3.2.12 (right_properness). The pullback of a weak equivalence along a fibration

is again a weak equivalence:

π∗C
π∗f ��

��

∑
x:A B(x)

π

��
A′

f∈W
�� A.

Proof. The map π∗f sends a pair (y, b) to (f(y), b); so taking a quasi-inverse (g, η, ε)

for f, we can construct a quasi-inverse for π∗f by sending (x, b) to (g(x), η(x)!b).

(Again, this lemma holds in any fibration category.)

One may also define cofibrancy, for objects of any fibration category:
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Definition 3.2.13. An object C of a fibration category C is cofibrant if for any acyclic

fibration p : B → A and map f : C → A, there is some lifting f̄ : C → B:

B

p

��
C

f̄
��

�
�

�

f �� A.

When C is a categorical model of H′ , we have:

Lemma 3.2.14. Every object of C is cofibrant.

Proof. Lemma 3.2.8 implies that every acyclic fibration π1 :
∑

x:A B(x)→ A admits some

section: take some family of contractions of the fibres hfib(π1, x), and send x : A to the

image of the center of contraction ∗x : hfib(π1, x) under the equivalence hfib(π1, x) � B(x).

Now, given f as above, take f̄ to be the composite of f with this section.

We conclude with a somewhat subtler question. Another condition often assumed for

fibration categories is that for any N-indexed sequence

A0 A1
f0�� A2

f1�� · · · ,f2��

if each fi is a fibration then the sequence has a limit, and, moreover, the projections from

this limit are again fibrations.

This turns out not to be provable in the type theory – in particular, it fails in the

syntactic category C(H′). However, appropriate internally-formulated versions of it do

hold; this is analogous to the fact that an elementary topos may fail to be externally

complete, while possessing all limits in the internal sense.

To see how it fails in C(H′), consider the sequence of projections

1 Nat
f0�� Nat2

f1�� · · ·
f2��

This sequence cannot have a limit, since such a limit would be a N-fold product of copies

of Nat, and as such would necessarily have uncountably many global elements, while

C(H′) is countable.

However, an internal limit for the sequence exists, in the form of the object NatNat

(working internally, it does not make sense to ask whether the projections are fibrations);

and, in some models (e.g. the simplicial model) this object turns out to be interpreted as

the external limit
∏

N Nat.

4. Limits and applications

4.1. Pullbacks and equalizers

Before defining general limits over graphs, we start by investigating pullbacks; these serve

both as a warm up and as a useful tool for subsequent material.
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4.1.1. The standard construction of a pullback. We start by explicitly constructing the

pullback of a cospan. The definitions and theorems in this section are found in Pullbacks.

Definition 4.1.1 (pullback). Let A
f
→ C

g
← B be a cospan of types and functions. The

(standard) pullback Pb(f, g) of this cospan is defined as:

Pb(f, g) :=
∑

x:A, y:B

(fx� gy)

with the obvious maps:

Pb(f, g)
πB ��

πA

��

B

g

��
A

f
�� C

.

(This definition may be recast to parallel a traditional construction of the homotopy

pullback in fibration categories (Brown 1973, Lemma 1.3): first fibrantly replace f by pf
as in Lemma 3.2.11, obtaining

Pf =
∑

c:C hfib(f, c) =
∑

c:C,a:A (fa� c)

pf

��
A

f
�� C,

and then secondly, take the strict pullback of Pf along g as a fibration over C , obtaining∑
b:B hfib(f, g(c)) =

∑
b:B,a:A (fa� gb), which is (strictly, externally) isomorphic to Pb(f, g)

as defined above.)

Note that the this is symmetric (pullback_symm): there is an equivalence Pb(f, g) �
Pb(g, f) commuting appropriately with the projections and canonical homotopies.

Moreover, the construction of the pullback should be functorial in (f, g). This requires

a few extra definitions to state:

Definition 4.1.2 (cospan_map). Let A
f
→ C

g
← B and A′

f′

→ C ′
g′

← B′ be cospans. A cospan

map h from (f, g) to (f′, g′) consists of maps hA, hB, hC and homotopies hf, hg:

A

B

C

A′

B′

C ′

f

g

f ′

g′

hA

hB

hChf

hg

There is an identity map from any cospan to itself (cospan_idmap); also, there is an

evident composition of cospan maps (cospan_comp).
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Proposition 4.1.3 (pullback_fmap). A map of cospans h : (f, g)→ (f′, g′) induces a map

of pullbacks Pb(f, g)→ Pb(f′, g′). Moreover, this preserves composition and identities.

The most frequent application of this functoriality, in practice, is the invariance of

pullbacks under equivalences – that, for instance, given a cospan A
f
→ C

g
← B and

an equivalence e : A′ � A, there is an equivalence between the pullbacks Pb(f, g) and

Pb(f · e, g). This, and various other similar statements, are all easily obtained from the

functoriality of Pb together with the lemma:

Lemma 4.1.4 (cospan_equiv_inverse). Suppose h = (hA, hB, hC, hf, hg) is a cospan map

from (f, g) to (f′, g′), and hA, hB , hC are equivalences. Then there is a cospan map

h−1 : (f′, g′)→ (f, g), inverse to h in that there are paths (h · h−1 � 1) and (h−1 · h� 1).

An interesting technical point arises here: rather than proving this and other facts

about cospan maps directly, we deduce them from the analogous facts about commut-

ative squares (considered as maps between functions). These are developed in the file

CommutativeSquares. Most immediately, this arrangement slightly simplifies the proofs

in the present section, since one does not have to write each construction out separately for

the left and right legs of the cospan. It also allows us to directly re-use the commutative

squares material in Section 4.2, as the building blocks of the analogous facts about

diagrams over general graphs.

4.1.2. The universal property of pullbacks. Above, we defined pullbacks by a specific

construction. Alternatively, one can characterize them by a universal property. For the

next few definitions, fix some cospan A
f
→ C

g
← B.

Definition 4.1.5 (cospan_cone). Let X be any type. A cone μ over (f, g) with vertex X

consists of functions μA, μB , and a homotopy μC : f · μA ⇒ g · μB:

X

A

B

C

μA

μB

f
g

μC

Write Cone(X; f, g) for the type of cones over (f, g) with vertex X.

Cone(X; f, g) should be contravariantly functorial in X. We do not show this in full;

but in particular, a map f : X ′ → X induces a map

Cone(X; f, g)→ Cone(X ′; f, g),

given by precomposing the components of the cone with f. For a cone μ, we denote this

as μ ◦ f. Fixing a cone μ : Cone(X; f, g) thus induces for any type X ′ a map

(μ ◦ −) : (X ′ → X)→ Cone(X ′; f, g).

This allows us to define the universal property of pullbacks:
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Definition 4.1.6 (is_pullback_cone). A cone μ over (f, g), with vertex P , is an (abstract)

pullback for (f, g) if for every small type X : U, the map (μ ◦ −) gives an equivalence

(X → P ) � Cone(X; f, g).

One can of course ask whether (μ ◦ −) is an equivalence for an arbitrary type X, not

necessarily small; but to quantify over types, one must restrict to some universe. Even

doing so, the resulting property of ‘being a pullback’ is (a priori) as large as the universe

used. It is, however, a mere proposition, since being an equivalence is one.

(For an investigation of left universal properties of inductive types, defined along similar

lines, see Awodey et al. (2012).)

Proposition 4.1.7 (pullback_universal). The evident cone from the standard pullback

Pb(f, g) (4.1.1) to (f, g) is an abstract pullback.

Proof. By direct construction. Any cone from some object X to (f, g) induces a map

X → Pb(f, g), and by functional extensionality, this construction is inverse to composition

with the standard cone.

Proposition 4.1.8 (abstract_pullback_unique). Suppose that μ : Cone(X; f, g) and

ν : Cone(Y ; f, g) are both pullbacks for (f, g). Then the unique map f : Y → X such that

(μ ◦ f � ν) (provided by the universal property of μ) is an equivalence.

Conversely, if μ : Cone(X; f, g) is any cone, and f : X � Y an equivalence, then setting

ν := μ ◦ f, μ is a pullback if and only if ν is.

Proof. The following diagram commutes, and the maps X → (1 → X), Y → (1 → X)

are equivalences:

X (1 → X)

Y (1 → Y )

Cone(1; f, g)f

(μ ◦ −)

(ν ◦ −)

It follows by two-out-of-three that if any two of f, (μ ◦ −), (ν ◦ −) are equivalences, so is

the third.

Corollary 4.1.9 (is_pullback_cone’). A cone μ : Cone(X; f, g) is a pullback cone if and

only if the induced map X → Pb(f, g) is an equivalence.

Since any two interderivable propositions are necessarily equivalent, this property could

be used as an alternative definition of μ being a pullback cone, with the advantage

(compared to our previous definition) of yielding again a small type, since it does not

quantify over the universe.

4.1.3. Two pullbacks lemmas. We have introduced pullbacks in two different ways: via

a concrete construction, and via a universal property. For each of these, one can give a

version of the classical two pullbacks lemma.
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Proposition 4.1.10 (two_pullbacks_equiv). For all f, g, h as in the diagram below, the

induced comparison map Pb(g∗f, h)→ Pb(f, g · h) is an equivalence:

Pb(f, g · h)

		



�����������

��
Pb(g∗f, h)

��

�� Pb(f, g)

g∗f

��

�� A

f

��
B2

h �� B1
g �� C

Proposition 4.1.11 (abstract_two_pullbacks_lemma, in Pullbacks3). Suppose that in

a rectangle

P2 P1

k

A

f

B2
h

B1
g

C

the right square is a pullback. Then the left square is a pullback if and only if the outer

rectangle is a pullback.

Proof. Write μ for the cone from P1 to (f, g), μ′ for the cone from P2 to (k, h), and μ′′

for the cone from P2 to (f, g · h). Then for any X, the following triangle commutes:

(X → P2)

Cone(X; k, h)

Cone(X; f, g · h)

(μ′ ◦ −)

(μ′′ ◦ −)

Here the vertical map denotes the composition of a cone on (k, h) with μ; and this can be

shown (by direct construction) to be an equivalence. Hence by two-out-of-three, (μ′ ◦ −)

is an equivalence if and only if (μ′′ ◦ −) is.

It should be noted that the constructions involved in the equivalence Cone(X; g∗f, h) �
Cone(X; f, g · h) are necessarily more involved than in the 1-categorical setting, since

they depend on comparing paths in types. In terms of the classical theory, this is more

analogous to the corresponding lemma for quasi-pullbacks in a bicategory.

4.1.4. Equalizers. The formal definitions and theorems corresponding to the remainder

of Section 4.1 are found in the file Pullbacks2, except for the next definition, which

appears in Equalizers.
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Definition 4.1.12 (equalizer). Let f, g : A → B. The equalizer of f and g is defined as

the type:

Eq(f, g) :=
∑
x:A

(fx� gx)

together with the projection π : Eq(f, g)→ A.

As in classical category theory, pullbacks and equalizers can be defined in terms of each

other.

Proposition 4.1.13 (eq_as_pb_equiv). The equalizer of any parallel pair f, g : A → B is

equivalent to the pullback of the paired map 〈f, g〉 : A→ B × B and the diagonal ΔB:

Eq(f, g) � Pb(ΔB, 〈f, g〉) ��

��

A

〈f,g〉
��

B
ΔB

�� B × B.

Conversely, the pullback of any cospan A
f
→ C

g
← B is equivalent to the equalizer of

the pair

f · π1, g · π2 : A× B → C.

4.1.5. Homotopy fibres and loop spaces. We next consider a couple of examples which

bring out the homotopical character of the theory – examples which in classical 1-

category theory, and in the type theory with UIP†, would be trivial, but which in the

un-truncated type theory become non-trivial, corresponding to the classical theory of

homotopy pullbacks.

We first need one piece of notation. Given a type B and an element b : B, write

�b� : 1→ B for the map sending the unique element ∗ : 1 to b.

Example 4.1.14 (hfiber_to_pullback_equiv). Given a map f : A→ B and an element

b : B, the homotopy fibre of f over b may equivalently be given as a pullback:

hfib(f, b) � Pb(�b�, f) ��

��

A

f

��
1

�b�
�� B.

† ‘Uniqueness of Identity Proofs’: the axiom that every identity type (x�X y) is a mere proposition (Streicher

1991; Warren 2008).
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Example 4.1.15 (Omega_to_pullback_equiv). Given a type B and an element b : B, the

space of loops in B based at b, Ω(B, b) := (b�B b) may be given as a pullback:

Ω(B, b) � Pb(�b�, �b�) ��

��

1

�b�

��
1

�b�
�� B.

This last example in particular exemplifies the fact that our pullbacks correspond, in

the classical setting, to homotopy pullbacks.

4.1.6. Properties of pullbacks. Various nice properties of maps are preserved under

pullback. In proving such preservation properties, the following lemma is rather useful:

Proposition 4.1.16 (hfiber_of_pullback). Given A
f
→ C

g
← B, the homotopy fibre of

the map f∗g over a point a : A is equivalent to the homotopy fibre of g over f(a).

Proof. Immediate from Example 4.1.14 together with Proposition 4.1.10, the concrete

two pullbacks lemma.

Corollary 4.1.17 (pullback_preserves_equiv). Equivalences are stable under pullback.

That is, if g : B → C is an equivalence, then for any f : A→ B, the pullback f∗g : A×BC →
A is again an equivalence.

Proof. Each fibre of f∗g is equivalent to some fibre of g, so is contractible.

More generally (pullback_preserves_fibrewise_properties), any property of maps

that is defined or characterized fibrewise, using some equivalence-invariant property of

types, is itself stable under pullback.

4.2. Limits

Generalizing the constructions above of pullbacks and equalizers, we move to limits

for diagrams over arbitrary graphs. Unless otherwise noted, the formal definitions and

theorems that follow are found in Limits.

4.2.1. Graphs and diagrams.

Definition 4.2.1 (graph). A graph G consists of:

— a type G0 (the vertices or objects of G); and

— for each i, j : G0, a type G1(i, j) (the edges or arrows from i to j).†

Definition 4.2.2 (diagram). A diagram D on a graph G consists of:

— for each vertex i : G0, a type D0(i);

† Note that we do not assume truncatedness for any of the types involved; we do not need to, essentially since

the definition does not posit any paths within them. Cf. Section 4.2.4.
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— for each arrow g : G1(i, j) of G, a map D1(g) : D(i)→ D(j).

For both graphs and diagrams, we will often suppress the subscripts when they are

clear from context.

Example 4.2.3 (cospan_graph, in Limits2). To recover cospans as an example of these

diagrams, one can define a graph by taking G0 to be the type with three elements, {l, m, r}
and let G1 be given by:

— G(l, m) := 1,

— G(r, m) := 1,

— G(i, j) := � otherwise.

A diagram D over this graph corresponds precisely to a cospan:

D(r)

��
D(l) �� D(m)

4.2.2. The universal property of limits.

Definition 4.2.4 (graph_cone). Given a diagram D on a graph G, a cone μ on D with

vertex X consists of:

— for each i : G0, a map μ0
i : X → D0(i);

— for each arrow g : G1(i, j), a homotopy μ1
g : D1(g) · μ0

i ⇒ μ0
j .

Write Cone(X;D) for the type of cones on D with vertex X.

Again, we usually suppress the superscripts, writing just μi, μf .

As with cones over cospans, Cone(X;D) is functorial in X: a function f : X ′ → X and

a cone μ : Cone(X;D) may be composed to give a cone μ ◦ f : Cone(X;D). This lets us

generalize the definition of the universal property:

Definition 4.2.5 (is_limit_cone). Let D be a diagram on the graph G. A cone μ over

D, with vertex L, is an (abstract) limit for D if for every small type X : U, the map

(μ ◦ −) : (X → L)→ Cone(X;D) is an equivalence.

By abuse of notation, we often speak of L being the limit of D, when the cone μ is

implicit.

Most of the theorems of the preceding section generalize immediately. In particular,

Proposition 4.2.6. Given any two limit cones for the same diagram, the canonical map

between their vertices is an equivalence; conversely, the composition of any limit cone

with an equivalence is again a limit cone.

Again as in the previous section, there is a standard construction of the limit:

Definition 4.2.7 (limit). Let D be a diagram over a graph G. The (standard) limit Lim(D)

is the type of pairs (x, α), where

https://doi.org/10.1017/S0960129514000498 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000498


Homotopy limits in type theory 1061

— x :
∏

i:G0
D(i);

— α :
∏

i,j:G0 , g:G(i,j)((D(g)(xi)� xj)).

There is an evident cone from Lim(D) to D (limit_graph_cone), and as one would

hope,

Proposition 4.2.8 (limit_universal). Lim(D) is an abstract limit for D.

Proposition 4.2.9 (is_limit_cone’). A cone μ from X to some diagram D is a limit for

D if and only if the map X → Lim(D) induced by μ is an equivalence.

One again, we may define maps of diagrams (diagram_map), and show that Lim is func-

torial in such maps, and in particular, is functorial in equivalences (limit_fmap_equiv).

Since graphs, diagrams and limits are all simply built up from arrows, these definitions and

results follow straightforwardly once one has given the basic case of commutative squares,

seen as maps between functions. (This is handled in the file CommutativeSquares.)

4.2.3. Examples and properties.

Example 4.2.10 (pb_as_lim_equiv, in Limits2). In Example 4.2.3 above, we saw that

cospans correspond to diagrams over a certain graph. Then cones over these diagrams

correspond to cones over the cospans, as originally defined; and a diagram-cone is a limit

exactly if the corresponding cospan-cone is a pullback.

Example 4.2.11 (lim_as_eq). Just as in the classical 1-categorical theory, the limit over a

diagram D may be constructed as an equalizer of maps between products:

∏
i,j:G, g:G(i,j)

D(i) �� ��
∏
i:G

D(i)

Various useful facts are also straightforward to deduce from the standard construction;

for instance,

Proposition 4.2.12 (trunc_limits_preserve_trunc, in Limits2). If D is a diagram on

some graph, and each type D(i) is an n-type, then Lim(D) is an n-type; hence via the

canonical equivalence, so is any other limit for D.

4.2.4. Why not categories? One might reasonably ask here: why have we considered

limits only over graphs, not over categories as is usual in the 1-categorical theory?

The problem – as ever in homotopical settings – is one of coherence. Defining a category

internally is roughly analogous to defining an (∞, 1)-category externally; that is, it requires

not only identity, composition, associativity and the like, but also higher-dimensional data

ensuring the coherence of the paths witnessing the associativity axioms, and so on in

arbitrarily high dimensions. While we hope that this will eventually be possible in the

type theory, it is currently far from clear how to present it.

In defining categories, this problem can be avoided by assuming truncatedness of the

types of morphisms; see Ahrens et al. (2014) for a development of the resulting theory.
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However, to talk about diagrams of arbitrary types over such categories would once again

require an infinite family of coherence conditions, essentially since one is presenting an

∞-functor into the (∞, 1)-category of all types, which is not generally n-truncated for any

n.

However, working with graphs avoids these issues entirely: a map out of a graph (or

equivalently, out of the free category thereon) consists purely of zero- and one-dimensional

data, with no coherence required. (More generally, one could use a similar approach to

describe diagrams over finite-dimensional computads or semi-simplicial objects without

confronting coherence issues.)

4.3. Pointed types and fibre sequences

4.3.1. Definitions. The formal definitions and theorems described in this section are found

in PointedTypes.

Definition 4.3.1 (pointed_type). A pointed type (A, a0) is a type A, together with an

element a0 : A, the basepoint. (We will often refer to both the pointed type and its

underlying type as A, and write pt(A) for the basepoint.)

Definition 4.3.2 (pointed_map). A map of pointed types (or briefly a pointed map) (f, p) :

(A, a0)→ (B, b0) consists of a function f : A→ B, together with a path p : (f(a0)�B b0).

(Again, we will often write f for the whole pointed map, and pt(f) for its associated path.)

The loop space construction Ω lifts naturally to a map from pointed types to pointed

types, setting ΩA := ((ptA� ptA), refl(ptA)). One can, therefore, iterate it, giving the

n-fold loop spaces ΩnA of a pointed type. Moreover, this has an associated action on

maps. A pointed map f : A→ B induces a pointed map Ω(f) : ΩA→ ΩB, with underlying

map sending q : (ptA� ptA) to pt f � f[q] � pt f : (ptB � ptB).

Similarly, the homotopy fibre construction hfib lifts naturally to the pointed world.

Given a pointed map f : A→ B, write hfib(f) for the pointed type given by hfib(f, ptB),

with basepoint (ptA, pt f); and the inclusion hfib(f)→ A is again a pointed map.

4.3.2. The long exact sequence of a pointed map. As an application of the above tools,

we can now recover the long exact sequence associated to a pointed map. This sequence

is a basic but powerful computational tool in classical homotopy theory, and promises

to be so also in homotopy type theory: (Univalent Foundations Program 2013, §8.5), for

instance, gives a type-theoretic version of the classical proof that π3(S
2) ∼= Z, using the

long exact sequence of the Hopf fibration. Similarly, one can straightforwardly reconstruct

the classical theory of covering spaces, as families of sets varying over a type, and conclude

that they induce isomorphisms of higher homotopy groups.

Definition 4.3.3 (hfiber_ptd). A fibre sequence consists of a pair F
g
→ E

f
→ B of pointed

maps, together with an equivalence F � hfib(f) commuting with the inclusion hfib(f)→ E.

Note that up to canonical equivalence, a fibre sequence is determined simply by the

single pointed map E → B.
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The following theorem is found in LongExactSequences.

Theorema 4.3.4 (hfiber_sequence, Omega_to_hfiber_seq_0, et seq.). Given a pointed

map f : E → B, there is a sequence of maps

. . .→ Ω2B → ΩF → ΩE → ΩB → F → E → B

in which every pair of consecutive maps forms a fibre sequence.

Proof. Taking F := hfib(f), it is sufficient to prove that the homotopy fibre of the

inclusion F → E is pointed-equivalent to ΩB; subsequent stages follow by iteration.

One can prove this equivalence by direct construction; alternatively, the results of

Section 4.1 allow us to give a rather more conceptual proof, due originally to Mather

(1976, Lemma 32):

• ��

��

F ��

��

1

�ptB�

��
1
�ptE� �� E

f �� B.

By the two pullbacks lemma, the pullback of the left-hand square is equivalent to the

pullback of the whole rectangle. But by Examples 4.1.14 and 4.1.15, these pullbacks are,

respectively, equivalent to the homotopy fibre of F → E, and to the loop space ΩB.

5. Reflections on the formal verification

Formalizing the constructions of Sections 3 and 4 was often straightforward: many of the

definitions are very naturally expressed in the language of type theory, and verifying their

properties is often just a matter of unpacking definitions and applying straightforward

logical manipulations and background facts. Sometimes, however, additional effort was

required. In this section, we survey some of the practical lessons learned during the

formalization.

5.1. Limitations

One fundamental challenge that arises comes from working purely in the type theory. In

classical approaches to homotopy theory, one always has an extra external scaffolding

available, with (in particular) strict, on-the-nose equality on all types of objects. One

typically expects the main results and constructions to respect appropriate notions of

equivalence, but one is free to use intermediate constructions that do not.

Developing the homotopy theory in HoTT, we are constrained to work entirely in

a homotopy-invariant manner, rendering some classical techniques unavailable. In most

cases, some fully invariant approach is reasonably apparent; but sometimes, one is not.

We saw such a case in Section 4.2: we do not know how to represent the notion of a

diagram over an arbitrary category, and so restricted attention to (diagrams and limits

over) graphs.
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5.2. Proof-relevance

Another difficulty lies in getting used to thinking of proofs of equalities as constructions

that one might need to prove things about later on.

In traditional formalizations, equality is proof-irrelevant: different proofs of the same

equality are not logically distinguishable. In Coq, for instance, one could safely end them

with the keyword Qed, which renders them opaque, meaning that one cannot later access

their contents. In traditional mathematics, this makes sense; once one has an equality,

one only needs the fact that it holds, treating the proof as a black box.

In HoTT, however, equality is proof-relevant: a path type may have multiple logically

distinct inhabitants. When constructing equality proofs in this setting, one typically needs

to end an equality proof with the keyword Defined, allowing the user to unfold that

definition later on. The specifics of the proof matter; one tries to keep proofs as clean

and short as possible, using lemmas and constructions with known, previously proven

properties. Unfortunately, this means that several of Coq’s powerful tactics (notably the

rewrite family) are somewhat unsatisfactory in our setting: the paths they produce are

difficult to reason about later.

On the other hand, some important statements remain proof-irrelevant. If a type has

been shown to be a proposition, one knows that any two elements of it are canonically

equal; so one may make such an element opaque without losing any logical content. Even

so, it is often convenient to leave such objects transparent, to retain their computational

content.

For instance, for a function f, the type IsEquiv f (the property that f is an equivalence)

is a proposition; so in principle one may safely render a proof of this opaque. However,

one often uses such a proof to produce an inverse for f; if the proof was transparent, then

the resulting inverse will retain computational properties from its construction, whereas if

the proof is opaque, one must reason explicitly about the action of the inverse. We formed

no clear convention on this: sometimes it turned out more convenient to keep such proofs

transparent, for easier reduction in later proofs; in other case, this was unnecessary, and

making the proofs opaque gave more efficient compilation.

5.3. Constructing paths

The most fundamental type constructor in homotopy type theory is the type of paths,

and the most challenging parts of proofs usually involved constructing paths between

complex objects. Given the subject matter, we never had to pass beyond the 2-categorical

level, constructing paths between paths; but even so, this required a good deal of care,

and facility with path algebra.

One recurring situation was the construction of paths between elements of a dependent

sum, or elements of a record type with dependencies between components. For example,

if (a, b) and (a′, b′) are elements of a type
∑

x:A B(x), constructing a path between these

two elements involves constructing a path p from a to a′, and then constructing a path q

from the transport of b along p to b′. Thus, in general we have:

Lemma total_paths {A : Type} {B : A -> Type}
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{s s’ : total B}

(p : paths (pr1 s) (pr1 s’))

(q : paths (p # (pr2 s)) (pr2 s’))

: s = s’,

where pr1 and pr2 denote the projections from the total space
∑

x:A B(x). For interactive,

tactic-based proofs, we generally found it useful to bundle the arguments p, q into a single

structure:

Lemma total_paths’ {A : Type} {B : X -> Type}

{s s’ : total B}

: { p : pr1 s = pr1 s’ & p # pr2 s = pr2 s’ } -> s = s’.

Recall that here { p : pr1 s = pr1 s’ & p # pr2 s = pr2 s’ } is notation for a

dependent sum, denoting the type of pairs (p, q) as above. When constructing a path

between elements of a dependent sum, even when the first component p is explicitly

available, applying (total_paths p) sometimes fails due to difficulty inferring implicit

arguments. Instead, applying total_paths’ leaves the pair the pair (p, q) as a goal,

explicitly showing the user the required types. The tactic exists p can then be used to

give the first component, leaving the goal of constructing the second path q interactively.

The problem is that transport is rather difficult to work with. There are many library

lemmas about how its behaviour depends on the dependent type B, which in principle

allow one to work with transported terms; but we found it more convenient to directly

give tailored variants of total_paths for each specific Σ- and record type.

For example, taking a cospan f : A → C , g : B → C , the standard pullback of f and

g is given by the type
∑

x:A,y:B (fx� gy). Using total_path to provide a path in this

type between triples (x;(y;p)), (x’;(y’;p’)) would require three paths q : x = x’,

r : q # y = y’, and s : r # q # p = p’. Notice, however, that in this case the second

component, y, does not depend on x, so the transport is trivial; and moreover, the doubly-

transported third component can be explicitly described as a composite. Thus, one can

provide the following lemma to construct a path between two elements of the standard

pullback:

Definition pullback_path’ {A B C : Type} {f : A -> C} {g : B -> C}

(u u’ : pullback f g)

: { p : pullback_pr1 u = pullback_pr1 u’

& {q : pullback_pr2 u = pullback_pr2 u’

& (ap f p)^ @ (pullback_comm u) @ (ap g q)

= pullback_comm u’ } }

-> u = u’.

The process of analyzing the canonical data for presenting a path between elements of a

complex type, and writing lemmas to construct and work with such paths, was crucial to

the formalization.

To consider one last example of this sort, recall that a cospan cone, that is, a diagram

on the data f, g above, consists of a space, X and maps h and k from X to A and B,

respectively, making the diagram commute.
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Definition cospan_cone {A B C : Type} (f : A -> C)

(g : B -> C) (X : Type)

:= { h : (X -> A) &

{ k : (X -> B) & forall x, (f(h x)) = (g(k x)) }}.

A path between two such cones involves, in particular, a path between the family of paths

in the third component:

Definition cospan_cone_path

{A B C : Type} {f : A -> C} {g : B -> C} {X : Type}

{Phi1 Phi2 : cospan_cone f g X}

(p : cospan_cone_map1 Phi1 = cospan_cone_map1 Phi2)

(q : cospan_cone_map2 Phi1 = cospan_cone_map2 Phi2)

(r : forall x:X,

cospan_cone_comm Phi1 x = (ap f (ap10 p x)) @

cospan_cone_comm Phi2 x @ (ap g (ap10 q x))^)

: Phi1 = Phi2.

Here, cospan_cone_map1, cospan_cone_map2 and cospan_cone_comm refer to the three

components of a cospan cone in the preceding definition. As with total_paths, we

also give a version cospan_cone_path’ that packages the required components into a

dependent sum, and is often more convenient in interactive proofs.

The advantage to these formulations is that it is comparatively straightforward (using

lemmas from the HoTT library) to reason about transport operations their interactions

with each other, as well as with path operations such as concatenation and inversion.

Returning to the question of the path-algebra itself, we found the formalization to

require significant facility with such calculations. The HoTT library has a number of

tactics for automating common manipulations and simplifications, but we found these

tactics generally slowed down the proof-checker significantly. So, for the most part, we

ended up giving such calculations by hand, building them explicitly from basic lemmas.

5.4. General strategies

We found it important to develop our theories and proofs in a modular way. The

value of modularity in interactive theorem proving is well understood (see, for example,

Gonthier et al. (2013)), but in the context of homotopy type theory, it takes on additional

significance. For one thing, many statements involving paths can only be proved when

stated in full generality (to make available the elimination for Id-types). As a consequence,

some facts cannot be derived in the course of a proof, on the fly, but have to be

expressed independently. The fact that one often needs to reason about the construction

of paths provides an additional reason to construct such proofs out of individually-

named component lemmas: doing so allows one derive properties of the components

individually, and then invoke these properties later on. In other words, reasoning about a

modularly-constructed proof allows one to work with the individual lemmas and unpack

their contents selectively, as needed. In contrast, the failure to modularize can result in

formal terms that are overwhelming in complexity.
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Perhaps the most important lesson we learned was not to expect too much from

an interactive theorem prover. Although homotopy type theory provides a powerful

framework to support the homotopy-theoretic reasoning, one still needs a thorough

understanding of the relevant mathematics. To get some of the more complex proofs and

constructions to work, we found it vitally important to find the right definitions, the right

way of formulating assertions, the right supporting infrastructure and the right proof

strategies. This required thinking carefully about the mathematical content, avoiding the

temptation to simply dive in and hack.

This should not suggest that Coq was no help at all. Indeed, Coq was excellent for

helping us keep track of definitions and formulate statements correctly. Especially for

more complex path-constructions, applying standard rules to unwrap and reduce the

contents of a goal type was an extremely useful aid to finding the term required. In

practice, we found ourselves going back and forth between the blackboard and Coq,

using Coq to negotiate the inevitable syntactic bureaucracy, and then returning to the

blackboard to recoup intuitions and plan proof-strategies. In this way, Coq earned its

keep, serving as a ‘proof assistant’ in a very real sense.

5.5. A case study: the two pullbacks lemma

We close with a discussion of the abstract two pullbacks lemma, Proposition 4.1.11, by

way of illustration. Somewhat to our surprise, this turned out to be the most difficult

proof in our formalization. In the end, we tried three substantially different approaches

before finding one satisfactory. All three can be found in Pullbacks3_alt.

Consider for now just the forward direction of Proposition 4.1.11, which states that

if both squares have the universal property of pullbacks, then so does the composite.

Let f : A → C , g : B1 → C , h : B2 → C , and k : P1 → B1 denote the maps so labelled

in the diagram there. Our first approach invoked the concrete two pullbacks lemma,

Proposition 4.1.10, which states that

Pb(g∗f, h) � Pb(f, g · h).

We then derived the following chain of equivalences, using the fact that cones from X to

the cospan (f, g) are equivalent to maps from X to the standard pullback:

(X → P2)�Cone(X; k, h)

� (X → Pb(k, h))

� (X → Pb(g∗f, h))

� (X → Pb(f, g · h))
�Cone(X; f, g · h).

Here, the second and last equivalences are just the universal properties of the concrete

pullbacks. The notation g∗f in the third equivalence denotes the pullback of f along g

according to the concrete pullback construction; this equivalence relies on the fact that

any abstract pullback is equivalent to the concrete one, and the fact that the concrete
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pullback construction is functorial. The fourth equivalence is just (post-composition with)

the concrete two pullbacks equivalence, Proposition 4.1.10.

The equivalence of the left- and right-hand sides of the chain above almost gives what

we want: however, the universal property for the outer pullback square requires not just

that an equivalence exists, but that the canonical map from X → P2 to Cone(X; f, g · h)
is an equivalence.

What remains is, thus, to show that the map we have just constructed is homotopic

to the canonical one! This, however, turned out to be extremely difficult. The problem

was a failure of modularity: all we could do was unwrap the long, complicated term

and calculate. We managed to do this, but although the tactic engine declared the effort

successful, we were unable to get it past the type-checker (presumably because the resulting

term was too large).

Our second approach involved constructing the desired inverse by hand. Any cone μ :

Cone(X; f, g·h) over the outer cospan can be reinterpreted as a cone μ′ : Cone(X; f, g) over

the right cospan. Applying the universal property of the cone from P1, we obtain a map

m1 : X → P1 inducing μ′; we can then take m1 as the first leg of a cone μ′′ : Cone(X; k, h)

on the left cospan. Applying the universal property of the cone from P2 then gives a map

m2 : X → P2, as desired. However, the task of proving that this construction is indeed a

two-sided inverse for (μ ◦−) turned out to be difficult. For example, the first task requires

one to show that, starting with a cone μ : Cone(X; f, g · h), carrying out the procedure

above to obtain a map from X to P2 and then taking the induced cone, the resulting cone

ν : Cone(X; f, g) is connected by a path to the original μ. As described in Section 5.3,

this involves showing not only that the component maps agree, but also that the resulting

families of equality proofs agree as well; this turns out to be an interesting but laborious

exercise in bicategorical path-algebra.

We finally settled on the approach described in Section 4.1.3, which establishes both

directions of Proposition 4.1.11 simultaneously. Showing that the type Cone(X; k, h) of

cones on the left cospan is equivalent to the type Cone(X; f, g · h) of cones on the outer

cospan required some effort, but the result was still considerably cleaner than either of

the previous proofs. With that in hand, all that remained was to show that the triangle

depicted in the proof of Proposition 4.1.11 in Section 4.1.3 commutes. To our very pleasant

surprise, this fact had a one-line proof in Coq:

Lemma two_pullback_triangle_commutes {P1 : Type}

(C1 : cospan_cone f g P1)

{P2 : Type} (C2 : cospan_cone (cospan_cone_map2 C1) h P2)

{X : Type} (m : X -> P2)

: top_cospan_cone_to_composite C1 (map_to_cospan_cone C2 X m)

= map_to_cospan_cone (top_cospan_cone_to_composite C1 C2) X m.

Proof.

exact 1.

Defined.

In other words, the left- and right-hand sides are definitionally equal.

https://doi.org/10.1017/S0960129514000498 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000498


Homotopy limits in type theory 1069

Acknowledgements

Most of this work was carried out during the Special Year on Univalent Foundations at

the Institute for Advanced Study, and all three authors are grateful to the Institute for

its hospitality and support. We are also grateful to two anonymous referees for numerous

helpful comments, corrections and suggestions.

Avigad’s work has been partially supported by NSF grant DMS-1068829 and AFOSR

grant FA9550-12-1-0370. Kapulkin was supported by NSF Grant DMS-1001191 (P.I. Steve

Awodey) and a grant from the Benter Foundation (P.I. Thomas Hales). Lumsdaine

was supported by NSF grant DMS-1128155. Any opinions, findings and conclusions

or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

Kapulkin dedicates this work to his mother.

References

Awodey, S., Gambino, N. and Sojakova, K. (2012) Inductive types in homotopy type theory.

Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, 95–104.

Ahrens, B., Kapulkin, K. and Shulman, M. (2014) Univalent categories and Rezk completion.

Mathematical Structures in Computer Science doi:10.1017/S0960129514000486.

Awodey, S. and Warren, M. A. (2009) Homotopy theoretic models of identity types. Mathematical

Proceedings of the Cambridge Philosophical Society 146 (1) 45–55. (arXiv:0709.0248)

Baues, H. J. (1989) Algebraic homotopy, Cambridge Studies in Advanced Mathematics volume 15,

Cambridge University Press. Available at: http://dx.doi.org/10.1017/CBO9780511662522.

Bousfield, A. K. and Kan, D. M. (1972) Homotopy Limits, Completions and Localizations , Lecture

Notes in Mathematics volume 304, Springer-Verlag.

Brown, K. S. (1973) Abstract homotopy theory and generalized sheaf cohomology. Transactions of

the American Mathematical Society 186 419–458.

Dwyer, W. G., Hirschhorn, P. S., Kan, D. M. and Smith, J. H. (2004) Homotopy limit functors on

model categories and homotopical categories , Mathematical Surveys and Monographs volume 113,

American Mathematical Society.

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Roux, S. L., Mahboubi,

A., O’Connor, R. Biha, S. O., Pasca, I., Rideau, L, Solovyev, A., Tassi, E. and Théry, L. (2013)
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