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We present a new nonlinear mode decomposition method to visualize decomposed
flow fields, named the mode decomposing convolutional neural network autoencoder
(MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder
at the Reynolds number ReD = 100 as a test case. The flow attributes are mapped
into two modes in the latent space and then these two modes are visualized in the
physical space. Because the MD-CNN-AEs with nonlinear activation functions show
lower reconstruction errors than the proper orthogonal decomposition (POD), the
nonlinearity contained in the activation function is considered the key to improving
the capability of the model. It is found by applying POD to each field decomposed
using the MD-CNN-AE with hyperbolic tangent activation such that a single nonlinear
MD-CNN-AE mode contains multiple orthogonal bases, in contrast to the linear
methods, i.e. POD and MD-CNN-AE with linear activation. We further assess the
proposed MD-CNN-AE by applying it to a transient process of a circular cylinder
wake in order to examine its capability for flows containing high-order spatial modes.
The present results suggest a great potential for the nonlinear MD-CNN-AE to be
used for feature extraction of flow fields in lower dimensions than POD, while
retaining interpretable relationships with the conventional POD modes.

Key words: low-dimensional models, vortex shedding, computational methods

1. Introduction
Mode decomposition methods have been used to understand the physics of

complicated fluid flow phenomena containing high nonlinearity and a chaotic
nature. Proper orthogonal decomposition (POD) (Lumley 1967) and dynamic mode
decomposition (DMD) (Schmid 2010) are well-known methods for reduced-order
modelling, which efficiently extract low-dimensional modes. With both methods, the
key structures embedded in the time series of flow fields can be found and visualized,
although there is a difference in the sense that POD determines the optimal set of
modes to represent data based on the energy norm, while DMD captures dynamic
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modes with associated growth rates and frequencies (Taira et al. 2017). These methods
have helped us to understand the important structures underlying flow phenomena
and to compare flow fields under different conditions (Murray, Sallstrom & Ukeiley
2009). In addition, it is possible to construct control laws based on reduced-order
models at low computational cost (Bergmann, Cordier & Brancher 2005; Samimy
et al. 2007; Rowley & Dawson 2017), since the time-evolving flow field can be
represented by a linear combination of the expansion coefficients and the orthogonal
bases. However, it is not easy to deal with highly nonlinear problems, such as high
Reynolds number flows, using the conventional reduced-order models because of their
linear nature. With POD, for example, 7260 modes are necessary to reproduce 95 %
of the total energy for a turbulent channel flow at Reτ = 180 (Alfonsi & Primavera
2007), while we need only two POD modes to reproduce 99 % of total energy for a
flow around a circular cylinder at ReD= 100. This limitation narrows the applicability
of the conventional reduced-order models to various flow fields.

In recent years, machine learning has been widely applied in the field of fluid
dynamics, and is highly regarded for its strong ability to account for nonlinearity
(Brunton & Noack 2015; Kutz 2017; Taira et al. 2019; Brunton, Noack &
Koumoutsakos 2020). Ling, Kurzawski & Templeton (2016) used a customized
multi-layer perceptron accounting for the Galilean invariance for Reynolds-averaged
Navier–Stokes turbulence modelling. For large-eddy simulation, Maulik & San
(2017) used a multi-layer perceptron to estimate the eddy viscosity with the blind
deconvolution method. The recent efforts in turbulence modelling are summarized well
in Duraisamy, Iaccarino & Xiao (2019). Machine learning has been also utilized for
reduced-order modelling. San & Maulik (2018) proposed an extreme learning machine
based reduced-order modelling for turbulent systems and showed its advantage against
POD. The multi-layer perceptron and long short term memory are utilized to develop
temporally evolved turbulence with a nine-equation shear flow model by Srinivasan
et al. (2019). In this way, the fusion of machine learning and fluid dynamics is
ongoing now.

In particular, the convolutional neural network (CNN) (LeCun et al. 1998), widely
used for image processing, has been utilized as an appropriate method to deal with
flow field data with the advantage that we can handle fluid big data with reasonable
computational cost thanks to the concept of filters, called weight sharing. Fukami,
Fukagata & Taira (2019a) performed a super-resolution analysis for two-dimensional
turbulence using a customized CNN to account for multi-scale phenomena. The deep
CNNs were also considered to predict small scale ocean turbulence, called ‘atoms’
by Salehipour & Peltier (2019). Of particular interest for CNN is the application
for dimension reduction via an autoencoder (Hinton & Salakhutdinov 2006). An
autoencoder composed of linear perceptrons is known to work similarly to POD (Baldi
& Hornik 1989). For applications to fluid mechanics, Milano & Koumoutsakos (2002)
have successfully demonstrated, through various problems such as the randomly forced
Burgers equation and turbulent channel flows, that the capability of an autoencoder
is significantly improved by adopting nonlinear multi-layer perceptrons. In addition,
autoencoders have recently exhibited their remarkable ability in combination with
CNN not only in the field of image processing but also in fluid mechanics. Omata
& Shirayama (2019) proposed a method utilizing a CNN autoencoder with POD to
reduce the dimension of two-dimensional airfoil flow data. These concepts have
also been applied to develop an inflow turbulence generator by Fukami et al.
(2019b). Despite these favourable properties, the conventional CNN autoencoders
are interpretable only in terms of the input, the latent vector (i.e. the intermediate
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low-dimensionalized data) and the output – the flow fields cannot be decomposed
nor visualized like POD or DMD, which can extract the individual representation of
low-dimensional mapping.

In this study, we present a new flow decomposition method based on a CNN
autoencoder which can take account nonlinearity into its structure in order to
decompose flow fields into nonlinear low-dimensional modes and to visualize each
mode. We apply this method to a flow around a circular cylinder at ReD = 100 to
clarify what the network actually learns about the flow.

2. Methods
2.1. Training data

The training data are obtained by a two-dimensional direct numerical simulation
(DNS) of flow around a circular cylinder. The governing equations are the incompress-
ible continuity and Navier–Stokes equations,

∇ · u= 0, (2.1)
∂u
∂t
=−∇ · (uu)−∇p+

1
ReD
∇

2u, (2.2)

where u and p denote the velocity vector and pressure, respectively. All quantities
are made dimensionless by the fluid density, the free-stream velocity and the cylinder
diameter. The Reynolds number based on the cylinder diameter is ReD= 100. The size
of the computational domain is Lx = 25.6 and Ly = 20.0 in the streamwise (x) and
the transverse (y) directions, respectively. The origin of coordinates is defined at the
centre of the inflow boundary, and the cylinder centre is located at (x, y)= (9, 0). A
Cartesian grid system with a grid spacing of 1x=1y= 0.025 is used. The number of
grid points is (Nx,Ny)= (1024, 800). The no-slip boundary condition on the cylinder
surface is imposed using the ghost cell method of Kor, Badri Ghomizad & Fukagata
(2017).

In the present study, we focus on the flows around the cylinder. For the first case
with periodic vortex shedding under a statistically steady state, we extract a part of
the computational domain, i.e. 8.26 x6 17.8 and −2.46 y6 2.4. Thus, the number of
the grid points used for machine learning is (N∗x , N∗y )= (384, 192). As the input and
output attributes, the fluctuation components of streamwise velocity u and transverse
velocity v are utilized. The time interval of the flow field data is 0.25 corresponding
to approximately 23 snapshots per a cycle with the Strouhal number equals to 0.172.
For the second case with a transient wake, the computational procedure is the same,
but a larger domain is used, as explained later in § 3.2.

2.2. Machine learning model
A convolutional neural network (CNN) mainly consists of three layers: the convolu-
tional layer, pooling layer and upsampling layer. The main procedure in the
convolutional layer is illustrated in figure 1(a). Using a filter with a size of H×H×K
on the input z(l−1)

ijk for a pixel represented by indices (i, j, k), the filtered data cijm on
a pixel (i, j,m) are given by

c(l)ijm =

K−1∑
k=0

H−1∑
s=0

H−1∑
t=0

z(l−1)
i+s,j+t,kw

(l)
stkm + b(l)ijm, (2.3)
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FIGURE 1. Internal operations of convolutional neural network: (a) convolutional layer,
(b) pooling layer and (c) upsampling layer.
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FIGURE 2. Schematic of two types of CNN autoencoder used in the present study;
(a) conventional type CNN autoencoder (C-CNN-AE), and (b) mode decomposing CNN
autoencoder (MD-CNN-AE).

where w(l)
stkm and b(l)ijm denote the weight and the bias at layer l, respectively. In the

present paper, the input and output of the autoencoder model are represented as z(0)=
z(lmax) = q = {u, v}. For this value, the activation function ψ is applied to obtain the
output of this layer,

z(l)ijm =ψ(c
(l)
ijm). (2.4)

In general, a nonlinear function is used as the activation function of hidden layers, as
explained later. With the pooling layer shown in figure 1(b), the data are compressed
by (1/P)2 times in such a way that the maximum value represents a region with a
size of P× P, i.e. max pooling. By combining the convolutional and pooling layers,
it is possible to reduce the dimensions while retaining the features of the input data.
In the process of enlarging the data dimension, the upsampling layer is used to expand
the data by copying, as shown in figure 1(c).

The concept of the conventional type CNN autoencoder (C-CNN-AE) is illustrated
in figure 2(a). It consists of two parts: an encoder Fenc and a decoder Fdec. The
encoder works to map the high-dimensional flow field into a low-dimensional space.
In the present study, we map the flow around a cylinder into a two-dimensional
latent space (shown as r1 and r2 in figure 2). The decoder is used to expand the
dimension from the latent space. In the encoder Fenc, the input data q with the size of
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(N∗x ,N∗y ,Nφ)= (384, 192, 2), where Nφ is the size of the feature vector, are mapped to
the latent vector r with the size of (2, 1, 1), i.e. two values. In the decoder Fdec, the
output data q̃ having the same dimension as q are restored from the latent vector r.
We summarize this in the formula,

r=Fenc(q), q̃=Fdec(r). (2.5a,b)

The objective of the autoencoder is to seek the optimized weights w so as to minimize
the L2 error norm between the input and the output: w = argminw‖q̃ − q‖2

2. If the
original data q are successfully restored from r, this suggests that the data are well
represented in the dimensions of r.

In the C-CNN-AE, the dimension reduction of the data can be done, but the
intermediate output data are hard to interpret because the weights are randomly
optimized during the process of training. Thus, we propose a mode decomposing CNN
autoencoder (MD-CNN-AE) shown in figure 2(b). The encoder part of MD-CNN-AE
is similar to that of C-CNN-AE, but the latent vector r is divided into two variables,
r1 = r1,1,1 and r2 = r2,1,1, where the subscripts denote the indices of r. The first
decoder Fdec1 is used to make the first decomposed field q̃1 from the first variable r1
and the same for the second decoder Fdec2, i.e. q̃2 from r2. The summation of the
two decomposed fields, q̃1 and q̃2, is the output q̃ of MD-CNN-AE. In summary, the
processes are

r=Fenc(q), (2.6)
q̃1 =Fdec1(r1), (2.7)
q̃2 =Fdec2(r2), (2.8)

q̃= q̃1 + q̃2. (2.9)

Since MD-CNN-AE has the same structure as POD in the sense that it obtains the
fields for each low-dimensional mode and adds them, it can decompose flow fields in
such a way that each mode can be visualized, which cannot be done with C-CNN-AE.

For the network parameters mentioned above, we choose the filter length H= 3 and
K= 2 corresponding to q={u, v}, the max pooling ratio P= 2 and the number of the
layers lmax= 28. The details of the proposed machine learning models are summarized
in table 1. The number of trainable parameters for the present MD-CNN-AE is 9646.
For training both CNNs, we apply the early stopping criterion (Prechelt 1998) to
avoid overfitting and use the Adam algorithm (Kingma & Ba 2014) to seek the
optimized weights w. In the training process, 7000 randomly chosen snapshots of
data are used as training data and 3000 snapshots were used as validation data.
Fivefold cross-validation (Brunton & Kutz 2019) is performed to make all machine
learning models in the present study, although only the results of a single case will
be shown for brevity. The other hyper parameters used in the present study are
summarized in table 2. For further details on the implementation of MD-CNN-AE,
interested readers are referred to the sample Python code available on our project
webpage (http://kflab.jp/en/index.php?18H03758).

3. Results and discussion
3.1. Periodic vortex shedding case

First, we examine the MD-CNN-AEs with different activation functions: linear
activation, rectified linear unit (ReLU), hyperbolic tangent function (tanh), standard
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Sigmoid
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ReLU
Softsign

(C-CNN-tanh)
(POD)

Equation L2 error

–
–

FIGURE 3. Activation functions used in the present study and L2 norm error for each
method.

Encoder Decoder 1
Layer Data size Layer Data size

Input (384, 192, 2) 1st value (1, 1, 1)
1st conv. (3, 3, 16) (384, 192, 16) Fully connected (6, 3, 4)
1st MaxPooling (192, 96, 16) 1st upsampling (12, 6, 4)
2nd conv. (3, 3, 8) (192, 96, 8) 7th conv. (3, 3, 4) (12, 6, 4)
2nd MaxPooling (96, 48, 8) 2nd upsampling (24, 12, 4)
3rd conv. (3, 3, 8) (96, 48, 8) 8th conv. (3, 3, 8) (24, 12, 8)
3rd MaxPooling (48, 24, 8) 3rd upsampling (48, 24, 8)
4th conv. (3, 3, 8) (48, 24, 8) 9th conv. (3, 3, 8) (48, 24, 8)
4th MaxPooling (24, 12, 8) 4th upsampling (96, 48, 8)
5th conv. (3, 3, 4) (24, 12, 4) 10th conv. (3, 3, 8) (96, 48, 8)
5th MaxPooling (12, 6, 4) 5th upsampling (192, 96, 8)
6th conv. (3, 3, 4) (12, 6, 4) 11th conv. (3, 3, 16) (192, 96, 16)
6th MaxPooling (6, 3, 4) 6th upsampling (384, 192, 16)
Fully connected

(2, 1, 1) 12th conv. (3, 3, 2)
(384, 192, 2)(Latent vector) (Decomposed field 1)

TABLE 1. The network structure of MD-CNN-AE constructed by an encoder and two
decoders. The convolution layers and the max pooling layers are denoted as conv. and
MaxPooling, respectively. Decoder 2 has the same structure as decoder 1.

Parameter Value Parameter Value

CNN filter size 3× 3 Batch size 100
CNN pooling size 2× 2 Optimizer for network Adam
Number of layers 28 Learning rate of Adam 0.001

Number of training data 10 000 β1 of Adam 0.9
Time interval of data 0.25 β2 of Adam 0.999

Percentage of training data 70 % Learning rate decay of Adam 0
Number of epochs 2000

TABLE 2. Hyper parameters used for the present MD-CNN-AE.

sigmoid function (Sigmoid) and softsign function (Softsign), as summarized in
figure 3. In this figure, we also present the L2 norm errors calculated by 2000
test snapshots in these five MD-CNN-AEs, excluding the training process, and
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FIGURE 4. The reference instantaneous flow field, output flow field and distribution of
L2 norm error in the three methods: (a) streamwise velocity u, (b) transverse velocity v.

compare them with the cases of C-CNN-AE with tanh activation (C-CNN-tanh)
and POD with the first two modes only. In the case of Sigmoid, the network is
not trained well because of the vanishing gradient problem. The CNN with linear
activation has the same error level as POD, which suggests that the linear CNN
is also similar to POD as in the case of fully connected multi-layer perceptrons
with linear activation (Baldi & Hornik 1989; Milano & Koumoutsakos 2002). When
the nonlinear activation function (ReLU, tanh or Softsign) is used, the errors are
less than that of linear activation and POD. Among them, tanh and Softsign, which
have higher nonlinearity, result in lower L2 norm errors. From these results, it is
confirmed that the nonlinearity is the key to improving the performance of the model.
Comparing the network structures under the same activation function (i.e. tanh),
MD-CNN-tanh has a slightly larger error than C-CNN-tanh because of its complex
structure. In the following, we compare the results obtained by MD-CNN-AE with
linear activation (MD-CNN-Linear) and that with tanh (MD-CNN-tanh) to investigate
the effect of nonlinearity. Note that similar trends are observed in the other iterations
for cross-validation.

The output of the machine-learned models (MD-CNN-Linear and MD-CNN-tanh)
and POD are summarized in figure 4. The flow fields reconstructed by all three
methods show reasonable agreement with the reference data. The field reconstructed
by MD-CNN-tanh is closest to the reference. Interestingly, the reconstructed fields
of MD-CNN-Linear and POD are similar, which confirms the similarity mentioned
above.

In order to evaluate the reconstruction error, we assess the time-averaged local
L2 norm error with 2000 test snapshots excluding the training process, as shown in
figure 4. Comparing the three methods, MD-CNN-tanh shows the lowest error in
the entire region except for the very small region downstream of the cylinder. The
distributions of L2 norm error in POD and MD-CNN-Linear are again similar due to
their similarity mentioned above.
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FIGURE 5. The decomposed flow fields with POD, MD-CNN-Linear and MD-CNN-tanh.
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FIGURE 6. Encoded variables (r1, r2) with MD-CNN-tanh: (a) time traces, (b) trajectory
compared with that of POD.

The strength of the present MD-CNN-AE over the conventional CNN is that
the flow field can be decomposed and visualized. Figure 5 visualizes the two
decomposed fields corresponding to the velocity distributions of figure 4. Note that
the time-averaged component of the decomposed fields is subtracted in MD-CNN-AEs.
The decomposed field of POD and that of MD-CNN-Linear are almost the same, and
the decomposed field of MD-CNN-tanh is distorted, likely due to the nonlinearity of
the activation function. Figure 6 shows the time traces of the corresponding encoded
variables (r1, r2) by MD-CNN-tanh and compares the trajectory with that of POD. The
encoded variables obtained by MD-CNN-tanh are also periodic in time, corresponding
to the vortex shedding, but the phases are observed to be shifted from those of POD.
It is worth noting that, although not shown here, the periodic signals of r1 and r2 are
observed to be similar in the fivefold cross-validation but the amount of phase shift
(i.e. trajectory) is not unique. This suggests that the decomposition by MD-CNN-tanh
is not unique due to the nonlinearity.
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FIGURE 7. The POD orthogonal basis of two decomposed fields of MD-CNN-tanh and
reference DNS.

To examine the distortion observed above further, we perform POD for the
decomposed fields obtained by the MD-CNN-tanh model, as shown in figure 7(a).
We also present in figure 7(b) the POD results of the reference flow field to compare
with the machine-learned model. The interesting view is that decomposed field 1
contains the orthogonal bases akin to POD modes 1, 3 and 5, and decomposed field
2 contains modes 2, 4 and 6. Note that complicated structures observed in the average
fields shown in figure 7(a) are mostly cancelled out by adding these decomposed
fields. This suggests that the proposed method also decomposes the average field of
the fluctuation components, which should be zero via the nonlinear function. It is also
worth noting that the ratio of the amounts of kinetic energy contained in decomposed
field 1 and decomposed field 2 are nearly equal.

Let us present in figure 8 the normalized values of the energy distribution of the
orthogonal bases contained in the flow field. When we use only the first two POD
modes to reconstruct the flow field – as a matter of course due to the orthogonality
of POD bases – decomposed field 1 consists of mode 1, and decomposed field 2
consists of mode 2, while higher modes are discarded, as indicated by the grey
area of figure 8(b). The situation is the same for MD-CNN-Linear. On the other
hand, for MD-CNN-tanh, the two decomposed fields contain multiple POD modes,
and the characteristics of higher modes are retained, which results in the lower
reconstruction error than for the POD with first two modes only. In addition, the flow
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FIGURE 8. Normalized value of the energy distribution of the orthogonal basis of the (a)
flow field, (b) reconstructed field using POD with two modes only or MD-CNN-Linear
and (c) reconstructed field using MD-CNN-tanh.
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FIGURE 9. Demonstration of the robustness analysis for noisy inputs with MD-CNN-tanh.
(a) Streamwise velocity fluctuation u′ with κ = 0 (without noise), 0.1 and 1; (b) κ −
(ε ′/ε ′κ=0) plot. A fivefold cross-validation is undertaken although not shown here.

field is decomposed in such a way that the orthogonal bases are distributed to two
decomposed fields in a similar manner as the full POD, as shown in figure 8(c).

In the present example problem of two-dimensional flow around a cylinder, it is
known that the third to sixth POD modes can be expressed by analytical nonlinear
functions of the first two POD modes (Loiseau, Brunton & Noack 2020). The present
result with MD-CNN-tanh is consistent with this knowledge, and it suggests that such
nonlinear functions are embedded in the nonlinearity of MD-CNN-tanh.

We also examine the robustness of the MD-CNN-tanh for a noisy input in order to
assess the applicability for experimental situations, as shown in figure 9. Here, let the
L2 norm error for a noisy input be ε ′=||q′DNS−F(q′DNS+ κn)||22, where q is the feature
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FIGURE 10. (a) The lift coefficient CL of the transient process; (b) normalized value of
the energy distribution of first ten POD modes; (c) the corresponding vorticity fields.

vector, n is Gaussian random noise with unit variance and κ is the magnitude of noisy
inputs. With κ = 0.1, the output of MD-CNN-tanh shows reasonable agreement with
the input DNS data. Over κ = 0.1, the error drastically increases with an increasing
magnitude of noise κ , as shown in figure 9(b). Noteworthy here is that the MD-
CNN-tanh has a denoising effect, as observed for κ = 0.1 and 1 of figure 9(a). A
similar observation has been reported by Erichson et al. (2019), who applied multi-
layer perceptrons to a cylinder wake.

3.2. Transient wake case
As an example of more complex flows comprising high-order modes, let us consider
a transient process with a circular cylinder wake at ReD= 100. For the transient flow,
the streamwise length of the computational domain and that of flow field data are
extended to Lx = 51.2 and 8.2 6 x 6 37, i.e. N∗x = 1152. To focus on the transient
process, we use the flow field data of 50 6 t 6 150 with a time step of 1t = 0.025.
The temporal development of the lift coefficient CL and the energy and vorticity fields
of the first ten POD modes are summarized in figure 10. All of these quantities exhibit
trends similar to those of Noack et al. (2016).

Figure 11 compares the reference DNS flow fields and the fields reconstructed by
POD and MD-CNN-tanh using the first two modes. Similarly to the results shown in
figure 4, the proposed method shows lower L2 error than POD.

In figure 12, we summarize the results of performing POD to the decomposed field
1 and field 2 obtained by MD-CNN-tanh, compared with the POD modes obtained
from DNS data, as in figure 7. Here, the average fields of time series data are omitted
and the decomposed field 2 is shown on the top for clarity of illustration. The energy
distribution of the output field of MD-CNN-tanh with two latent vectors, obtained by
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L2 norm error at t= 137.5 with two methods: (a) streamwise velocity u and (b) transverse
velocity v.
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POD, is shown in figure 13. Similarly to figure 7(b), one decomposed field (field 2
in this figure) contains the orthogonal bases, like POD modes 1, 3 and 5, and another
decomposed field contains POD modes 2, 4 and 7. The difference from figure 7(b)
is that a mode resembling POD mode 7 appears in this case instead of mode 6. This
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FIGURE 14. Dependence on the number of latent vector (i.e. mode used for
reconstruction) for the transient wake problem. A fivefold cross-validation is undertaken
although the error bars are not shown here.

model likely estimates that mode 7 has higher energy than mode 6, since POD mode 7
has the same degree of energy as mode 6, as shown in figure 13. In summary, in this
transient case also, a single nonlinear mode of MD-CNN-tanh contains multiple POD
modes in a manner broadly similar to the periodic vortex shedding case, although the
correspondence to the POD modes is slightly less clear.

Finally, as a preliminary investigation toward extension of the present method, we
show in figure 14 a result for the dependence on the number of latent vector nL for
the transient wake problem, although further investigation of the nL > 2 cases is left
as future work. Here, we compare POD and MD-CNN-AEs with nL = 2, 4 and 8.
It is observed that the L2 error of MD-CNN-AE is systematically less than that of
POD with the same number of modes. This result suggests that the present model
can map the high-dimensional data into a lower-dimensional space than POD while
retaining the feature of the unsteady flow. However, the present result also implies that
the ability of MD-CNN-AE to represent the flow with fewer modes is not as good as
the most advanced nonlinear dimensionality reduction methods, such as locally linear
embedding (LLE) (Roweis & Lawrence 2000), by which Ehlert et al. (2019) has very
recently reported that reconstruction using 2 LLE coordinates results in a much lower
L2 error than that using 10 POD modes.

4. Conclusions
As a CNN structure which can decompose flow fields in a nonlinear manner

and visualize the decomposed fields, we constructed a mode decomposing CNN
autoencoder (MD-CNN-AE) with one encoder and two decoders. As a test case, the
method was applied to flow around a circular cylinder at ReD = 100, and the flow
field was mapped into two values and restored by adding the two decomposed fields.
With MD-CNN-Linear, which has linear activation functions, the reconstructed field
is similar to that of POD with the first two modes, both in terms of L2 norm error
and the distribution of reconstruction error. This suggests that the linear CNN is also
similar to POD as in the case of linear multi-layer perceptrons. When we use the
nonlinear activation function, the L2 norm error of reconstruction was reduced as
compared to those of POD with two modes and MD-CNN-Linear.

We also investigated the decomposed fields obtained by MD-CNN-AE. The two
decomposed fields in MD-CNN-Linear are similar to those of POD with two modes.
For MD-CNN-tanh, complex structures were observed and the two decomposed fields
of MD-CNN-tanh were found to have the same amount of energy. By performing POD
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for these two decomposed fields, it was revealed that decomposed field 1 contains
the orthogonal bases corresponding to POD modes 1, 3 and 5, and decomposed field
2 contains modes 2, 4 and 6. The present result is also consistent with the existing
knowledge on the relationship between the first two POD modes and the third to sixth
POD modes in the present problem – this suggests that MD-CNN-tanh can be used
to extract modes with lower dimensions in such a way that nonlinear functions are
embedded in the network. A transient process was also considered as an example of
more complex flow with higher-order spatial modes, and broadly similar results were
obtained.

Through the analysis of very simple problems, i.e. an unsteady cylinder wake and
its transient process, we have confirmed the basic performance of the proposed
MD-CNN-AE. However, the proposed method has been so far examined only
for flows with large scale spatial structures. To handle more complex flows, e.g.
turbulence, additional improvements on the network design are required. Nevertheless,
we believe that by extending the present idea of MD-CNN-AE with a nonlinear
function, which can represent more information against linear theory with same
number of modes, we may be able to take greater advantage of machine learning
for reduced-order modelling of three-dimensional unsteady and turbulent flows, that
can eventually be utilized for development of efficient flow control laws based on
nonlinear reduced-order models.
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