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1. Introduction

Let Rn denote the class of functions/(z) = z+anz" + • • • (n it 2) which are
regular in the open disc \z\ < 1 (hereafter called E) and satisfy

(1.1) Re (Mj > 0,

for all z in E. Rn is a subclass of the class of close-to-star functions in E [9, p. 61 ].
MacGregor showed that the radius of univalence and starlikeness of Rn is
[ l - « + (rt2-2« + 2) i ] 1 / ( n~1 ) , see [4,5]. The radius of convexity of R = R2 is
r0 = 0.179 •••, where r0 is the smallest positive root of the equation 1 — 5r — 3r2 —
r3 = 0, see [8].

In this paper we consider a subclass Rn(a) of the class Rn, the members of
Rn(<x) bsing those members of Rn which satisfy

(1.2) — a < a (a >

for all z in E. The main purpose of this paper is to find the radius of convexity

of R(a) = i?2(a) . To obtain the result in more general form we further assume

t h a t / ( z ) is £>fold symmetric, that is, it has power series expansion of the form

00

/ ( z ) = z+ Y amk + 1z
mk+1.

m = l

We also obtain the radius of univalence and starlikeness of Rn(oc). Corresponding
result for the class R(l) is known to be %, see [6]. By making a tend to infinity in
the above results for the class Rn(a), we can obtain the corresponding results for
the class Rn.

For the above classes the identity function z plays a key role. It would
naturally bs interesting to see how the radii of univalence and convexity vary when
the identity function is replaced by some other function g(z) such that #(0) = 0;
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that is, to investigate similar problems for the class of functions /(z) which are
regular in E and satisfy/(0) = 0,/'(0) = 1, and

(1.3) — a < a (a >

for all z in E. We take g{z) = z + az2(\a\ ^ 1) and find the radius of univalence
and starlikeness of the above class. We also find the radius of convexity of the
above class when a = 1, or oo. It is found that these radii decrease monotonically
as \a\ increases from 0 to 1.

The estimates used to obtain the above results are further used to obtain the
radius of univalence and starlikeness of a subclass of the class of typically real
functions.

We shall need the following lemmas.

Throughout this paper P(z) denotes a function which is regular in E and

satisfies P(0) = 1, Re P(z) > 0 for all z in E.

LEMMA 1. IfP(z) has a power series expansion of the form

(2.1) P(z) =

then for \z\ = r,0 ^ r < 1,

(2.2) \P'\

and

(2.3)

where /i is any complex number with Re (fi) ^ 0.
Corresponding results for n = 1 and /i = 0 are due to Libera [3] and Mac-

Gregor [5].

PROOF. Let

(2.4) /(z) =

Then/(z) is regular in E and satisfies |/(z)| < 1 for z in E [7, p. 169]. Also/(z)
has a zero at z = 0 of order at least n and hence by Schwarz's lemma |/(z)| g
For such functions we have [1]

(2.5) nr
(i-r2T
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Substituting for/(z) from (2.4) we obtain (2.2).
Further

1

Re(P(z))l+(Re(/i)/Re(P(z)))

which in view of (2.2) and the inequality [4]

yields (2.3).
It is easy to show that equality holds in (2.2) and (2.3) for n ^ 0 only for

functions P{z) = (1—£z")/(l+ez") where \e\ = 1 and for appropriate values of z.

LEMMA 2. If P{z) has power series expansion of the form (2.1), then for
\z\ = r < | and n~Z 0,

1 2rn

(2.6)

PROOF. Let ip(z) = l/(P(z) + n). Substituting for P(z) in terms of \j/{z) in
(2.4) and using the fact that |/(z)| ^ \z\", we obtain for \z\ = r < 1,

This is equivalent to the inequality

r .

2r"

It is easy to show that equality occurs in (2.6) only for functions P(z) =
(1 -ez")/(l +EZ") where |e| = 1 and for appropriate values of z.

LEMMA 3. IfP(z) has a power series expansion of the form

P(z)=l+ I^z"*,

then for \z\ = r < 1 and /i ^ 0,

(2.7) z2P"(z) 2krk

~-(i-rky

PROOF. Let P(z) = g(zk). Then g(z) is regular in E and satisfies #(0) = 1,

https://doi.org/10.1017/S1446788700011290 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011290


[4] Radii of starlikeness and convexity 211

Re g(z) > 0 for z in E. Let £ be a complex number such that 0 < |£| < 1. The
function

= g

is regular in E and satisfies Re G(z) > 0 for z in E. Therefore by the Caratheodory-
Toeplitz theorem, we have

(i-KI2)
d'(0

This gives

2zk

4|g(QI
( i -KI2 ) 2 '

for all z in E. Using the relation P(z) = g{zk), we obtain the inequality

. Ak2\z\2k , „ , x,

Therefore

(2.8)
2krk

From lemma 1, we have for \z\ = r < 1,

(2.9)
2krk

From lemma 2, we have for \z\ = r < 1,

P(z) (ll

The above gives

(2.10)

From (2.8), (2.9) and (2.10) we obtain (2.7).
It is easy to show that equality holds in (2.7) only for functions P(z) =

(1 — £z*)/(l +ez*) where \s\ = 1 and for appropriate values of z.

THEOREM 1. Suppose that f(z) = z + ak+1z
k+1 +a2k + iz2k+i + • • • is regular

in E and satisfies |(/(z)|z) —a| < a(a > \)for z in E. Thenf(z) maps \z\ < ra onto
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a convex domain where rx is the smallest positive root of the equation

[5]

-(l-a)V* = 0.

This result is sharp in the sense that the number ra cannot be replaced by any larger
one.

PROOF. Let

(2.11) «z> = ! - !
a z

then \J/(z) is regular in E, \ij/(z)\ < 1 for z in E and ij/(0) = 1 — (I/a). Let

(2.12) F(z) = i

then F(z) is regular in E, \F(z)\ < 1 for z in E and F(0) = 0. Also F(z) has a power
series expansion of the form F(z) = bkz

k + b2kz
2k+ • • \ Such a function F(z) can

be represented as [7, p. 169]

(2.13) F{z) =

Evidently P(z) has a power series expansion of the form P(z) = 1 +ckz
k + c2kz

2k

+ •••. F rom (2.11), (2.12) and (2.13) we have

(2.14)

The representation (2.14) yields the relation

(2.15)

2oez

/'(*) Hz)
From lemmas 1 and 3 we have for \z\ = r, 0 ^ r < 1,

zP'(z)
P(z

z2P"(z)
P(z

(2a-l)fcr*((fc-

(2.16)

and

(2.17)

Let

= r(l + (2a - \)k) - {(2a - l)((2a -1)(1 + k2

} L 2(1-a)

(2a- \)krk

*]',
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From (2.16) and (2.17) we have for \z\ = r, 0 ^ r < R,

z2-2P"(z)

a - l ) ) + P(z)-zP'(z) (1 - r*)((l - a)r2k - (1 + fc(2a - l))r* + a)"
(2.19)

From (2.15), (2.16) and (2.19) we have for \z\ = r, 0 ^ r < R,

2(2a-l)krk

Re
f'(z)

- 1 ) ) ^ + a)

P(r)
(a - (1 - a)r")((l - a)r2k -(1 + fc(2a - \))rk + a) '

where

(2.20) p(r) = a 2 - a { ( 2 -

The condition Re(l+(z/"(z)//'(z))) > 0 for \z\ < r is necessary and suffi-
cient for/(z) to map \z\ < r onto a convex domain. From the above estimate, we
see that this condition is satisfied in \z\ < min (rx, R) where rx is the smallest
positive root of the equation p{r) — 0. Writing p{r) as

p(r) = (a-( l -a)r*X(l-a)r2*-( l+fc(2a-iy-* + a)
+ k(2<x-\)rk{{\-k){\-a)rk-<x{\+k))

and using (2.18) it is easily verified that ra < R. Hence/(z) is convex in \z\ < rx.
The function

satisfies the hypothesis of the above theorem but is not convex in \z\ < r with
r^rx.

Letting a tend to infinity and putting k = 1 in theorem 1, we get the result
of Reade, Ogawa and Sakaguchi [8].

THEOREM 2. Suppose that f(z) — z + an2? + an + 1z
n+l + • • • is regular in E

and satisfies |(/(z)/z) —a| < a(a > i ) for z in E. Then f(z) maps \z\ < ra onto a
univalent andstarlike domain where

(
(2.21) rx=l - ( (2( l -a) + (2a-l)n)2+4a(a-l)) i}/2(l-a)]1 / ("-1) if a ^ 1,

( i / ( n - i ) i f a = 1 .

This result is sharp.
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PROOF. Proceeding as in theorem 1, we have

(2-22) /{Z) = l+(2?-l)P(zy

where P(z) has a power series expansion of the form P(z) = 1 +cn_1z"~I + • • •.
The representation (2.21) yields

(2.23) ]S?=1~

Taking real parts on both sides of (2.23) and using lemma 1 we have for \z\ =
r, 0 g r < 1,

Re

A necessary and sufficient condition for/(z) to map \z\ < r onto a univalent and
starlike domain is that Re (zf'(z)/f(z)) > 0 for \z\ < r. From the above estimate
we see that this condition is satisfied for \z\ < ra where rx is given by (2.21).

The function

satisfies the hypothesis of the above theorem but is not univalent in \z\ < r with
r ^ ra for/^z) vanishes at z = ra exp(in/(n— 1)).

Let F(z) = zf'(z). If F(z) be starlike with respect to the origin in \z\ < r
then/(z) is convex in \z\ < r [7, p. 223]. Also if/(z) satisfies \f'(z)—a\ < a. for z
in E, then F{z) satisfies \(F(z)/z) — a\ < a for z in E. Therefore we arrive at

COROLLARY 2.1. Suppose that f(z) — z + anz
n + an+lz

n+l+ • • • is regular in
E and satisfies |/'(z) — <x| < <x(cc > i) for z in E. Then f(z) maps \z\ < rx onto a
convex domain where rx is given by (2.21). This result is sharp, the extremal function
being

= \
Ooc + (l-a)zn

dz.

Letting a tend to infinity and putting n = 2 in theorem 2 and corollary 2.1,
we get the results of MacGregor [4].

THEOREM 3. Suppose thatf(z) is regular in E and satisfies/(0) = 0,/'(0) = 1
and\(f(z)/(z + az2))-<x\ < a (\a\ ^ |, a > \)forzinE. Then f(z)maps \z\ < r.(\a\)
onto a univalent and starlike domain where rx (\a\) is the smallest positive root of
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the equation
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- a ) + (2a+l) |a |>2-2( l -a) |a | r 3 = 0.

This result is sharp, the extremal function being

l+zeiy

1+ - -

(z + az2), (y = arga, \a\ g 1).

The number rx(\a\) decreases monotonically as \a\ increases from 0 to 1.
The case a = 0 and a = 1 is Theorem 1 of [6].
The proof of the above theorem is similar to that of theorem 2 and is therefore

omitted.

THEOREM 4 (A) Suppose that f(z) is regular in E and satisfies /(0) = 0,
/'(0) = 1 and Re (f(z)/(z + az2)) > 0 (\a\ ^ 1) for z in E. Thenf(z) maps \z\ < r
(|a|) onto a convex domain where r(\a\) is the smallest positive root of the equation

1 — (5 + 4|a|)r + (6|<z| — 3)r2 + (10|a| — I)r3+4|a|r4 = 0.

(B) Suppose that f(z) is regular in E and satisfies /(0) = 0, / '(0) = 1 and
\(f(z)\(z + az2))-l\ < 1 (\a\ ^ \)for z in E. Then f\z) maps \z\ < rt(\a\) onto a
convex domain where

r (\n\\ -ft if ° = 0'
a|)-{4(l + |a|2)-|a|}*]/(9|a|) if a # 0.

The above estimates are sharp and decrease monotonically as \a\ increases from
Oto 1.

PROOF OF THEOREM 4(A). Let g(z) = z-\-az2. It is easy to see that for \z\ = r,

(3.1)

Let

(3.2)

The

(3.3)

zg"(z)
9(z)

^ 2|fl|r

~l-\a\r'

9(z)

zg

9

1
P{z)

representation (3.2) yields the relation

1
z/"(z) 2zP'(z

+ f\z) P(z)

z

\z)

(*)

A
ll

2P"(z)
P(z)

zg\z)

\-2\a\r
\-\a\r

z2g"{z)

g(z)
zP\z)
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Using (3.1) and lemma 1, we have for \z\ = r, 0 ^ r < l/(2|a|),

(3.4) zg'{z) zP'(z) l-2\a\r 2r

l- |fl |r 1-r2

l - 2 ( l + |a|> + (2 |a | - l>2+2|a | r 3

Let r0 be the smallest positive root of the equation

ijj{r) = 1-2(1 + |a|)r + (2|a| - l> 2 + 2|a|r3 = 0.

It is easy to verify that r0 < l/(2|a|). Therefore using lemmas 1 and 3 and the
inequalities (3.1) and (3.4), we have for \z\ = r, 0 5£ r < r0,

Re
f\z)J (l + r ) [ l -2( l + |a|)r + (2 |a | - l>2+2|« | r 3 ]

Let r(\a\) be the smallest positive root of the equation

X(r) = l - (5+4 |a |V+(6 |a | -3> 2 + (10|a|-l)r3 + 4|a|r4 = 0.

It is easy to verify that 0 < r(\a\) < \. Also i]/(r) is monotonically decreasing for
0 ^ r ^ \ &nd\j/(\) is positive. Therefore r0 > \. Thus we see that Re(l + (zf"(z)j
f'{z))) > 0 for \z\ = r < r(\a\), which implies that/(z) maps \z\ < r(\a\) onto a
convex domain.

The above estimate is sharp because the function

r ^ S ( z + a z 2 ) (y = arga'la] -1}

satisfies the hypothesis of the above theorem but is not convex in \z\ < r with
r ^ r{\a\).

It is easy to verify that r(\a\) decreases monotonically as \a\ increases from
Oto 1.

Theorem 4(B) can be proved in the same manner as theorem 4(A). The
extremal function in this case is

/(z) = (1+^zXz + az2) (y = arga, \a\ <, 1).

TYPICALLY-REAL FUNCTIONS The function/(z) = z + a2z
2+ • • •, regular in E

is called typically-real in E if it is real on the diameter — 1 < z < 1 and if at other
points of the circle E, Im(/(z)) • Im(z) > 0, see [11]. The radius of starlikeness of
this class is (,/2— 1), see [2]. We find below the radius of starlikeness of a sub-
class of the class of typically-real functions.

https://doi.org/10.1017/S1446788700011290 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011290


[10] Radii of starlikeness and convexity 217

THEOREM 5. Suppose that f(z) is regular and real on the real axis in E and
satisfies the conditions/(0) = 0,/'(0) = l,/"(0) = 0 and

(4.1) < a (a > %),

for all z in E. Thenf(z) is univalent and starlike in \z\ < ra where rx is the smallest
positive root of the equation

(4.2) a - ( 5 a - l > 2 - ( 5 a - 4 ) r 4 + ( a - l > 6 = 0.

This estimate is sharp, the extremal function being

= z + 3 - -

REMARK. A necessary and sufficient condition that/(z) be typically real in E
is that Re {(1 —z1)/zf(z)} > 0 and 1 —z2/zf(z) is real on the real axis for z in E,
[10]. Evidently the functions which satisfy the hypothesis of the above theorem
satisfy this condition and therefore form a subclass of the class of typically real
functions.

PROOF OF THEOREM 5. Proceeding as in theorem 1 we have

/•/ x 2az(4.3)

where P(z) has a power series expansion of the form P(z) = 1 +c2z2 + • • •. The
representation (4.3) yields the relation

(4.4)
z/'(z) _ l + z2 (2a-l)zP'(z)

/(z) 1-z2 (l+(2a-l)P(z)) '

From lemma 1, we have for \z\ = r < 1,

zP\z)
(4.5)

" " 2 a - l ) ) + P(z)

From (4.4) and (4.5) we have for \z\ = r < 1,

Re

2(2a-l)r2

r2)(a — (1— a)r2)

__ a-(5a-l)r2-(5oc-4)r4

Thus we see that Re ((z/'(z))//(z)) > 0 in \z\ < rx where rx is the smallest positive
root of (4.2).
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If/(z) be typically-real, then F(z) = zf'(z) is real on the real axis and convex

in the direction of the imaginary axis [10]. Therefore we arrive at

COROLLARY 5.1. Suppose that f(z) is regular in E and satisfies the conditions

for \z\ < 1. Thenf(z) is convex in \z\ < rx where rx is the smallest positive root of

fhe equation (5.2). This result is sharp, the extremal function being

2) d ,

0(l-z2)(a + (l-a)z2)
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