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CONSTRUCTION OF A SOLUTION OF A CERTAIN

EVOLUTION EQUATION

AKINOBU SHIMIZU

Let us consider the stochastic differential equation,

du{t, x, ω) = {&xu(t, x, ω) + a(t)u(t, x, ω) + b(t)}dt

+ [c(t)u(t, x, ώ) + d(t)}dB(t) , t ^ 0 , x e Rd ,

with initial condition,

( 2 ) u(0, x, ω) = g{x) , x e Rd ,

where Bty t}>0, is a one-dimensional Brownian motion, and 3?x is a sec-

ond order uniformly elliptic partial differential operator satisfying some

additional conditions that will be described in §2. The existence and

the uniqueness of solutions of the Cauchy problem have been established

by B. L. Rozovskii [8].

The aim of this paper is to give an explicit expression of the solu-

tion in terms of Brownian motion. We are able to express the solution

of the equation (1) as follows;

, x, ω) = ¥(t, ω)\p(t, x) + f ¥(s, ω)"\b(s) - c(s)d(s))dsu(t,

where

¥(t, ω) = exp f Γ c(s)dB(s) - — [ c(s)2ds + P a(s)ds)
Uo 2 J o Jo J

and pit, x) is the solution of the Cauchy problem

(4) l p ( ί , x) = sexv{t, x), p(0, x) = g{x) , x e Rd .
ot
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24 AKINOBU SHIMIZU

We shall show in § 2 a method of construction of it as a functional of

Brownian motion. To get this expression, we shall make use of the

method by T. Hida [6] [7], where the integral representation of the

multiple Wiener integral is discussed systematically.

Once we got the formula (3), we are given much information on the

asymptotic behaviour of the solution. For instance, suppose that S£ x be

the Laplace operator, and that g(x) be a continuous function with com-

pact support. Then, as is well-known, p(t, x) converges to zero as t

tends to infinity, so that we see that the process u(t, x9 ω) is close enough

to the process

W(t,ω)U*W(8,ώ)-KH8) - c(s)d(s))ds

for large t.

We shall further discuss the case where the space-parameter x varies

in a bounded domain D in Rd, whose boundary 3D is sufficiently smooth.

The solution u(t, x, ω) of the equation (1), with x e D, satisfying the initial

condition and the boundary condition,

( 5 ) —u(t, x, ω) = 0 , x e 3D ,
dn

is also expressed in the form (3), where (4) is replaced by

~V = semv , (t, x) e (0, oo) x D ,
at

( 6 )

Lp = 0 , (ί, x) e (0, oo) x 3D .
3n

We are encouraged by B. L. Rozovskii [8], A. V. Balakrishnan [1],

D. A. Dawson [2] and W. H. Fleming [4], to develop the method dis-

cussed in this paper.

§ 1. Existence and uniqueness

This section is devoted to a summary of known results for the

stochastic differential equation (1). Let (Ω9F,P) be a probability space,

endowed with a right-continuous increasing family Ft9 and let Bt(ω),

t :> 0, ω e Ω, be a standard FrBrownian motion.
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EVOLUTION EQUATION 25

DEFINITION 1. A stochastic process u(t9 x, ω) with space-time para-
meter (t, x) e [0, oo) x Rd is called a solution of the equation (1) if the
following conditions (i) ~ (iv) are satisfied,
( i ) u(t, x, ω) is immeasurable for any t and x,
(ii) u(t,x,ώ) is continuous in (t,x) for almost all ω,
(iii) u(t,x,ω) is twice continuously (with respect to the pair (£, x)) dif-
ferentiable in x,
(iv) u(t,x,ω) satisfies the equation (1).

DEFINITION 2. We say that the equation (1) has a unique solution,
if there exists a set Ω satisfying P{Ω) = 1, for any two solutions ^(ί, x, ώ)
ί = 1,2, such that the equality u^t, x, ώ) = u2(t, x, ω) holds for any (£, x, ω)
e [0, oo) x R* x Ω.

The operator jSfΛ is assumed to satisfy the following conditions (i)
- (iv),

( i ) <&xu(t, x) = Σ M*> a?)n ^ (̂*> a) + Σ δi(*, x)-^-u(t, x)f xeRd, xe
ij=i dXiϋXj ί=i ϋXi

[0, oo), is uniformly elliptic, that is, there exist positive numbers Λo and
λι such that the inequalities

^ ΣΣ at(t x^iξj ^ Λ ||f | |2, (t, α?) e [0, T] x

hold for any vector ξeRd, and (t, a?) 6 [0, Γ] x i? ,̂
(ii) the coefficients aί:j(t,x), bi(t,x) are bounded continuous in t,
(iii) {di ft, x),xe Rd} is equi-continuous in t,
(iv) the coefficients <iij(t>x)>bi(t>x) have bounded continuous (in (ί, #))
Holder continuous (in #) derivatives in x.
Under these conditions, there exists the fundamental solution p(t, x, s, y)
of the parabolic equation,

dt

and it has the following properties [3],

x c fμ\\χ-v\n;I γ
( 7 ) \\dXi dyj dx

Let the coefficients α(ί), δ(ί), c(ί) and d(t) be continuous functions
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26 AKINOBU SHIMIZU

defined on [0, oo), and assume that the function g(x) is bounded contin-

uous, and that is has derivatives g'(x) and g"(x), which are bounded

Holder continuous. Under these assumptions, the Cauchy problem of

the equation (1) is reduced to the following integral equation,

( 8 )

uit, x, ω) = pit, x) + I f pit, x, s, y){c{s)u(s, y, ω) + d(s)}dydB(s)

+ I I pit, x, s, y){a(s)u(s, y, ω) + b(s)}dyds .
JO J Rd

The existence of a solution of the Cauchy problem (1), (2) can be proved

after we show the existence of a solution of (8). The uniqueness of

the Cauchy problem can be proved without the expression (8). The

following propositions, which give precise statements on these facts, have

been established by B. L. Rozovskii [8], Here, a solution of the equation

(8) means a stochastic process uit,x,ω) satisfying (i), (ii) in Definition 1

and the equation (8). The uniqueness of solutions of the equation (8)

should be understood similarly to Definition 2.

PROPOSITION 1. The equation (8) has a unique solution satisfying

sup E[u(t, x, ω)2] < oo for any T < oo, and the solution satisfies
6[0,T]XRd

sup E[u(t, x, ω)2k] < oo for any T < oo, and any positive integer k.
e[0Γ]χβώ

U,S) 6[0

The solution in Proposition 1 is obtained by the successive approxi-

mation, so that it is a 'strong solution'.

PROPOSITION 2. The solution of the equation (8) satisfies the equa-

tion (1).

PROPOSITION 3. The equation (1) has a unique solution satisfying

sup E[u(t, x, ω)2] < oo for any T < oo.

§2. Construction of the solution

We are now in the position to show an algorithm to derive the

formula (3). We shall make use of the notations and the results in T.

Hida [6] [7]. We denote by Sf the Schwartz space, and ^ * means the

space of tempered distributions. A probability measure μ(df) on £f* is

defined in such a way that
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EVOLUTION EQUATION 27

exp { - 1 ||ί||2} = j e χ P{-1 |

where || || means ZΛnorm. The measure μ(df) is defined on a σ-field S3,

which is generated by the sets,

where ξί9ί = 1, -,n, belong to Sf, and where B is a Borel set in Rn.

Let χ[Oiί] be the indicator function of [0, i], then we see that the process

</>%[o,ί]> is a Brownian motion on the space G^*,S3, μ). Let 95, be the

afield generated by {</, χ[0,s]>, s < ί}.

From now on, we shall take the system (Ω,F,P,Ft,Bt) to be

(«^*,a5,/ί,a3ί,</,χCOlί]». The complex Hubert space (L2) = L2(^*,S3,μ) is

decomposed as follows;

(L2) = Σ Θ / K ,

where 2tPn is the multiple Wiener integral of degree n.

Now, we consider the equation (8). In the first place, we assume

a(t) = 0 for simplicity. Let us project the both sides of the equation

(8) on the space j(?n. We denote by un(f, x, ώ) the projection of u(fi, x, ώ)

on the space 3tfn. Then, we get

un(t, x, ω) = δn>Qp(t, x) + I I p(t, x, s, y)c(s)un^(s, y, ω)dydB(s)

+ δnΛ d(s)dB(s) + δn,0 b(s)ds , n = 0,1, 2, . . ,
Jo Jo

that is,

rt
uo(t, x, ω) = p(£> a?) + δ(s)ds ,

Jo

vS> x, ω) = I I p(ί,», s, i/)c(s)Wo(s, y)dydB(s) + \ d(s)dB(s) ,
Jojfld Jo

w n (ί, a?, ω) = p(t, ίc, s, y)c(s)un^(s, y)dydB(s) for n ;> 2 .
Jθ Jjβώ

Since p(t,x,s,y) is the fundamental solution of (4), the equality

p(£, x, s, y)p(s, y)dy = p(ί, α;) holds, so that we get
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Uy = pit, x) Γ cis)dBis) + f (φ) Γ biτ)dτ\ds + Γ d(s) dBis) ,

un = pit, x) Γ ciτj I " c(rn_j) Γ c(Tl

(10) J o J° J o

+ C\?n) C(r w - 1 ) ( C(fi)
Jo Jo J o \ Jo

+ Γ ciτn) Γ c(rn_χ) c(r2) Γ dbJdBbJdBbύ • • dB{rn) ,
Jo Jo Jo

for n ^ 2.

We set

7j = p(ί, ίC) + Σ ^(^> x) C\τn) C&n-l)
71=1 J o J o

(ID •• J » c ( Γ l ) d

I2 = bis)ds + Σ c(f») c(r.-i)
JO 71 = 1 JO JO

and

h = Σ c(τw) c(rn_!) c(r2) d(τ^dB{τ^)dB{τ2) dB(τn) .
7i = l Jo Jo Jo

Since ^(ί, a?, ω) = ΣrT=o ̂ Λ(ί> ̂ > ω) = 7X + 72 + 73, it is sufficient to calculate

I19I2 and 73. It is known (See T. Hida [6][7]) that

(12)

= p(fi, aθ(l + Σ Γ c(rn) Γ cCrn.x) - Γ c{τddB{τι)dB{τ2)
I τι = l Jθ Jo Jo

= p(ί, a?) exp {£ c(«)dB(«) - 1 ||c||f} ,

where | |c | | J= c(u)2du. In order to calculate I2 and 73> we need some
Jo

lemmas on integral representations of the multiple Wiener integral.

The following operator T has been introduced by T. Hida-N. Ikeda

[5],

(13) GΓ0(£) = f exp [i</, ξ>]φ(f)μ(df) , φ G (L2) .

J^*

The collection !F = {̂ "̂  p 6 (L2)}, which is made to be a reproducing
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kernel Hubert space, is isomorphic to (L2) under ZΓ. If φ(f) e Jfn, then

ίfφXξ) = i» exp {-•i ||f ||2) f . . . f F(uu -.,ujξ(ud
(14) 1 2 ) JRn J

• ξ(ιQduλdu2 « dun

where F e L\Rn) = {symmetric L2(#w)-f unctions}, and the mapping

is one to one. Besides,

holds. The function F is called the kernel of the integral representa-

tion of φ.

LEMMA 1. Suppose that a function F(u) is continuously differentiable

on [0, t]. Then, the random variable un(t) in J^n> whose kernel of the

integral representation is given by

1
(15) Fn(u19 u2,- -,un;t) = —rY[ /Mxio^iWi^ A u2 A Λ un)

nl «=i

is equal to

(16) F(0)Hn^ f(u)dB(u) ||/||?) + £ H n ( £ f(u)dB(u) \\f\\l?JF'(s)ds ,

where Hn(z σ2) is the Hermite polynomial with parameter, and where

\\f\\lt = [' f(ufdu< +oo /or βe[0,ί].

Proof. By the equality F(u) = F(0) + Γ F\u)du, we have
Jo

the right hand side of (15)

n Λ n ΓuiAuz' Aun n

Π /(^)%o,t](^) + Λ - Π /(«*) ^(β)tto ΠZ[».α
ί»l 711 i=l Jo ; =1

ftχ

Jo n ! ί=i
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1 n

The random variable in 2?n, which correspond to the kernel — \[ f(Ut)
nl i=ι

1 n tΓ \
%[0,f](O and — - Π / W & ^ W . are HJ f(u)dB(u); \\f\\2

t) and
nl ί=i VJo /

ί?7i( f(v>i)dB(u);\\f\\2

8λ respectively. Therefore we get

n(t) = F(0)Hn^f(u)dB(u);\\f\ή + ^Hn(J^f
un

Next, we consider the case where the function F(u) in Lemma 1 is
not smooth.

LEMMA 2. Let ιtn(t),(n = 1,2, •)> ^^ random variables, tvhose
kernels of the integral representation are of the form (15), where F(ιι)

__ | W wiί/z, bounded functions f(u) and g(u), and where the set
fin)

{u;f(u) = 0} is o/ Lebesgue measure zero. Then, the equality,

Σ un{t) = exp i f f(u)dB(u) - 11 |/ |ή
w = l U θ 2 J

(17) [£ f{u)F{u) exp {-£ /(r)dδ(τ) + - | || / lit} dB(u)

Proof. As the first step, we consider the case where F(ιi) is contin-
uously differentiable. By Lemma 1, we have

un(t) = Fφ)Hn(\[f(u)dB(ιϊ); \\f\ή

so that we obtain

Σ Unit) = F(0) exp (Γ f(u)dB(ιi) - λ \\fψ\
n = 0 Uθ 2 J

+ £exp {JV(tt)dβ(M) - 1 \\f\\l^F'(s)ds

= exp

x [no) + £exp |Jy(M)dB(M) + ||/
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= exp {JV(M)dB(tO - 1 | | / |B}

X [exp {-

/(s)ds exp | -

- exp

X ^F()d{jSf()dB

where we set %„(*) = F(t). Hence we get

un{t) = -exp {Γ/(«)dB(«) - 111/11?)

X JV(s)d sexp |_£/(M)ίiB(M) + 111/11?

X [£/(«)F(«) exp | - J " f{u)dB(u) + 1

exp {-

We then come to the case F(u) = 9S^Lt where f(u) and g(u) are bound-

ed, and where the Lebesgue measure of the set {u; f(u) = 0} is zero.
We set

F(u) , if |/(it)| > 1

F»(u) =
0 , if |/(M)| ^

Since F^Ctί) is bounded, we have a smooth function F§(u) such that

HF^tt) - F%(u)\\LH0M < —. For this sequense F§(u), N = l,2, ,we have

\\f(u)F(u) -
£ \\f(u)F(u) - /(tt)F*O0|UOit) + sup

€[0t]
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<L sup \g(u)\ X Lebesgue measure of \u; \f(u)\ <L —\ Π [0, t]
«e[o,ί] I N)

+ ~ sup \f(u)\ = ε(N)
N we[o,o

and e(N)—> 0, as 2V —> +oo. Furthermore, we see that

\\Fζ(uιyu2, ,un;t)- Fn(u19u29--.,un;t)\fmRn) ^ JL-|| / |β<-> x ε(N) ,<•>

(n ! ) 2

so t h a t w e h a v e

Σ n ! |iFξ(u1 9 . . •, un t) - F . ( ^ , , ̂  ί ) | | 2 ̂  Σ , 1

i X t ( l l / I I D * " 1 X e(N)
n-l n-1 (^ ~ 1) !

—> 0, as iV -> + oo .

Let uξ(t) be the random variable with kernel Fξ(u19 ,un; t). From

the argument above, we get HΣn-î ΓOO — Σn-i^nCOIk^-^O, as iV->+oo,

It is easy to see that the right hand side of (17) with smooth function

F% converges to the right hand side of (17) with function F, when N

tends to infinity. Hence, we obtain the equality (17) for non-smooth

function F(u). The proof of Lemma 2 is complete.

Now, we can calculate I2 and /3. Let us begin with /2. The kernel

of the integral representation of

Γ c(τn) p c(τn_d Γ Uτd Γ b(τ)dτ)dB(τddB{τύ dB(τn)
Jo Jo Jo \ Jo /

is equal to

—r Π ciu^χ^Ut) b(τ)dτ .
nl ί=i Jo

By Lemma 1, we get

C(Tn) Γ C(τn~ΰ ' " JΓ ( C ( r

£ » ( [ c(u)dB(u)

Hence we obtain

(18) /2 = £ e x p {£ c(w)dB(w) - ~ \\c\\2

Sf^b(s)ds .
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While, the kernel of the integral representation of

Γ c(τn) Γ" c(r^) . c(τ2) Γ d(τddB(τddB(τd dB(τn)
Jo Jo Jo

is equal to

n\ & lί Λ c{Uι A u2 A • A uj

By Lemma 2, we obtain

(19) X [ [ exp | - £ c(u)dB(u) + 1 1 | c||j}d(8)dB(β)

- £ exp {-

By (12), (18) and (19), we are given an explicit expression of the solu-
tion,

(20) L J "

where ψ(t,ώ) = expΓΓ c(u)dB(u)-~ \\c\\{\ .

Finally, we consider the case where the coefficient a(t) ^ 0. We set

v(t, x, ω) = exp < — a(s)ds\u(t, x, ώ) ,

where the process u(t, x, ω) is the solution of the Cauchy problem of the
equation (1). Then, the process v(t, x, ώ) satisfies the following equation,

dv(t9 x, ώ) = \&xv(t, x, ω) + b(t) exp ( — a(u)du)\dt

< 2 1 ) ί / f M
+ Ic(t)v(t, x,ώ) + d(t) exp ί - a(u)du\\dB(t) ,

and the initial condition,

(22) v(jb,x,ω) =

Therefore, this case is reduced to the case where a(t) = 0.
Thus, we obtain
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THEOREM 1. Suppose that the following conditions are satisfied,

(a) the operator ££x satisfies the conditions (i), (ii), (iii) and (iv) in § 1,

(b) the coefficients ait), bit), c(t) and d(t) are bounded continuous on

[0, oo),

(c) the Lebesgue measure of the set {t; c(t) = 0} is equal to zero,

(d) the function g(x) is bounded continuous, and it has derivatives gf(x)

and g"(x), which are bounded Holder continuous. Then, the solution of

the Cauchy problem of the equation (1) is expressed in the form (3).

Remark 1. Suppose that c(t) = 0. By (11), it is easy to see that

I, = pit, x) ,

I2 = b(s)ds ,
Jo

J3 = Γ d(s)dB(s) .
Jo

Taking into account (21), we get

uit, x,ω) = exp < a(u)du\\p(t, x) + exp < — a{u)du\b{s)ds

+ ί exp [— Γ α(w)dw|d(s)dβ(s)j .

Remark 2. We can verify by Ito's formula that the process

ιι(t,x,ω) given by (3) satisfies the equation (1). Carrying out this proce-

dure, we can see that a sufficient condition for the process u(t,x,ω) to

be a solution of the Cauchy problem is stated as follows;

(aθ the Cauchy problem —p = ^xp, p(0, x) = g(x) has a smooth solution,

dt

(bθ a{t), b{t) 6 Lx[0, Γ], and c(t), d(t) e L2[0, T] for any T < + oo.

The pair (aθ and (bθ is rather weaker than the quadruplet (a), (b), (c)

and (d) in Theorem 1.

Remark 3. In case where the coefficients ait), bit), cit) and dit) are

F r adapted process, the existence and the uniqueness of solutions of (1)

and (2) have been proved by B. L. Rozovskii [8]. The solution is also ex-

pressed in the form (3). This fact can be verified by Ito's formula.

§ 3 . The case where the space-parameter x varies in a bounded domain

Let us discuss the equation (1), when the space-parameter x runs
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dt

u(0

du
dn

• = se

,x) =

(t,χ) = o,

(t

X

(t

,x)e

eD,

,x)e

(0,

(0,

oo)

oo)

X

X

D,

dD ,
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through a bounded domain D in Rd, whose boundary 3D is sufficiently

smooth. We consider the second initial-boundary value problem with

initial condition

(20 ^ ( 0 , x , ώ ) = g(x) , x e D ,

and the boundary condition (5), Let us consider the integral equation

(8), where p(t,x,s,y) is replaced by the fundamental solution of the

second initial-boundary value problem,

(23)

and where p(t, x) means the solution of (6)J Then, we can prove the

assertion corresponding to Proposition 1 also in this case. It seems to

be plausible that the inequality (7) is valid. If the fundamental solution

p(t,x,s,y) has the property (7), then we can prove the assertions cor-

responding to Proposition 2 and 3. The algorithm to get an explicit

solution, shown in §2, remains true in this case. Hence, we get the

formula (3) as an explicit expression of the solution of the equation (8)

with boundary condition (5). Besides, using Ito's formula, we can veri-

fy that the process given by (3) satisfies the equation (1), the initial con-

dition (20 and the boundary condition (5).

Thus we obtain

THEOREM 2. Suppose that the fundamental solution p(t, x, s, y) of

the second initial-boundary value problem (23) exists, and that the con-

ditions (b), (c) and (d) in Theorem 1 are satisfied. Then, the solution

of the equation (8), where p{t,x,s,y) is replaced by the fundamental

solution of the problem (23), is expressed in the form (3), where p(t,x)

is the solution of (6). Furthermore, the process given by (3) satisfies

du(t, x, ώ) — {&xu(t9 x, ω) + a(t)u(t, x, ω) + b(t)}dt

(24) + {c(t)u(t, x, ω) + d(t)}dB(t) , (t, x) e ( 0 , o o ) χ ΰ ,

u(0, x, ω) = g{x) , x e D ,

and
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^ , ω ) = 0, (ί,3)e(0,oo) x 3D .
dn
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