Notes on Number Theory V INSOLVABILITY OF $\binom{2 n}{n}=\binom{2 a}{a}\binom{2 b}{b}$

L. Moser

(received November 21, 1962)

A number of interesting Diophantine equations are of the form $f(n)=f(a) f(b)$. Thus the case $f(a)=a^{a}$ has been studied by C. Ko [2] and W.H. Mills [3] and a class of non-trivial solutions has been found, though whether the se give all the solutions is still unsettled. The case $f(n)=n$! has been mentioned by W. Sierpinski. Here the situation is that besides the trivial solutions $m!=m!1!$ and $(m!-1)!m!=(m!)!$ and the special solution $10!=7!6$! no other solutions are known, nor are they known not to exist. In the present note we show that the equation in the title has no solutions. A sketch of a somewhat different proof that this equation has at most a finite number of solutions was recently communicated to the author by P. Erdös. The details and completion of that proof have been supplied by Miss M. Faulkner in part of a Master's thesis at the University of Alberta. The present proof is designed to avoid lemmas based on non-elementary methods and also reduces the amount of numerical work involved.

Our main tool will be the following

LEMMA 1. The product of r consecutive numbers, each greater than r, contains a prime factor $\geq \frac{11}{10} r$. This is a slight refinement of a theorem of Sylvester and Schur in which the $\frac{11}{10} r$ is replaced by r. The simplest proof of the Sylvester-Schur theorem is due to P. Erdös [1] and rather obvious minor variations in his proof yield our lemma. We

Canad. Math. Bull. vol. 6, no. 2, May 1963.
hope, in a subsequent note in this series, to prove lemma 1 with the $\frac{11}{10} \mathrm{r}$ replaced by $\frac{7}{5} \mathrm{r}$. By virtue of the example 6.7.8.9.10 the constant $\frac{7}{5}$ would be best possible, if we are not to exclude small r. However, one must modify Erdös' proof considerably to obtain the $\frac{7}{5}$ result.

We now suppose that $\binom{2 n}{n}=\binom{2 a}{a}\binom{2 b}{b}$ with $a \geq b$. We first note that $2 \mathrm{a}>\mathrm{n}$, for otherwise the primes between n and $2 n$ would divide the left hand side but not the right hand side of our equation. Now let $n=a+r$ and let

$$
\begin{equation*}
T_{r}=\binom{2 n}{n} /\binom{2 a}{a}=\frac{(2 a+1)(2 a+2) \ldots(2 a+2 r)}{((a+1)(a+2) \ldots(a+r))^{2}} . \tag{1}
\end{equation*}
$$

Observe that by our lemma, T_{r} must contain, in its numerator, a prime factor $\mathrm{p}>\frac{22}{10} \mathrm{r}$. If T_{r} is to be an integer, this prime p cannot divide the denominator of T_{r}, for if $p /(a+i)$ then $p /(2 a+2 i)$ and (since $p>2 r)$ no other element of the numerator. Hence p would divide the denominator more often than the numerator. Clearly $\mathrm{T}_{\mathrm{r}}<4^{\mathrm{r}}$, but now we know that $2 \mathrm{~b}>\frac{22}{10} \mathrm{r}$, for otherwise p could not divide $\binom{2 \mathrm{~b}}{\mathrm{~b}}$. We will show that for $r>15$ this implies $T_{r}>4^{r}$.

By induction over b it is easy to show that $\binom{2 b}{b}>\frac{4^{b}}{2 \sqrt{b}}$ and since

$$
b>\frac{11}{10} r \text { we have } T_{r}=\binom{2 b}{b}>\frac{4^{b}}{2 \sqrt{b}}>\frac{4^{\frac{11}{10} r}}{2 \sqrt{10} r}
$$

For $r>15$ this last inequality contradicts $T_{r}<4^{r}$.

For $r \leq 15$ the result can be established by a variety of special considerations. We might note that if we had the lemma with $\frac{7}{5}$ replacing $\frac{11}{10}$ the above argument would give the theorem directly for all $r>1$.

It might be assumed from the above that $\binom{2 n}{n} /\binom{2 a}{a}$ is never an integer. This is false. In fact $\binom{2\binom{2 n}{n}-2}{\binom{2 n}{n}-1}$ is divisible by $\binom{2 n}{n}$ for every n.

REFERENCES

1. P. Erdös. A theorem of Sylvester and Schur. Jour. Lond. Math. Soc. 9 (1934) pp. 282-288.
2. C. Ko. Jour. Chinese Math. Soc. 2 (1940) pp. 205-207.
3. W.H. Mills. An unsolved Diophantine equation. Proc. of the Instit. in theory of numbers, Boulder 1959.

University of Alberta

Research supported by
American National Science Foundation.

