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ABSTRACT

Finite time ruin methods typically rely on diffusion approximations or discretiza-
tion. We propose a new method by looking at the surplus process embedded at
claim instants and develop a recursive scheme for calculating ruin probabilities. It is
assumed that claim sizes follow a phase-type distribution. The proposed method is
exact. The application of the method reveals where in the future the relative
vulnerability to the company lies.
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1. INTRODUCTION

In this article we consider a classic model describing the evolution over time of the
surplus of an insurance company. The value of the surplus process at time t consists
of the initial surplus plus premiums received, minus the value of claims that have
occurred by time t. There is a vast literature describing the situation where the
surplus process becomes negative for the first time.

The classic results concerning ruin probabilities were obtained by ARFWEDSON

(1950), BEEKMAN (1966) and CRAMER (1955) and generalized by THORIN (1968).
The classic problem was addressed also by PRABHU (1961 and 1965) and TAKACS

(1967). In the case of a compound Poisson claims process and a fixed rate of
premium income c the non-ruin probability (j)(a, t) over the finite horizon t given
an initial surplus a is a solution of the integro-differential equation

dd> {a, t) dd>(a, t) [a

c V = Y +<p(a,t) - <P(a-y,t)dB(y)
da dt Jo

where B() is the claim size distribution (see GERBER (1979)).
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The typical solution to this equation is stated in terms of Laplace transforms.
Numerical difficulties involving the inversion of the Laplace transform solution
were pointed out by JANSSEN and DELFOSSE (1982), TAYLOR (1978) and others. For
the probability of eventual ruin, exact results were obtained for claim sizes given by
combinations of exponential distributions and combinations of gamma distribu-
tions; see GERBER et al. (1987). Those results were generalized in DUFRESNE and
GERBER (1988) for the family of combinations of shifted exponential distributions.
Recursive calculations of ruin probabilities were developed by DEVYLDER and
GOOVAERTS (1988) and SHIU (1988).

For more general cases, DICKSON and WATERS f(1991) and (1992)] present a
discrete-time approximation for both the probability and the severity of ruin in finite
time. A pertinent review of ruin theory results by TAYLOR (1985) contains
references to many other texts on the subject.

It was recently shown by ASMUSSEN and ROLSKI (1991) that the exact results for
the probability of eventual ruin can be obtained for distributions belonging to be
so-called "phase-type" family. (A similar observation was also made by JANSSEN

(1982).) In particular, if the claim size distribution is of the phase type, in the
compound Poisson model, then the distribution of the maximal aggregate loss is a
known phase-type distribution whose parameters are easily calculated. The prob-
ability of ruin is obtained as the tail of this distribution. Recently results involving
phase-type distributions applied to the ruin problem were obtained by ASMUSSEN

and BLADT (1992). However, most finite, continuous time ruin algorithms employ
either diffusion approximations (GARRIDO (1988)) or discretize the surplus process,
often employing PANJER'S (1981) recursion formula.

The model we study can be described as follows: The initial surplus is a, and
claims occur according to a Poisson process. Premiums are earned at a constant
rate, and claim amounts are assumed to be non-negative, i.i.d. random variables
with common distribution function B(x). Claim amounts are assumed to be
independent of the claim number process.

Since ruin occurs upon payment of claims, our approach is to observe the process
embedded at claim instants only. The methods used lead to exact recursive formulae
for the probability of ruin on a specific claim number. This in turn allows us to see
where the relative vulnerability of the company lies over the duration of the process.
We develop algorithms for the methods presented here assuming that the claim size
distribution is of a phase-type.

Our interest in the probability of ruin on a specific claim has been motivated in
part by the similarity between the surplus process and the workload process in a
single-server queue. Similarities between ruin theory and queueing theory have been
extensively explored in WILLMOT (1990).

In the next subsection necessary information about phase-type distributions is
presented. In section 2 the general algorithm for phase-type distributions is
described, and specific cases are considered. Numerical examples are presented in
section 3 followed by conclusions in section 4.

1.1. Phase-type Distributions
Phase-type distributions have become an extremely popular tool for applied
probabilists wishing to generalize beyond the exponential while retaining some of
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its key properties. The phase-type family includes the exponential, mixture of
exponentials, Erlangian and Coxian distributions as special cases. Among the
appealing characteristics of phase-type distributions are the following closure
properties : a) finite n-fold convolutions of phase-types are again of phase-type; b) a
random modification (i.e. forward recurrence time) of a phase-type is again of phase-
type; c) geometric mixtures of n-fold convolutions of phase-types are again of
phase-type. This latest property is of particular interest vis-a-vis the ruin problem:
couched in terms of its M/GA waiting time analogue, NEUTS (1981) has shown that
the distribution of the maximum aggregate loss is phase-type with easily determined
parameters whenever the claim size distribution is phase-type as well. This fact was
later used by JANSSEN (1982) and ASMUSSEN and ROLSKI (1991), who developed
formulas for the ultimate probability of ruin for phase-type claim size distributions.

Phase-type distributions were first introduced by NEUTS in 1975, but the most
popular standard reference for them has become NEUTS (1981). A shortened
treatment can be stated as follows. Consider a Markov process with transient states
{1, 2, ..., m) and absorbing state (m+ 1), whose infinitesimal generator Q has the
form

o
The diagonal entries Tu are necessarily negative, other entries are non-negative,

and t0 = -Te represents the rates at which transitions occur from the individual
transient states to the absorbing state.

Let the process start in state / with probability ah i = 1, ..., m+ 1, and let a —
(a h ..., am). (In many practical problems, a m + 1 =0 . ) Now let B(x) denote the
distribution of the time to absorption, X, into state m + 1. The distribution B (•) thus
described is said to be of "phase-type with representation (a, 7 ) " , and

B(x) - 1 -aexp(Tx)e; x>0.

Assuming am+l=0 its density is b(x) = a exp(Tx)t0, JC>0, its Laplace-Stieltjes
transform is 0H(s) = E\e~sX) = a(sl - T)'110, and its nth noncentral moment is
given by

E{X"} = n!a(-T)-")e

Many of these properties are quoted in the development which follows. The
interested reader is directed to NEUTS (1981) for a rigorous treatment of phase-type
distributions.

2. RECURSIONS FOR PHASE-DISTRIBUTED CLAIM SIZES

The method we are about to describe works with the incomplete density for the
reserve remaining after the nth claim occurs. (It is of course incomplete because
ruin already have occurred.) Define

d
pn(y) = — Pr {non-ruin up to nth claim, and remaining reserve =£j}

dy
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and define the Laplace transforms

Ln(s)= e-s>pn(y)dy (2.1)
J

Ln(s)= e-s>pn(y)dy
Jo

(Note in particular that Ln(0) = Pr {non-ruin up to nth claim}.)
Next, define the "increment" between two consecutive claims as the difference

between the revenue earned and the claim amount. Let g (y) be its density (defined
on ( - co; oo) because the increment can assume both positive and negative values),
and let

e-syg(y)dy. (2.2)

Let the claim size have distribution function B(y), density b(y), and Laplace-
Stieltjes transform

&B(s)= e~sydB(y). (2.3)
Jo

Since the number of claims is given by a Poisson process, inter-claim times (and
hence revenue amounts earned between claims) are exponentially distributed.
Furthermore, premiums are collected at a constant rate, so it follows that the
revenue collected between consecutive claims is also exponentially distributed, and
we denote the mean revenue by (I/A). Since the increment is the difference between
the revenue and the claim size, these definitions lead to the following results after
straightforward manipulations:

-*>'; y > 0 (2.4)

g(y)=

Xe~hb{t-y)dt\ y<0f
Jo

G{s) = (M + s)<PB(-s) (2.5)
Theorem: Let the claim size be given by a phase-type distribution with represen-
tation (a, T), and let t0 = - Te. Then

(2.6)

where v = Xa{Xl- T) -1

Proof: Having described the increment as above, the reserve after the nth claim is
the sum of the reserve after the (n - l ) t h claim and the ensuing increment.
Therefore

Pn(y)= I Pn-\(x)g{y-x)dx. (2.7)= Pn
Jo
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The equivalent expression involving Laplace transforms is

e-'ypH(y)dy= I e-sypn_i(x)g(y-x)dxdy.

Due to absolute integrability, we can reverse the order of integration to obtain

Ln(s) = \ *-">„_,(*) [ e-s{y-x)g(y-x)dydxLn(s) = \ *-">„_,(*) [ e-s{y-x)g(y-
Jx=n Jy=o

(.v) - [ e~sx
Pn_ , (x) [

J X = 0 i

= A,_ , (s)G(.v) - | e~sx
Pn_ , (x) | esyg(-y)dydx (2.8)

x = 0

Formula (2.8) applies for all non-negative generally distributed claim sizes. To
complete the proof of the theorem, we must rely on properties of phase-type
distributions. Recall that b(y) = a exp(Ty)t0. Therefore for x < 0 , we find

g(x)= I Xe~l'b(t-x)dt
Jf = 0

= la (XI-T) ~ ' exp ( - Tx)t0 = v exp ( - Tx)t0

Consequently we can evaluate the inner integral of the 2nd term of (2.8) as
follows:

[ esyg(-y)dy = v \ esy exp(Ty)dyt0
J V = X J y = X

exp((sI+T)y)dyt0

= - e" v exp (Tx) (si +T)'xt^ (2.9)

When (2.9) is substituted into (2.8), equation (2.6) is obtained.

Remark: By evaluating (2.6) at 5 = 0, one finds
Pr{non-ruin up to the nth claim} =

Pr {non-ruin up to the (n — 1 )th claim}

+ v /?„_, (x)exp(Tx)dxT-[t0
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from which one concludes that

P(n) = Pr {ruin on the «th claim) —v /?„_ , (x) exp(Tx)dxe. (2.10)im) = v pn-\(x

In what follows, we develop computational algorithms from (2.6) and (2.10) for the
specific cases of i) exponential, ii) mixtures of exponential claim size distributions,
and iii) Erlang-A' distributions.

2.1 Recursive Algorithm for Exponential Claim Sizes

If one assumes that claim sizes are exponentially distributed with mean (\/fi), we
can simplify the recursions for Ln(s) and P(n) greatly. All of the matrix quantities
reduce to scalar results. In particular:

G(s) = (m + s)(ju/fi-s), T=\-n\, *„=/!,

V = A / ( A + 1 M ) ,

(sl+ T)~] = \/(s-fi), and exp(7» = e~"x.

Therefore (2.6) becomes

Ln (s) = (fi/fi- s) \QJk + s ) £„ _ , (s) - (Ilk + n) Ln _ , ( « ) ] (2.11)

and

i(ji). (2.12)

For the remainder of this section, let 0 = <?>fi(A) = (jif/x + X). We seek an
algorithm to determine the form of Ln (s) in terms of £„ _, (s), and the correspon-
ding expression for P(n). If the initial reserve is a, then La{s)-e~as. Thus from
(2.12)

P{\) = {\-<P)L0(ji) = (\-®)e-ali. (2.13)

Using (2.11) we can find Lx (s) as follows

L, (s) = Xfi/(p - s)[e~as/ (?. + s) - e~atll(X+fj.)\

•,-s))klk\\l\{n-s)(l + s)(X
k= 1

(2.14)
k= 1

Again using (2.12) for n = 2 we find

P(2) = (1 -0)Ll(ju) = (1 - <P)2e~a>l [ 0 + afx] (2.15)
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and (2.11) gives rise to the following expression:

{afi)2(X/X (a(fi-s))k-2/k] (2.16)

We now establish the general form of L,,(s).

Theorem: For n > 1, the Laplace transform of the distribution of the reserve
following the «th claim is given by

\ k - n

cj"' (XIX + .v)J(1 - 0)"~ j + {an)" (X/X + s)n (2.17)
L./=] k = n k\

Furthermore, the coefficients c("] at the «th stage are related to those at the (n - l)th
stage via

(afi)"
r=0j I .

[k = max (1../ - I)

;j=U..,n (2.18)

Proof: The proof proceeds via induction. For n = 1, (2.14) show that the form of
(2.17) is correct, with c\'' - 0 . For n = 2, (2.16) reveals that c\2) = cf] = <P2 + (aft) 0 .

Now assume that (2.17) is valid up to index n = N— 1. Thus
r-N- 1

\

. ;= l

\k~N+ 1

k=N-l k\

Substituting (2.19) into (2.11) for n = N we find

L N { s ) = f i / ( f i - s ) e "l"\ 2J C) '(\ - <P)N '{(XIX + s ) j + ' - (X/X+ fi)1

(2.19)

(A'-l)!

-N+ 1

k=N k\

- I

X \ >

X

- \)i yx+n) [x + sj i=o

k\

+ s)'(X/X+fi)N - l - l

(2.20)
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The infinite sum in (2.20) already satisfies the form required by (2.17) for n = N. It
remains for us to rearrange the other terms in (2.20) and establish the recursion
posed by (2.18). Note that these can be written as

[
N-l N-l

1 = 0 j = max( l , ( )
N-l . , A > - |

+ Y 0 {afXl (XIX + s ) l + ' (A/A
/=o ( i V - 1 ) ! '

V ' (N-l). ( ^ " ' 1 1 n , n

ZJ ck + \ (2.21)
. /Ti U = max(l,/-1) (N-\)\)_

A comparison of equivalent powers of (X/X + s) between (2.21) and the first sum of
(2.17) establishes (2.18) and completes the proof by induction.

When (2.17) is substituted into (2.12) one obtains

(n- I

P(n) = (\ -'

However, in light of (2.18) this can be restated as follows.

Corollary:

P(n) = (l-0)ne-auc\n}/0, n=l,2, ... (2.22)

The algorithm for determining P (n) thus consists of (2.18) and (2.22), starting from

2.2 Recursive Algorithm for Mixtures of Exponentials

Mixtures of a finite number of exponential distributions have been used frequently
as a generalization of the single-exponential case, see for instance GERBER
(1979).

The phase-type formulation of a mixture of K exponentials has the following
f o r m : a = [ p x , p 2 , •••, p K Y , T = - d i a g [ / < , , / * 2 , . . . , [ i K ] , a n d t Q - \/^,,^2, ••-. HK\'-
Similarly <PB(s)

= [/?,, p2, ..., p ^ d i a g ^ s + ^ i ) " 1 , (s+fi2)'\ ..., ( .SH-/^)" ' ] [«! , fi2, ..., fiK\
K

= X PifiiKs + fi,)-
i= I

The other computations for (2.6) are equally straightforward, and the resulting
recursion for Ln(s) is

K

A, (s) = X Pi (Mi 'Mi - s) [A, _ i (J) (XIX + J ) - A, _ , CM,-) (A/A +/<,)] (2.23)
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and the probability of ruin on the nth claim is
K

Z fidLt.&i) (2.24)

Again, we seek explicit expressions for Ln(s) and P(n) which can be calculated
recursively. Defining 0 , = (a,/A + /*,), we find (since LQ(s) = e~as):

K

P(\)= Y, pj(\ - 0,)e"af t , (2.25)

£ [ Z (a^i-j))*"1]
£<,(.v) = (X/X + s)2J Pie-afi< 0 , + (afii) 2 , (2-26)

i• = i L * = i k\ \

from which /> (2) can be readily calculated using (2.24). Determination of Ln(s) for
« > 2 in the general case becomes increasingly complicated due to the need to
evaluate Ln_1(/ii) at all K rates. Tractable results are, however, available for two
important sub-cases. For both (2.24) can then be used to find the corresponding
probabilities.

Case A: No Initial Reserve (a = 0): In this case

and similar methods to those of the previous section can be used to establish the
following recursion:

n

£ „ ( . « ) = X c)n)(XlX + S y n = 1 , 2 , ... (2.27)
. 7 = 1

where
• i - i )

j = 1, 2, ..., n (2.28)
A- = max ( I , / - I ) 11 = 1

and where

Case B: Mixture of 2 Exponentials

Theorem: For the case of a mixture of 2 exponentials the following relationship
applies for Ln(s), n> 1:

n

Ln (s) = £ cjn) (XIX + s)'' + (XIX + s )"A{n) (s) (2.29)
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k = n k\ m=\

n-2 k-n

+. y f{n) y
./ = o ; = oV j

where the coefficients c("\ D{^} and f^\ n > 2 , satisfy the recursions
2

r ". /+"/j(/*B,-.v)V»,-/<3-m)*"""j.

1 = 1 *-=max(!,./-1)

rmJ0m +'3-mum

'mJjm + '3-mJ j-l.m

r f(n - 1)
' 3 - mj n - 3. m

7 = 1 , 2, ..., n-3

(2.30)

(2.31)

(2.32)

where rm=pmaftm and

The coefficients are initialized as follows:
2

„ ( ! ) _

/ = I

and

/ = 1, 2

(2.33)

Proof: Follows after tedious but straightforward substitution using (2.23) and
(2.26).

2.3 Recursive Algorithm for Erlang-A^ Claims

The Erlang-/V distribution is the TV-fold convolution of the exponential distribution,
and thus forms a subset of the family of Gamma distributions. It is often used to
model distributions which are less variable relative to the mean than the exponen-
tial. Let the mean per exponential stage be I/O. The Erlang-A' can be viewed within
the phase-type framework as a process successively moving through states 1
through m prior to absorption into state m+\. Thus a = [ 1, 0, ..., 0];

- o e ; and tn =

0

0

e
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Theorem: The recursion for Ln (s) when the claim size distribution is Erlang-iV as
described above is as follows:

Ln(s) = \[Ln_l(s)(k/k + s), 0, ..., 0]

N-\

- \pLn_l(d),p(-0)L'n_l(6)+pqLH_l(0), ...,]

(6/6-sf
(6/6-sf~l

(6/6-s)

where p = (Xlk + 6) and q — 1 —p.

• (N-X-l).

1=0 (N-l-i

(2.34)

Proof: One can show after elementary calculations that

(-sI-T)-lt0 = [(6/6-sf, (6/6-sf'\ ..., (6/6-s)]'

v = ka(M-T)-{ = [llk + 6), X6l(k + 6)2, ..., kdN~ l/(k + Of];

and

exp(7jc) =

where fk (8x) = (- 1 )* T

fo(6x) f,(8x) f2(6x) ... f {0X)

0 fo(6x) ft (Ox) ... fN l{dx)

0 0 fo(8x) ... fN_^dx)

0 0 0

e'Bx. Therefore
i = kk\(l-k)\ k\

pn_](x)sxp(Tx)dx

(-6)£n_x(6) 62^_

0

0

(6)l(N-\)\
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Substitution of these expressions into (2.6) in light of (2.5) gives rise to the
theorem's result. Substitution of s = 0 in (2.34) leads to the following result after
elementary manipulations.

Corollary: In the case of Erlang-7V claim-size distributions, the probability of ruin
on the «th claim is given by

N-l

X L{
n
i}_s(e){(-ey[] -q

N-'Mi\). (2.35)
1=0

In the case of Erlang-2 claims, this reduces to

P(n) = Ln_,(9)(\-q2)-pd£n^(B). (2.36)

Using the same methods as before, one can again develop recursions for Ln{s). We
state here as an example the recursion for the case of Erlang-2 claim sizes:

(a8)2n(XIX + s)n

L;"=l k = 2n k\

where the coefficients Cjn) satisfy the recursion:

(2.37)

q\p"
J(2n-2)! (2/i-l)!

n

+ q 2 X c i " _ ~ l
l ) p k ' j ( k + l - j ) . j = l , ..., n ; n = l , 2 , ... (2.38)

it = max (2,_/)

The recursion starts with cj1' = q2 + a8q.

3. NUMERICAL EXAMPLES

A series of numerical examples have been carried out to demonstrate the effect of
the security loading, the initial reserve, and the claim size distribution on the
probability of ruin. The results are displayed in Figures 1 through 10.

Figures 1 and 2 display the cumulative probability of ruin for exponentially
distributed claims. In Figure 1, it is assumed that there is no initial reserve.
Although the probabilities of this and all later graphs are in fact valid only for
integer claim numbers, continuous trajectories have been fitted to these points to
show the overall trend. Figure 1 shows that these trajectories approach their
ultimate limit of 1/(1 + 8) (where 8 is the relative security loading). This limit is a
well-known result in risk theory; see for example BOWERS et al. (1986) p. 359, eq.
(12.5.2). The speed of convergence to this limit increases with 8. This is not
surprising—if the security loading is large, one would expect either to be ruined
very soon, or else to have built up enough surplus to weather further fluctuations.
For small 8, a smaller reserve accumulates, so the period of vulnerability lasts
longer.
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3 0.

I X X X X X X ** X X X X X X X

theta=io% —•— theta=20% - * * - theta=50% -**- theta=100%

FIGURE 1. Effect of security loading (no initial reserve).

20
10 30

60 80 100
50 70 90

Number of Claims

IRR - 0 - + - IRR - 2 - * - IRR = 5

IRR - 10 - * - IRR « 20

FIGURE 2. Effect of initial reserve (security loading = 20%).
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Figure 2 displays the cumulative probability of ruin as a function of the time and
the initial reserve level. Here the acronym IRR refers to the initial reserve ratio,
defined are the initial reserve divided by the expected amount of a single claim. The
security loading is 20%. The figure shows that even small reserves have a major
benefit as opposed to having no reserve at all. For larger reserves, the commence-
ment of the period of vulnerability is delayed due to the extremely small chance of
a large number of claims during a single time unit.

The probability of ruin on a given claim number reveals the relative vulnerability
of the company. This vulnerability is explored in Figures 3 though 6, where
exponential claim sizes have been assumed. Figures 3 and 4 show that with a
non-zero initial surplus, the ruin probabilities for the process with a smaller relative
security loading 6 are spread over a much wider range than those for larger 6.

Figures 5 and 6 show that for larger initial surpluses, the ruin probabilities are
again spread over a wider range for smaller d's. Further, the larger initial surplus
reduces the possibility of early ruin, however, the relative vulnerability is more
spread out.

To demonstrate the effect of more variable claim size distributions, Figures 7 and
8 display the probabilities of ruin on the nth claim for a series of mixtures of two
exponentials with balanced means. This balanced means assumption (p\lfi\ = PII^T) is
common when fitting a mixture of 2 exponentials to only the first two moments
E{B] and Var{5}. Define c2 = Var{B)/E{B}2; that is, c2 is the squared
coefficient of variation (SCV) of the claim size distribution. Then the parameters
ph fih /= 1, 2, are found from the following equations:

R = V(c 2 - l ) / (c 2 +l ) , (3.1)

Pl,p2 = (\±R)/2, (3.2)

H, = 2Pi/E{B}. (3.3)

Figures 7 and 8 consider the case where there is no initial reserve and 6 - 100%.
The SCV takes on values of 1.0 (corresponding to the ordinary exponential), 4.0
and 9.0. The figures show that around the 40th claim, the probability of being
ruined on a given claim is almost 100 times more likely when SCV = 9.0 than with
the ordinary exponential. In the short-run, however, there is more chance of being
ruined by a less variable claim size distribution. This seemingly contradictory result
can be understood according to the following reasoning: when SCV = 9, we get
R = 0.905, px - .952 and p2 — .048. Thus, for every large claim in the long-run, there
are roughly 20 smaller ones, but the rare large-sized claim is roughly 20 times
larger on average. Therefore, in the very short-run, there is little chance of ruin, but
eventually, the larger claims start to occur, and their impact is so much greater.

Figure 9 compares the ruin probabilities for exponential and Erlang-2 claim sizes
for two values of IRR, and assuming a relative security loading of 20%. As the
figure demonstrates, there is substantially less likelihood of ruin for Erlang-2
claims. This is due to the reduced variability of the claim sizes. (The Erlang-2 case
has a c2 equal to half that of the exponential.)
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FIGURE 3. Effect of security loading (initial reserve ratio = 10).
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FIGURE 4. Effect of security loading (initial reserve ratio = 10).
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FIGURE 5. Effect of security loading (initial reserve ratio = 20).
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FIGURE 6. Effect of security loading (initial reserve ratio = 20).
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FIGURE 7. Effect of claim size variability.
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FIGURE 8. Effect of claim size variability.
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FIGURE 9. Effect of claim size distribution (security loading = 20%).

S
73
£

.£

0.001

0.01

6 8 10 12 14 16 18 20
Number of Claims

SCV=1.00 -t— SCV=4.00 - * - SCV-9.00

FIGURE 10. Effect of claim size variability.
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Figure 10 provides a comparison of the ruin probabilities for the same three claim
sizes distributions as Figures 7 and 8, assuming a non-zero initial reserve. The IRR
equals 1 in this case, and the relative security loading is 0%. Although ruin is
therefore certain, we chose this example to demonstrate the ruin behaviour over
finite time. Again, we see that in the short run, the exponential case has the highest
likelihood of ruin, but in the long run the situation is reversed.

4. CONCLUSIONS AND FUTURE WORK

The current paper has presented recursive methods for determining the probability
of ruin at claim instants. Among the advantages of this approach are the fact that it
is exact, and that it reveals where in the future that the relative vulnerability to the
company lies. We hope to extend this method to include non-Poisson claims
processes in further work.
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