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Abstract. Let A be an n x n real matrix; sufficient conditions were previously worked
out, assuming non-commensurability of eigenvectors, for A to be SL(n, Z)-conjugate
to a matrix all sufficiently large powers of which have strictly positive entries. We
show that when the 'large' eigenvectors are commensurable and satisfy the obvious
necessary conditions, then A is also going to be so conjugate. In particular, we
deduce, if A is a rational matrix with large eigenvalue exceeding 1 and of multiplicity
one, then A is algebraically shift equivalent to an eventually positive matrix, using
only integer rectangular matrices.

Let B be an n x n matrix with real entries. We will consider the following question,
much of which was solved in [H, theorem 2.2]: Decide when there exists P in
SL(n, Z) so that all sufficiently large powers of PBP'1 have all of their entries
strictly positive. By the Perron theorem (applied to powers of PBP~X), there must
be a real eigenvalue A B >0 of multiplicity one such that AB>|A| for all other
eigenvalues A of B. If this is the case, AB is called the weak Perron eigenvalue of
B. Let vB, wB be non-zero choices for the left, right eigenvectors, respectively, of B
corresponding to AB. In [H, 2.2], it was shown that if either wB or vB contains an
irrational ratio among its entries, then the desired P exists. This leaves the case that
all the entries of wB and vB be commensurable. Then another condition intervenes,
as was mentioned briefly in [H, p. 61].

Assume B has a weak Perron eigenvalue, and vB, wB have no irrational ratios.
Then by multiplying each one by a suitable non-zero real number, we may assume
vB, wB have only integer entries; by dividing by the appropriate integers we may
assume each is unimodular (i.e. the greatest common divisor of the entries is 1).
Noticing that the scalar product vB- wB is invariant with respect to vB^vBP"\
wB^PwB (the corresponding eigenvectors for PBP~\ hence for its powers), a
necessary additional condition is \vB • wB\ > n.

We prove as conjectured in [H] that this is sufficient for the desired P to exist.
Moreover, if |uBwB| < n and AB > 1, we show how to enlarge B to an (n + k) x (n + k)

t This, with minor modifications, was originally part of a manuscript 'Strongly indecomposable abelian
groups and totally ordered topological Markov chains', written in 1981.
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matrix B' algebraically shift equivalent to B so that B' is conjugate (via SL(n + k, Z))
to an ultimately positive matrix. Here k is the smallest integer such that |w|AB5:
n + k.

In particular, if B is in MnZ (integer entries), then the only case not covered by
[H, 2.2] occurs when AB is an integer (as a rational algebraic integer is an integer).

Returning to our first result, let vB, wB be a unimodular row and column respec-
tively, with integer entries, such that \vB- wB | a n. By replacing vB by - vB if necessary,
we may assume vB- wB2n. By [H, 2.1] it is sufficient to find P in SL(n, Z) such
that vBP~\ PwB are strictly positive.

(1.1) LEMMA. Let veZ1*", weZ"*1 be unimodular with vw>n. Then there exists P
in SL(n, Z) with

vP~' = ( 1 , 1 . . . . . 1 )
i/n>3

and
DP"1 = (1,1) ,1,1) 1

3,0)rJ
where m'+ n — \ = uw.

Proo/ We repeatedly use the following result and its transpose: if

x —\zxz-1--- zr)

then there exists Q in GL(r, Z) with xQ = x'.
There thus exists Aj in GL(n, Z) so that !)A, = (1 0 • • • 0) and then A^w =

(m rx r2 • • • rn_))T, with vw=m>n. Set fc = gcd{r,}; then (m,fe) = l, so there
exist positive integers a, b with ak-bm = ±\. Suppose n > 3 . Then there exists
B € GL(« - 1 , Z) such that

B(n r2 ••• rn_y = (k ak 0 0 • • • 0 ) T eZ ( n - 1 ) x l .

Set ^ 2 = / , © ^ - ' , so that vAlA2 = (l 0 • • • 0) and

(A1A2)-'w = (m k ak 0 ••• 0)T.

The operation of subtracting multiples of the first entry (of the column) from the
third is elementary and its inverse leaves vAtA2 fixed; hence we obtain

«-»( l ,0 ,0 , . . . , 0 ) ,

w->(m,fc,±l ,0 , . . . ,0) r .

There exists C in GL(n - 1 , Z) such that C(k, ± 1 , 0 , . . . , 0)T = ( 1 , 1 , . . . , 1)T; this
yields a transformation to

(1 ,0 , . . . , 0 ,0 )
(m,l, l , . . . , l ) r >

subtract each column entry after the first, from the first entry; the inverse operations
add one to each of the zeros; this final transformation yields
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Transposing a pair of positions having only ones, has the effect of multiplying the
determinant of the implementing matrix by - 1 ; so we can find a matrix in SL(n, Z)
to implement the transformation.

Now consider the case n = 2; we have

v-*(l 0)

w-*(m k)T

If m = k, w being unimodular entails m = 1, a contradiction to \vw\ > 2. If m < fc,
subtract as many copies of m from k as will leave a positive remainder; this yields
(1 0), (m k')T with k'<m (since (m, k) = 1). So we may assume k<m. Now subtract
the k term from m; the inverse operation adds the 1 of the row to the second entry.
We thus obtain

»-»(l 1)

w^(m-k,k)T. D

(1.2) THEOREM. Let B in MnU have a weak Perron eigenvalue A > 0. Then there exists
P in SL(n, Z) such that all sufficiently large powers of PBP~l are strictly positive if
and only if either:

(i) one of the ratios of entries in either vB or wB is irrational;
(ii) all of the entries in each of vB, wB are commensurable and when made into

unimodular elements of Zl x", Z n x I respectively, satisfy \vBwB\ > n.

Proof. Everything, except the 'if (ii)' result is in [H, 2.2]. Assume (ii); by the previous
result, there exists P in SL(/J, Z) so that vP~l and Pw are simultaneously strictly
positive. By [H, 2.1] and its proof, all sufficiently high powers of P~lAP are strictly
positive. •

(1.3) COROLLARY. Let A belong to MJL. Then there exists Pin SL(n, Z) (equivalently
in GL(n, Z)) so that for all sufficiently large k, P~xAkP consists of strictly positive
entries if and only if A admits a positive real eigenvalue A of multiplicity one, exceeding
\a\ for all other eigenvalues a and either:

U) A(£Z;
(ii) A e Z and ifv, w are left, right eigenvectors of A corresponding to A, normalized

so that both are unimodular, then \vw\ s n.

An algebraic (strong) shift equivalence between A in MTU and B in M,U is a
sequence of rectangular matrices X,, Yj of the appropriate dimensions so that

A = XXYX, YiXl = X2Y2, Y2X2 = XiY3,..., YSXS = B.

In the case where the X,'s and Yj's admit only integer entries, we say that the
algebraic shift equivalence is implementable over the integers.

(1.4) THEOREM. Let A in MnU have a weak Perron eigenvalue A = AA whose corre-
sponding left and right eigenvectors vA, wA have no irrational ratios among their entries,
and when put in unimodular form, \vAwA\ = m in N+. Suppose A > 1. Then there exists
A' in Mn+kU that is eventually strictly positive and algebraically shift equivalent to A
over the integers, and with k any integer such that Ak > n + k. In particular, there exists
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a power of A which is algebraically strongly shift equivalent over Z (with lag 1) to an
A" in Mn+1R that is eventually strictly positive.

Remark. If A s 1, A may be replaced by a scalar multiple of itself.

Proof. First we observe that vw # 0; the proof of this in [H, 2.2] remains valid here.
We may assume vw>0, by multiplying v or w by - 1 if necessary.

Write wT = (wu w2,..., wn); as w is unimodular, we may find integers r , , . . . , rn

so that £ TiWj = 1. Define a square matrix, Au of size n +1 by adjoining at the bottom
of A, a new row k = (r1,..., rn,0) (set k' = (ru . . . , rn)), and the column (0 , . . . , 0 ) r

to the right; this yields a matrix Ax. Setting

X = (In 0 )eZ n x ( n + 1 ) , Y

we have XY= A, YX = Ax. In particular, A is algebraically shift equivalent to Au

and the latter has A as its large eigenvalue.
Define the row of size n + l, v' = (v 0), and the column w' = (w wn+i)

T, where
wn+1 is a real number to be determined so that w' is a right eigenvector for Ax.
Clearly v'Ax = Au'; on the other hand, A,w' = Aw' occurs precisely when Awn+1 = 1.
To make w' integral, we must multiply by A; then w"= Aw' will be unimodular.

As v'w' = vw, we see that v'w" = \vw. This process, of adding a row and column,
may be repeated to a total of k times until A kvw > n + k Then Ak (in Mn+kZ) satisfies
the conditions of (1.1) and the first result follows.

Replacing A by A' (r chosen so that Arm > n +1) allows us to require only one
application of this process. •

REFERENCE

[H] D. Handelman. Positive integral matrices and C* algebras affiliated to topological Markov Chains.
J. Operator Theory 6 (1981), 55-74.

https://doi.org/10.1017/S014338570000393X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000393X

