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1. Introduction

The most elementary problem of the calculus of variations consists in
finding a single-valued function y(z), defined over an interval [a, 5] and
taking given values at the end points, such that the integral

1) I=["fw y, y)a

is stationary relative to all small weak variations of the function y(z)
consistent with the boundary conditions. Since g’ occurs in the integrand,
it is clear that I is only defined when y(x) is differentiable and accordingly
when #(z) is continuous. Usually #'(z) is also continuous. Occasionally,
however, the boundary conditions can only be satisfied and a stationary
value of I found, by permitting y’(z) to be discontinuous at a finite number
of points. The arc y = y(x) will then possess ‘corners’ and the well-known
Weierstrass-Erdmann corner conditions [1] must be satisfied at all such
points by any function y(z) for which I is stationary. Arcsy = y(x) for
which y’(x) is continuous except at a finite number of points, are referred
to as admissible arcs. In this paper, we shall extend the range of admissible
arcs to include those for which y(z) is discontinuous at a finite number of
points.

Before this extension can be made, it is necessary to state the sense in
which I exists when y(z) is such a function. Replacing the discontinuous
function y(x) by a continuous function y,(x) dependent upon a continuous
parameter J, we define an integral 7(d). As é — 0, we suppose y,(x) — y(x).
Then lim, ., I(8) is accepted as our definition of I for the function y(z).
The conditions under which this procedure is valid are given in Section 2.
In consequence of this definition, if we are able to show that a discon-.
tinuous function y(x) minimises I, for all practical purposes this integral
may be minimised by taking y = y,(x) with é small. Such a solution to
a physical problem is therefore of practical significance.

The author [2, 3] has shown that a mathematical statement of the
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problem of calculating rocket tracks of minimum propellant expenditure
in a given gravitational field, requires the minimisation of the integral

P=["VE+IE 9)F + 0+l y)pd

with respect to variation of the functions z(¢), y({) when these are sub-
jected to the usual boundary conditions. This type of integral can be made
stationary only by choosing functions z(¢), y(¢) whose first derivatives are
discontinuous. Such functions are not admissible according to the classical
theory of the calculus of variations. This type of solution is, however,
physically significant, since z(f), y(f) are the coordinates of the rocket
vehicle at time ¢ and discontinuities in their first derivatives correspond
to impulsive thrusts from the motor, which can be approximated in practice.
Our generalization of the classical theory is accordingly not purely academic.

It is essential to appreciate that a definition of I which proceeds by simply
removing an infinitesimal neighbourhood of the discontinuity is unsatis-
factory, since the discontinuity will then make no finite contribution to I.
If, however, this integral represents a physical quantity, a discontinuity
in y corresponds, effectively, to a large value of ¥’ and, as in the case of
an impulse applied to a massive body, it must be allowed to make a con-
tribution to the value of I.

It may also be remarked at this stage ,that the introduction of disconti-
nuous functions cannot be avoided by either reversing the roles of the
variables x and y so that y becomes independent or by making these variables
dependent upon a third variable ¢, for, if either step is taken, z is permitted
to be non-monotonic, whereas, in the type of physical problem to which
the theory has been applied, z is the time variable. Such a redrafting of
the problem can accordingly result in a stationary value for I which is not
physically attainable, e.g. ¥ may be required to vary beyond the confines
of the interval [a, b]. Alternatively, we observe that such an approach
permits y(x) to be multi-valued and we wish to avoid this possibility. This
point will be further amplified in Section 4.

2. Definition of I for Discontinuous y(x)

Suppose that y(x) is continuous throughout the interval [a, 4] with the
exception of the point x = ¢. We define a function y;(z) (§ > 0) thus:

Ysx) =yx), asx<c—96, c+d=x=h,

1
(2) =23 [(@—c+0)y(c+0) — (x —c—d)y(c—d)],
c—0=Zx<c+ 6,

Le. Ys(x) 1s identical with y(x), except over the interval (c — 8, ¢ -+ 6)
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where it varies linearly between the values y(c — d), y(c + d). y,(x) is
continuous. If y(x) is replaced by y;(x) in the integral (1), we shall denote
its value by I(d).

Let R be any closed region of the xy-plane containing the arc y = y, ()
for all wvalues of ¢ satisfying 0 <6 < 4. If y(c + 0) > y(c — 0),
ys(c) = + o0 as - + 0. In these circumstances, we shall denote by E
the assemblage of points (z, y, ¥') such that (z, y) belongs to R and ¥’ = ,
where p is a lower bound of y;(x) for values of z in [a, ] and ¢ in (0, 4).
If y(c 4+ 0) <y(c — 0), the inequality y’" = is replaced by y < P,
where P is an upper bound of y;(x) for these values of x and 6.

To avoid many alternative statements in the theorem which follows,

we shall suppose that y(c — 0) < y(c + 0).

THEOREM 1. If [f(x, vy, y') is continuous over E and, as y — + oo,
fx, v, ¥') ~y'k(x, y) uniformly with respect to x and y satisfying

c—¢é=x=c+¢& ye—0) —n=y =y(lc+ 0) + 7,
(c+0

10) > [+ [ fle, v y)de + 77 ke, y)dy

as 0 - -+ 0.

Since f/y' — k(x, y) uniformly as y" — + oo, k(z, y) is continuous for
values of (z, y) lying in the intervals given in the statement of the theorem.
Also, given ¢ > 0, Y (¢) (> 0) can be found such that
(3) |,y ¥') —y' k(@ y)l <ey,
provided ¥ > Y and (z, y) lie in their intervals.

If x lies in the interval [c — §, ¢ + 6], by choosing ¢ sufficiently small,
xand y,(z) will lie in the intervals [c — &, ¢ + &], [y(c — 0) — », y(c+0)+n]
respectively and y;(x) will be large. Hence we can choose §; = 6;(Y) =
0,(¢) > 0 such that

(4) @ 95, ¥5) — Ys k(@ ¥s)l < ey,
provided 0 << é < ¢; and z lies in the interval [¢c — ¢, ¢ + 4d].
Thus
[ [ctd ’ ’ ’
\L-a [ ¥s, ys) — ysk(2, y5)]de| = 2 € 0y,
(5) = e{y(c +0) —ylc —9)}
< Ae

since y(c + 6) — y(c — d) is bounded.
Changing the variable of integration from « to y,;, we obtain

c+é " (c+6)
©) [T ke ya)de = [0 R, yo)dys = [17 ) k(e y)dy,

c—4¢ y(c—38)

y(c+9d)
y(c—9)

where, by equations (2),
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5 20+ (—8)y(c+8) — (c+8)ylc —9)

7
. y(c+8) —y(c—9)
Thus
ct+8 ’ y(c+8)
®) [ He wo, va)de — [ ke, y)dy| < 4e,
provided 8 is small.
Now
y(c+9) y(c+0)
L(c—«» kiz, y)dy — J.v(c—O) ke, y)dy l
vie—0) y(c+8)
@ = L("—J) k(@ y)dy| + .[v(c+0) k(. y)dy‘
{c+0)
+|[1 0 ke, 9) — kG, y)]dy}-

For sufficiently small ¢
(10) ly(c —8) —ylc —0)| <e lylc+8) —yl+0)<e

Thus, k(z, y) being continuous,

(11)

provided 0 < 6 < 6,.

Again, by making ¢ sufficiently small, it is clear from equation (7) that
we can make z lie in the interval (¢ — &, ¢ + &) for all y satisfying
y(c — 0) <y < y(c + 0). Then, since k(z, y) is continuous for such values
of (z, y), it follows that

(12) k@, y) — ke, y)l <e
provided that é and therefore |x — ¢| is sufficiently small. Thus

[ th(a, y) — ke, 9)1dy| < {yle + 0) — yle — O)}e.

v(c—0)

[1 ke w)dy| < Be,

v(c+9)
Vo) f k(x, y)dy| < Be,

y(c+0)

(13)

Combining inequalities (9), (11) and (13), we prove that

[ ke, yyay — [7 ke, y)dyl < Ce.

v(c—9d) v(c=0)
It now follows from (8) and (14) that

(14)

c+8 ’ ¥(c+0)
(15) [ 1@, yo, ya)dz — [77"V k(e, y)dy| < De
provided ¢ is small. Hence
c+é ' y(c+0)
(16) L_a @, ys, ys)dz — f,,(c_m k(c, y)dy
as 6 — 0.

But
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f:f(x, Ys, Ys)dr = f:_a—l— i +f Hx, s, ys)dz
— f:_"-|- LHf(x, y, y')dx -l—f 1z, ys, y,)dz
v(c+0) (C, y)dy

v(c—0)

C—

>[4 1 f@ v y)az +

Ja

Thus the theorem is proved.
If y(c — 0) > y(c -+ 0), the result just obtained remains true provided

f@ 4 ¥)~yk y) as y’ - —co.

3. First Variation of I

To simplify the statement of our argument, we shall assume that y(z)
possesses one discontinuity only in the interval [a, b], viz. that at z = c.
It will be convenient to suppose # and y dependent upon a variable ¢, z
being & monotonic function of this variable with a continuous derivative so
that « increases from a to b as ¢ increases from « to f. Thus

(17) x==z(), y=y{), « =t =B

Let z(y) = c¢. The values of y at the end points of the interval [a, 5], sup-
posed given, will be denoted by 4 and B. Thus y(«) = A4, y(8) = B. Then
I can be expressed in the form

(18) I= [T [0 e v, gi)e i + [ k(e )y,

where dots denote differentiations with respect to ¢ and y_ = y(c — 0),
Y. = y(c + 0). This notation will be employed quite generally throughout
the following argument, i.e. if X(¢) is any quantity whose value can be
determined at all points of the arc whose parametric equations are (17),
then X_ = X(y — 0), X, = X(y + 0).

Suppose that the equations (17) specify an admissible arc relative to
which I is stationary and let the equations

(19) x=z() + ep(t), y = y(t) + &9(0),

represent a neighbouring arc. In equations (19), ¢ is small and $(t), ¢(¢)
are continuous and differentiable, except that ¢(f) may be discontinuous
at £ = y. We also assume that

(20) p) = p(B) = q(x) = q(B) = 0,

i.e. the neighbouring arc passes through the points (a, 4), (b, B) and hence
satisfies the boundary conditions. Substituting from equations (19) into
equation (18) and expanding in a series of powers of ¢, we obtain for the
new value of I,
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o s af f (q y'p)+1pid

—0 B
I—f-é]:[—{—sf -+ {
a v+0
(21)

Vi

ok
+e(q+k+—q_k_)+e¢(y>fy )

where &k, = k(c, y,), k_ = k(c, y_).

Integrating by parts those terms containing $ and ¢ as factors which
appear in the integrands in equation (21) and employing equations (20),
we obtain in the usual manner the result

G (G v ) == g) o
e[ LG Gl gl G-l

Ve

ok
gk g bk pl) | 5D +0G)

Now p_=p,. = p(y) and $p(y), 9_, 9., P(¢), g(¢) are arbitrary. Hence
0] = O(e?) and [ is stationary only if

(o)== ()=

I [ R R 1)
% “g(f“ a?)_o

af ( af)
T — — ] =0,
ay dt oy’
h being arbitrary. The final pair of conditions for a stationary value must

be satisfied over the continuous portions of the arc z = z(¢), ¥y = y(¢) and
are together equivalent to the single equation

(24) %  da (aayj)

We have therefore proved the following theorem:

THEOREM 2. Subject to the provisions of Theorem 1, the integral

I = f:f(x, Yy, y')dx

1S stationary relative to weak variations of the function y = y(x) satisfying
the boundary conditions
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y(a) = 4, y(b) = B,
provided that,
(1) where y(x) and its derivative are continuous, this function satisfies the

equation
of d (af) o
oy dz \oy)
(ii) where y' (x) vs discontinuous, the Weierstrass- Evdmann corner conditions
are satisfied,
and (iii) at a point x = c(a < ¢ < b) where y(x) is discontinuous, the

quantity
, Of ok
I—y w Ja W
1S continuous and
/A
oy’

on either side of the discontinuity.

If the discontinuity is supposed to occur at an end point of the interval
[a, b], it is restricted to move in one direction only during any small variation.
This implies that it is not necessary that I should be stationary (i.e.
0l = O(¢?)) in order that it shall be a maximum or a minimum and the
conditions for I to be stationary are then of no interest. On the other hand,
the conditions for I to be a maximum or a minimum appear to be somewhat
complicated and we shall not consider them further here.

4. An Example

Consider the integral
1
(29 J=[ & —vra
0

the boundary conditions on y(x) being y(0) = 0, y(1) = 2.

In this case # =1 identically, and the conditions of Theorem 1 are
satisfied over the whole of the zy-plane.

Referring to Theorem 2, it may be verified that the conditions which
have to be satisfied at a discontinuity are equivalent to the requirement

(26) yo =y, =2""
Equation (24) takes the form
(27) d [ y'? }
— -2 | =o.
do L@y® — 1)%

Hence
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(28) y' = constant

and all the extremals are straight lines.

It is clear that J is stationary relative to all small variations from the
discontinuous arc OPQA shown in the figure. This arcy satisfies the
boundary conditions and, the gradients of its straight portions being 2%,

y

A(1,2)

Fig. 1.

the conditions (26) are satisfied at the discontinuity. The ‘jump’ at the
discontinuity is of magnitude 2 — 2=% and this is the contribution of the
discontinuity to the value of J computed over y. It follows that

(29) Jly) =2 — 2%

Instead of a single discontinuity, any number may be introduced without
altering the integral’s value from that stated in the last equation.

The classical theory yields the straight line OA as the only arc over which
J is stationary, for it will be found that the Weierstrass-Erdmann corner
conditions cannot be satisfied unless %’ is continuous. Over this arc I,

(30) J(I) = 1%
and, applying Legendre’s test, it will be found that this is a maximum
value of J. Amongst the admissible arcs of the classical theory, however,

there is none for which J is minimised. But it is easy to show that J(y)
is an absolute minimum of J, for we have the inequality

(31) (¥?—1)* zy — 2%
and this implies that
1 , 2/ 2
(32) JZ [ @ —2%)de =2 — 2% = J(y).

When discussing the minimisation of J, it might be expected that the

https://doi.org/10.1017/51446788700025040 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025040

[9] Discontinuous solutions of variational problems 35

introduction of a discontinuity could be avoided by exchanging the roles of
the 2- and y-axes. If y is the independent variable, the arc y is admissible
according to the classical theory, the points P and Q being simple corners.
Changing the variable of integration to y, we obtain

(33) —J = [} @3 —1)%dy,

where 2’ = dz/dy. We have to maximise the left hand member of this
equation, a problem which is of exactly the same type as our original problem.
As stated above, this integral cannot be stationary over an arc possessing
corners and hence it is not stationary with respect to y. This appears to
contradict our previous result. However, arcs such as ORQA, which were
not admissible previously since it was required that y(z) should be single-
valued, can now be admitted and over such arcs J can assume values less

than J(y).

5. Generalizations

The results of the preceding Sections can be extended in two ways,
(i) by permitting second and higher order derivatives of the unknown
function y(x) to occur in the integrand of I and (ii) by introducing further
unknown functions into the integrand. The former generalization can be
made in the obvious manner, but the latter requires more careful con-
sideration.

Thus, if a second derivative y’’ is present in the integrand, y = y(x) is
an admissible arc according to the theory of this paper, provided ¥'(z) is
continuous except at a finite number of points. If z = ¢ is a point of dis-
continuity, it is required that, in an appropriate neighbourhood, we shall
have

(34) He, v, ¥, y') ~y'kx 9, ¥)
uniformly with respect to (z, y, ¥’). Then the contribution of the discon-

tinuity to the integral is taken to be

(35) ["“ ke, €, y)dy,

¥’ (c—0)

where C is the value taken by y at the discontinuity in y’.
Then the integral

(36) [Pta, v v, y')de

is stationary relative to an admissible arc if, (i) over the segments of the
arc for which g’ is continuous y(x) satisfies the usual characteristic equation,
(ii) at points where y’ is continuous but y’’ is discontinuous the Weierstrass-
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Erdmann corner conditions are satisfied, and (iii) at a discontinuity « = ¢
in y’ the expressions
' of d [of
@) == —=—\5=
oy dx \oy
, [ of d (of ,, of
0 f—v o= S () — v -
dy dx \dy dy

are continuous and, on either side of the discontinuity

(37)

a ’ [4
f& k(c, C, y')dy

of
38 = k.
(38) 57
Consider now an integral of the form
(39) S = Lb flx,y, 2,9, 2" )dx

where y(z), z2(x) are to be chosen to satisfy the usual boundary conditions
and so that the integral is stationary. The definition of the integral over
any-interval within which y and z are not discontinuous simultaneously
presents no difficulty. 1f, however, both these functions are discontinuous
at # = ¢, we shall first require that

(40) f@, y, 2 ¥, 2)~yk ¥, 2, 2'y)

as ¥’ - + o0, 2 = 4 o0 independently and uniformly with respect to the
remaining variables. Since
yl
"R =12 (—- k) ,
y “\7

this condition clearly implies that
(41) f~2ZK(, ¥,z y')
under the same circumstances, 1.e. this condition is symmetrical with
respect to ¥ and z. The contribution of the discontinuity to the value of
the integral may then be taken to be

v(c+0)
(42) [o7 ke y, 2, dzjdy)dy.

This integral is not fully determined until the relationship z = 2(y) has
been specified. Since £ is to be stationary, it is necessary to choose the form
of this relationship in such a way that the integral (42) is also stationary
relative to small variations. This is a problem of the type considered in the
earlier sections.

If # represents a physical quantity, we can approximate a discontinuity
in the functions y(x), z(z) by arranging for them to be very rapidly variable
relative to z. If, however, £ is to be stationary, it follows from the above
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analysis that such variations must be related in the precise fashion necessary
to ensure that the integral (42) is stationary.

Consider, for example, the integral P referred to in Section (1). This
involves second order derivatives of the unknown functions z(¢), y(¢), but
the principles involved are unaltered. We have

(43) VIE+ D2+ @+ g ~& VI + (/%)

as & — o0, y — 0o0. Hence, simultaneous discontinuities in £ and y make a
contribution to P of

(44) [7r V14 @vjdx)ax,

where X = &, Y = y. This integral represents the length of an arc joining
two points in the XY-plane and it is minimised by the straight line path
between these points. Thus, if P is to be minimised, across any discontinuity
# and y must be linearly related. In the context of the problem leading to
the integral P, this is interpreted as requiring that any impulsive thrust
applied by the motors to the rocket must be maintained constant in direction
during its small, but necessarily finite, duration.

It is now easy to prove, as in Section 3, that the conditions to be satisfied
by the functions y(z), z(x) across a discontinuity, if # is to be stationary
are, (i) the expression

, of , of ok
—_— z —_ —_—
oy’ 0z’ oc
must be continuous and (ii) on either side of the discontinuity the following
equations must be true:

(45) f—y

[ of Cp s ok

(46) oy 0z
of Ok
92 0z

where ¢ = dz/dy. The quantities 2., 2_ involved in this second condition
are to be computed at the ends of the arc z = z(y) making the integral
(42) stationary.
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