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1. Introduction

Presentations in terms of generators and relations for the classical finite
simple groups of Lie type have been given by Steinberg and Curtis [2,4]. These
presentations are useful in proving characterization theorems for these groups,
as in the author's work on the projective symplectic groups [5]. However, in some
cases, the application is not quite instantaneous, and an intermediate result is
needed to provide a presentation more suitable for the situation in hand. In this
paper we prove such a result, for the orthogonal simple groups over finite fields of
odd characteristic. In a subsequent article we shall use this to give a characteri-
zation of these groups in terms of the structure of the centralizer of an involution.

Suppose F is a finite field of odd characteristic. By a quadratic space over F
we mean a vector space V over F with a non-degenerate symmetric bilinear form
(,) . If Cl(V) denotes the commutator subgroup of the orthogonal group of V,
then the corresponding projective group PQ.{V) is simple if dim V S; 5. In this
group, the centralizer of the involution corresponding to an involution of Q(F)
whose fixed-point subspace U has codimension 2 in V has a normal subgroup
isomorphic with Q.(U). We shall give a presentation of PQ(V) (or of Q(F)) in
terms of generation by such a lower-dimensional orthogonal group, together with
one additional element.

To state our result we need to set up some notation. Beginning with a quad-
ratic space U, we set M = Q(t/), and write £1{W) for the subgroup of M con-
sisting of all elements which act as the identity on the orthogonal complement of
a non-degenerate subspace W of U. The space U can be decomposed into an
orthogonal direct sum.
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496 W. J. Wong [2]

U = VO®V1Q-®VH.U

where V1,---,Vn-1 are 2-dimensional subspaces of square discriminant, dim
Vo ^ 2, and Vo has non-square discriminant when dim Vo = 2[3,p. 158J. We
may choose isometries zt : Fx -> Vt, i = 1, • • • , » - 1, and write vt = vzh for
ve Vl. If a is an element of the symmetric group En_i on {1, ••-,« — 1}, we obtain
an orthogonal transformation <r(a) on U by setting

voa(a) = D 0 , D0 e Vo, vta(a) = vix, veVu i = l,---,n - 1.

Since Vl,---,Vn-l have square discriminant, <r(a) can be shown to have spinor
norm 1, so that cr(a) lies in M, and we have an injective homomorphism

a : £„_! -» M.

THEOREM. Let U be a quadratic space over a finite field F of odd charac-
teristic, M = Q(l/), and let

be as described above. Suppose G is a group generated by M and an element x,
such that

(i) T2 = l,(w((n - 2,n - I)))3 = l,(Tff((i, i + I)))2 = 1,

for i = l,---,n — 3.

(ii) T normalizes Cl(V0 ®Vt® Vj), whenever l ^ i < j g n - 2 .

Suppose further that n ^ 5 I / | F | S 1 (mod 4), n ^ 8 i/|f| = ~\{mod 4). Tften
G is isomorphic with Q(F) or PO(F), where V is a quadratic space over F,
dim V = dim U + 2, and V has the same discriminant as U.

The remark concerning the discriminant is superfluous when dim Vo = 1,
since there is only one orthogonal group in each odd dimension. For even dimen-
sion there are two cases, depending on whether or not the discriminant is a square
inF.

Our proof of the theorem requires that n be large enough for certain calcula-
tions to be carried out. By modifying the proof we shall also show that the theorem
holds for three other cases. It seems likely that the theorem holds also for other
cases with low values of n.

We begin by stating the Steinberg-Curtis results, as they apply to the ortho-
gonal commutator groups over a finite field F of odd characteristic. There are
three cases, which we label with the Lie notation.
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[3] Generation of finite orthogonal groups 497

Case 2Dn+l: Witt index n, dimension In + 2.

Case Bn: Dimension 2n + 1.

Case £)„: Witt index n, dimension In.

Let V be a quadratic space over F, which can be decomposed into an orthog-
onal direct sum

v = W o e ^ i ©•• •©»; ,

where Wu--, Wn are 2-dimensional isotropic subspaces (hyperbolic planes) and
Wo is 2-dimensional anisotropic. We assume n ^ 3. For i =» 1, •••,«, we choose
a hyperbolic basis eh e_f of W;, such that

(ehei) = (e-,,e_j) = 0, (e(,e_j) = 1,

and we choose a basis eo,/o of Wo such that

•(«o,eO) = - 2 . (/o./o) =» 2e, (e0,/0) =* 0,

where e is a non-square in F. Setting

V' = Feo@ W, © ... © Wn, V" = Wl® - © Wn,

we obtain groups Q(F),Q(F'),f2(F") which correspond to the three cases 2Dn+1,
Bn,Dn. The group Q(K') may be regarded as the subgroup of Q(V) acting trivially
on f0, while Q(K") is the subgroup acting trivially on Wo. We shall give presen-
tations for these groups.

For i,je{±l,---,±n} with |i| # \j\, and teF, Q(F) contains the elemsnt
xtj(t) given by

Xij(i) '• *i -> et + te-p ej -»e7- - te_j,

with the action on the other basis elements being trivial. This element in fact lies
in Q(V"), and so in ft(F').

Let E be the quadratic extension field F(d), where d2 = e, and denote the
automorphism of £ of order 2 by f-> f. For i e { ± l , - - , ±n}, f e£ , Q(F) contains
the element xt{t) given by

*;(0 : e0 -• e0 + (t + f)c-,-,/o -»/0 + d(t - f)e_,.,

«i - ei + W + 0«o + i^~ K ' - O/o + tie-i.

This element lies in fi(F') when I e F.
These elements satisfy the following relations.

(Al) Xi/0xy(") = Xij(f + «)•

(A2) Xi(0^i(«) = x,0 + «).
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(Bl) |>y(0»x*i(«)] = 1, if hJ, -k, -I are distinct.

[x./O, **,-»] = x^i-tu), if \i\ * \k\.

[xy(0, *-./»] = 1.

(B2) [x, .(0,*»] = Xijiiu + tu), if \i\ * | j | .

[xy(0» •**(")] = 1, if (,7, — k are distinct.

Oi.-tO), **(")] = Xi(tu)xik(tuu).

(C) ( X 1 2 ( - 1 ) X _ 1 , _ 2 ( 1 ) X 1 2 ( - 1 ) ) 2 ( X 1 , _ 2 ( - 1 ) X _ 1 J 2 ( 1 ) X 1 J _ 2 ( - 1 ) ) 2 = 1.

It may be noted that the relation xu(t) = xj;( — t) is implied by the second of
the relations (Bl), together with (Al).

LEMMA 1. The orthogonal commutator groups over F have the following
presentations.

Case 2Dn + 1. Generators: xu(t),teF, xt(u),ueE.

Relations: (41), (A2),(Bl),{Bl),(C).

Case Bn. Generators: Xi^^^

Relations: (Al),(A2),(Bl),(B2),(C).

CaseDn. Generators: Xij(t),teF.

Relations: (Al),(Bl),(C).

That this is simply a restatement of results of Steinberg and Curtis [2,4] may
be seen as follows. In Case Dn, the group Q ( F " ) has a root system of type £>„,
which may be considered as a subset of a real vector space with basis cou •••,a>n,
consisting of the vectors cot + ojj, where i,je{ + l,---,±n}, \i\ < \j\, and co_,
stands for -a>j. In Cases 2Dn+1, Bn, the root system is of type Bn and is obtained
from the root system of type Dn by adjoining the vectors cohie{ + l,---, ±n}.
Now root elements xr(0 in the groups Q(V),Q(V'),Q(V") may be denned as
follows.

Xco.+c^O = Xtj(t), \i\ < \j\, Xra.(0 = Xt(t).

Then the relations (Al), (A2) are the relations (A) of [4] and (Bl), (B2) are the
Chevalley commutator relations (B) of [4] (or their "twisted" analogues in Case
2Dn+i). The results of Steinberg and Curtis imply that, in the case of a finite ground
field, these give presentations of the groups Spin (V), Spin (V), Spin (V"). The
left side of the relation (C) represents the element

of the centre which must be factored out to obtain the groups Q(F),Q(F'),Q(K").
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In fact the results of Curtis [2] indicate that it is necessary to take as gen-
erators only those root elements for which r is a linear combination of two fun-
damental roots, and as relations just those for which only such roots appear.
Indeed, a commutator relation may be omitted unless there exists a pair of fun-
damental roots a, b such that all the roots appearing in the relation are linear
combinations of a,b. The fundamental roots for Cases 2Dn+1 Bn may be taken as

-CO1,CO1 - Oi2, CO2-C(J3.---)COn_1-CBn,

while those for Dn may be taken as

-CO1-CO2, CO1-Q}2, (O2 - CO3,--, COn_1-COn.

We thus obtain a refinement of Lemma 1.

LEMMA 2. In Lemma 1, it is necessary to take only the generators xtj{i)for
which \i +j\ ^ 2, the generators xi2(t),x-lt-2(t), and the following additional
generators.

Cases2Dtt+l,Btt:xi(t),\i\^2.

Case Dn: xl3(t),x^u-3(t).

As relations it is necessary to take only the relations (Al), (A2) which involve
these elements alone, the relation (C), and certain of the relations (Bl), (B2) which
involve these elements alone. In particular, commutator relations for [xy(0> **(")]
may be omitted unless \i\, \j\, |/c| ^ 2, or \i +j\ = |/c| = 1.

We turn now to the proof of the theorem. We note first that, by Moore's
presentation of the symmetric group [l,p. 464], the relations (i) in the hypothesis
of the theorem are equivalent to the existence of an extension of a to a homomor-
phism

a : En -> G,

such that a((n — l,n)) = T. Since a is injective on T,n-U it is injective on £„ also.
If A is a subset of {1, •••, n — 1} we write

QG4) = « ( 2 v),Q\A) = Q(V0 © Z v),

then £2(/4) and Cl'(A) are subgroups of M.

LEMMA 3. / / A,B C { l , - , n - 1}, aeZB, A =± Ba, then Q.{A) = Q{B)'("\
Ci(A) = QXBfi'K

PROOF. We prove the last equation. Suppose first that A has two elements.
If aeZ,_i, then the result holds, since a(a) is an element of M transforming
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Vo 0 2 Vj into K © I K,. If a 0 E n _ 1 ( then a = /J(n - l)y, where fty e E ^ .
y e B ieA

Then
4y-i = BP(n-l,n)

and both ^ 7 - S B j S are subsets of { I , - - - , n-\ } . Hence B J 8 C { 1 , ••-, n-2}, and

yiy- i = B/?. By the assumption (ii) of the theorem, a{{n — 1,«)) = T normalizes

Cl\BP), so that

Next suppose that A has only one element. Since n ^ 5, we can find two 2-
element sets B1,B2, such that Bl,B2,BlOL,B2a are all subsets of {1, ••-,/! - 1} and
Bt n B 2 = B. Set ^ ! = B^, A2 = B2a, so that A = At nA2. Using the 2-
element case we have just proved, we see that

Thus,

If vl is the empty set </>, the same argument with BUB2 suitable 1-element
subsets of {1, ••-,« — 1} gives the desired result.

If A has more than 2 elements, then Q'(B) is generated by the subgroups
fi'(Q as C ranges over the 2-element subsets of B, while Q'(4) is generated by the
subgroups Q'(Ca) [3, p. 161]. Thus the desired result in this case follows also
from the 2-element case.

To prove the equation £l(A) — Q(B)<7{a), we may assume Vo / 0. If A has two
elements, then we may find 1-element subsets At Q {l,--,n — 1} — A, Bt Q
{l,--,n- 1} - B, such that Al = B&. Then,

Since Q(^4) is the commutator subgroup of the centralizer of Q'C^i) in Q'(A U At)
and Q{B) is the commutator subgroup of the centralizer of Q (#i) in Sl'(B U B,),
we find that

in this 2-element case. The general case then follows as before. This proves the
lemma.

We now extend the definition of the subgroups Cl(A), il'(A) to arbitrary
proper subsets A of {1, •••,«} as follows. Choose a subset B of { l , - - ,n — 1} with
the same number of elements as A, choose an element a of £„ such that A = Bat,
and set

a(A) = n(B)a("\ a'(A) = Q w ( a ) -
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By Lemma 3, this is consistent for subsets A of {l , - - - ,n — 1} with the earlier

meaning for £l(A),Q'(A).

LEMMA 4. (a) If A is any proper subset of {1, •••,n}, then Gl(A),Q'(A) are

well-defined.

(b) The result of Lemma 3 holds for arbitrary proper subsets A,B oj

{l,-,n}.
(c) If A,B are disjoint, then [£l'(A),Cl(B)~\ = 1.
(d) If ael,n and a fixes every element of a non-empty proper subset A of

{1, •••,«}, then a{a) centralizes Cl'(A).

PROOF, (a) If A = Ba. = CP, where B , C C { l , - , n - l } , a,|!eEn> then
B = CPa~l, so that, by Lemma 3,

Thus Q(y4) is well-defined. Similarly Cl'(A) is well-defined.
(b) Suppose A = Ba. Choose C Q {l,---,n- 1}, j9eSn, such that B = cp.

Then A = C/fa. By definition,

Q(4) = Q(C)a("a) = Q(Cy(«ff(«> = «(JB)ff(a).

Similarly, Q'(A) = n'(B)B(a).
(c) Suppose A,B are disjoint. The result is clear if A,B Q {1, •••,« — 1}. If

|/1 UB| ^ n — 1, there is an element of SB transforming A\J B into a subset of
{1, ••-,« — 1}, and the result follows by applying (b). If \A KJB\ = n, then since
n ^ 5, \A\ ^ 3 or \B\ ^ 3. If |fi| ^ 3, then Q(B) is generated by all the subgroups
Q(C), where C ranges over the 2-element subsets of B [3, p. 161], and we know
already that [Q'04),Q(C)] = 1 for these C. Hence [Q(A),Q(B)] = 1. A similar
argument applies if \A\ ^ 3.

(d) Let B be the set of elements of {1,••-,«} which are not fixed by a. If
a e E , . , , then clearly <x(a)eQ(5). An application of (b) gives the same result for
any element a of Sn which has a fixed point, since a is conjugate to an element of
£„_!• Then (d) follows from (c). This proves the lemma.

The proof of the theorem now breaks into two cases. We take first the case
that |F| = 1 (mod 4), so that — 1 is a square in F. In this case the subspaces
V1,---,Vn-l are hyperbolic planes, and we can choose hyperbolic bases et,e-i
for Vi in such a way that

ef<7(a) = e^, e_j<r(a) = c_ic[,
for all aeZ n _! .

If dim Vo = 1, we may assume that Vo has an element e0 such that (e0, e0)
= — 2. If dim Vo = 2, we may take a basis eo,/o of Vo such that (e0, e0) = — 2,

(/o»/o) = 2e» (eo./o) = 0> where £ is a non-square in F, These vectors are fixed by
ff(a), for all
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As in the last section, we may now define elements xtJ(t) in M, for
i,je{±l,---, ±(n - 1)}, \i\ ^ |;|, teF. If Vo ^ 0, we also have elements xf(0
where . ie 1{±1, -•-, + ( n - l ) } , a n d t lies in F or the quadratic extension field E of
F, according as dim Vo — 1 or 2. Thus M is a group of type 2Dn, Bn_u or Dn_u

according as dim Vo = 2,1 or 0. We have to show that G is of type 2Dn+u Bn, or
Dn respectively.

If a ££„_!, we have the relations

where the action of En_t is extended to {±1,--- , ±(n — 1)} by setting ( — i)a
= — (ia). If the action of En is extended to { ± 1 , •••, ±n} in the same way, we can
now define elements xy(f) in G, for I , J e { ± 1,•--, +«} , |i| # | j | , teF, as follows.
Choose fc, / e { + 1, •••, +(n — 1)} such that |fc| # |/|, fc has the same sign as i, and/
has the same sign as j . Choose a eZM such that j = fax, 7 = la, and set

Similarly, if Fo T4 0, we define XjO), for ie{ + l,---,±n}, where t e f if dim
Vo— 1, I e £ if dim F o = 2. By using Lemma 4 (d) and a similar argument to
the proof of Lemma 4(a), (b), we see that these elements are well-defined, and
further that the relations (*) hold for i,je{±l,---, ±n], aeZB.

It is now easy to check that the relations listed in Lemma 1 for the three cases
2Dn+uBn,Dn are satisfied. Each of the relations (Al), (A2),(B1), (B2) involves at
most 4 subscripts, and there exists an element a of En transforming these into
elements of { + 1,---, ±(n — 1)}, since n ̂  5. Since the elements Xy(0, x,-(0 with
ije { ± 1 , •••, ±(n — 1)} do satisfy the requisite relations, application of (*) shows
that they are satisfied by all xu(t), xt(t), with i,je{±l,---, +«} . The relation (C)
is already known in M. It follows now from Lemma 1 that the group Go generated
by all the x o (0 (and the x;(0 if Vo^0) is isomorphic with Q(F) or PQ(V), where
V is a quadratic space over F, dim V = dim U + 2, and V has the same dis-
criminant as U.

Since M is generated by the xy(f) (and the x,(0 if Vo ^ 0) having
i,je{ + l,--, ±(n — 1)}, Go contains M, and so Go contains ^(Sn.!). By (*), Go

is normalized by ff(2n). Since the only normal subgroup of EB containing r n _ t is
!,„ itself, it follows that Go contains a(Ln), and, in particular, that Go contains T.
Since x and M generate G, Go = G. This proves the theorem in the case \F\ = 1
(mod 4).

We now assume that \F\ = - l ( m o d 4). Since Vu •••,Fn_1 are not now
hyperbolic planes, we need a somewhat more complicated argument. First we
write

VQ®Vi®-@Vn^ = W0®Wl®-@ Wm_a,
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[9] Generation of finite orthogonal groups 503

where W1,---,Wm^8 are hyperbolic planes, dim Wo ̂  2, and Wo is anisotropic.
Then m = n — 1, n, or n + 1. For simplicity of notation we shall assume that
m = n. The argument in the other cases is not essentially different.

Setting

Ao = { l , - , n - 8 } , i 4 i = {n-1, n - 6},

^ 2 = {n - 5, n - 4}, A3 = {n - 3, n - 2}, AA = {n - 1, n},

we define a subgroup T4 of Sn to consist of all elements which fix all elements of
Ao, permute the sets AltA2,A3,AA, and leave the set {n — 6, n — 4, n — 2,n}
invariant. Such an element is essentially the product of a permutation on the set
{n — 6, n — 4, n — 2, n} with the similar permutation on the set

{n — 7, n — 5, n — 3, n — 1}.

We write T3 for the subgroup of T4 fixing n (and so fixing n — 1 also).

For j = n — 1, n — 5, n — 3, we can write

where Wj( Wj+i are orthogonal hyperbolic planes, in such a way that

Wj<T(0i) = WJa,

for a e T3, n-7^j^n-2. For l ^ j ^ n - 2 we can choose a hyperbolic
basis ej,e^j of Wj, in such a way that

e,<r(a) = ciis e_y«r(a) = e.ja,

for all <XE T3.

If Wo T̂  0, we choose a basis c0
 o r eo,/o for Wo

 m the usual way. If

© Ft © ••• 0 K__2) = Q(W0 © Wi © - © ^ - 2 ) ,

we define elements xtj(t) in N, for i j e { ± l , - - - , +(n - 2)}, |i| ^ |j|,f e F , as in
the last section. If Wo # 0, we also have elements x;(0, where

and t lies in F or the quadratic extension field E of F, according as dim Wo = 1
or 2. Thus JV is a group of type 2Dn_u Bn_2, or Dn_2, according as dim Wo = 2,1
or 0. We have to show that G is of type 2Dn + 1, Bn or Dn respectively.

If a e T3) we have relations

(•) *y(0ff(a) = xb.jjit), Xi(tyw = xix(t),

where the action of £„ has been extended to {±l,---,±n} in the usual way. If
ieAk, je A,, then Xij(t)e£l(Ak U/l,). If an element a of T 4 fixes i and; , then it
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fixes all elements of Ak U Au and so a{a) centralizes xy(f), by Lemma 4 (d). Simi-
larly, if <x fixes i then c(a) centralizes xt(t).

We now define elements xy(f) in G, for i j e { + l , • • • ,+«}, |i| ^ |;|, f e f ,
by choosing oceT4,k, / e { + l , - - - , ±(n — 2)} such that i = kcc, j = /a. This is
possible, since T4 acts as the symmetric group on Au A2, A3, A4. We then set

Similarly, if Wo ^ 0, we define xt(t), for i e { ± l , • • • , + « } , where ( e f if dim

Wo = 1, teE if dim Wo = 2. By an argument similar to the proof of Lemma 4

(a), (b), we see that these elements are well-defined, and that the relations (*) hold

for i,js{±l,---,±n}, aeT4.
The relations listed in Lemma 1 may now be verified. If one of the relations

(Al), (A2), (Bl), (B2) does not involve subscripts with absolute values from all
four sets AUA2,A3, A4, then there is an element of T4 transforming the subscripts
into elements of { + !,•••, ±(n — 2)}, and the relation may be deduced from the
corresponding relation in N, together with (*). The only other type of relation
involves [xy(t), xH(«)], where \i\, \j\, \k\, |/| lie in distinct sets Aa, Ab, Ac, Ad. Then,

[xy(Q, *„(«)] e {Q(Aa u Ah),a{Ac u Ad)~\ = 1,

by Lemma 4 (c). The relation (C) is known in N. It follows now from Lemma 1
that the group Go generated by all the xy(f) (and the xt(t) if Wo # 0) is isomorphic
with Q(F) or JPQ(F) , where V is a quadratic space over F, dim V = dim U + 2,
and V has the same discriminant as U.

The group Go contains N = Q'({l,---,« — 2}) and is normalized by <r(T4).
Since N contains a(T3) and the only normal subgroup of T4 containing T3 is T4

itself, it follows that Go contains a{TA). If a = (n — 3, n — l)(n — 2, n), then we
see that Go contains

Q({n - 4, n - 3})ff(a) = Q({n - 4, « - 1}).

From [3, p. 161], one sees easily that N and Q({n — 4, n — 1}) generate M. Since
M contains <r(Ln- j), and 2n_ t and T4 generate Sn, Go contains M and <7(Sn). Thus
Go = G, and the theorem is proved.

4

By modifying the proof, we can extend the theorem to a few other cases.

PROPOSITION. The theorem holds also when Vo = 0 and n = 1, and when
dim Vo = 2 and n = 5 or 7.

PROOF. We may assume that \F\ = — 1 (mod 4). If Vo = 0, we write
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[11] Generation of finite orthogonal groups 505

for odd i e { l , - - , n - 2}, where WhWi+i are orthogonal hyperbolic planes. If
dim Vo = 2, we write Vl@V2 = Wx® W2,

Vo = W3, V, ®Vi+1 = Wi+1 ® Wi+2, for odd i e {3, - , n - 2},

where the Wj are orthogonal hyperbolic planes. Thus,

U= W i © - © F F B ,

where m = n — 1 or n. Choosing hyperbolic bases for the Wj, we have elements
Xij(t) defined in M, for i,je{±l,---, ±m}, \i\ # \j\, tsF, as in Section 1. Thus

M is a group of type Dm. We wish to show that G is of type 2Dm+1.
We have a decomposition

Vl®V2® FB_X = FB_! © Wi © W2,

where W ,̂ W2 are hyperbolic planes and Fn_i is anisotropic. Choosing a suitable
basis of Vn-U we may define elements yt(t) in Q({1,2, n — 1}) analogously to the
x((t) of Section 1, where i e { + l, +2} and f lies in the quadratic extension field
E of F. We now set

an element of Q({1,2, n}).

The relations (Al), (Bl), (C) of Section 1 are satisfied in M, and clearly the
relations (A2) are satisfied by the xt(t), since they are satisfied by the yt(t),
i e { ± l , ±2}. For \i\ =• 1, |;| = 2, we have the relation

in Q({1,2, n — 1}). Conjugation by T gives the relation

[x,{0, *,-(«)] = xtJ(iu + tu).

If |i| ^ 3, | j | ^ 3, \i\ * \j\, \k\ ^ 2, then x,Jt) lies in Q ' ( {3 , - , n - 1}), while
xt(u) lies in Q({l,2,n}), so that [xy(f)» *fc(u)] = 1. by Lemma 4(c). If |i| ^ 3,
| j | ^ 3, \i\ * | j | , then Xy(0 lies in Q({1,2,3,4}) if V0 = 0, and in Q ({1,2,3}) if
dim Vo = 2. In either case xlV(f) commutes with x = ff((n - 1, n)), by Lemma 4(d)
and our assumption on n. Hence, if |/c| ^ 2, the commutator relation for
[xy((), xfc(u)] can be obtained from that for [xtJ(t), >»*(«)] by conjugation by T.

By Lemma 2, the group Go generated by the xt(t), \i\ g 2, the xy((), | ' + j |
g 2, and the x12(0»:x-i,-2(0 is isomorphic to Q(K) or PC1(V), where F is a qua-
dratic space over F, dim F = dim U + 2, and V has the same discriminant as U.

Since the xy(f) mentioned above generate M, Go contains M. The xy(t) with
| i | , | ; | g m - 2, together with the >>k(0, generate Cl'({l,--,n - 3,n~ 1}). Con-
jugation by T shows that Q'({l ,-- ,n - 3,n - I})1 £ Go. Also, ft({l, n - 2}f
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= Q({1, n - 2}) QG0. By [3, p. 161], Q ' ({ l , - ,n - 3,n - 1}) and O({l,n - 2})
generate M, so that M' Q Go. Since En_j and its conjugate by (n — l,n) generate
£„, Go contains T also. Thus Go = G and the proposition is proved.

We conclude by remarking that the proofs given above in fact show that
not only is G isomorphic with Cl(V) or P£l(V), but the isomorphism is such that
the embedding of M in G is the natural one corresponding to an embedding of U
as a non-degenerate subspace of codimension 2 in V.
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