Lie Elements and Knuth Relations

Manfred Schocker

Abstract. A coplactic class in the symmetric group \mathcal{S}_{n} consists of all permutations in \mathcal{S}_{n} with a given Schensted Q-symbol, and may be described in terms of local relations introduced by Knuth. Any Lie element in the group algebra of \mathcal{S}_{n} which is constant on coplactic classes is already constant on descent classes. As a consequence, the intersection of the Lie convolution algebra introduced by Patras and Reutenauer and the coplactic algebra introduced by Poirier and Reutenauer is the direct sum of all Solomon descent algebras.

1 Introduction

In 1995, Malvenuto and Reutenauer introduced the structure of a graded Hopf algebra on the direct sum

$$
\mathcal{P}=\bigoplus_{n \geq 0} \mathbb{Z} \mathbb{S}_{n}
$$

of all symmetric group algebras $\mathbb{Z} S_{n}$ over the ring \mathbb{Z} of integers ([MR95]). Apart from this convolution algebra of permutations \mathcal{P} itself ([AS, DHT]) several subalgebras of \mathcal{P} turned out to be of particular algebraic and combinatorial interest and have been studied intensively; for instance, the Rahmenalgebra ([Jöl99]), the Hopf algebra of the planar binary trees ([LR98, Cha00]), the Lie convolution algebra \mathcal{L} ([PR01]), the coplactic algebra $\mathcal{Q}\left([\text { PR95 }]^{1},[\mathrm{BS}]\right)$, and the direct sum \mathcal{D} of the Solomon descent algebras ([Sol76, GR89, Reu93, MR95, GKL+95, BL96, JR01]).

Here, the relation between the algebras \mathcal{L} and Q shall be investigated. The latter is defined combinatorially as the linear span of the sums of permutations with given Schensted Q-symbol ([Sch61]), or, equivalently, of the sums of equivalence classes arising from the coplactic relations in $S_{n}, n \geq 0$, introduced by Knuth ([Knu70]). The Lie convolution algebra \mathcal{L} is generated (as an algebra) by all Lie elements in \mathcal{P}. Both \mathcal{L} and \mathcal{Q} contain \mathcal{D}. Combinatorial descriptions of the algebras \mathcal{D} and \mathcal{Q}, and the set of Lie elements in \mathcal{P}, follow in Section 2. The main goal of this paper is to show the following.

Theorem $1 \quad \mathcal{L} \cap Q=\mathcal{D}$.

This result (once more) points out the exceptional role played by the descent algebras. The proof is given in Section 2, and is essentially based on the fact that any

[^0]Lie element in \mathcal{P} which is constant on coplactic classes is already contained in \mathcal{D} (see Section 3), which is combinatorially interesting for its own sake.

One might be tempted to conjecture that a lack of co-commutativity of Q is the deeper reason for Theorem 1 , since \mathcal{L} is-at least in comparison to \mathcal{D}-a "large" cocommutative subalgebra of \mathcal{P}; but this is false. The domain of co-commutativity of \mathcal{Q} strictly contains \mathcal{D}. Some comments concerning this can be found at the end of Section 3.

2 Descent, Coplactic, and Lie Relations

In this section, combinatorial descriptions of the algebras \mathcal{D} and Q, and of the Lie elements in \mathcal{P}, are recalled briefly, and a proof of Theorem 1 is given.

Let \mathbb{N} (respectively, \mathbb{N}_{0}) be the set of positive (respectively, nonnegative) integers and set

$$
[n]:=\{i \in \mathbb{N} \mid i \leq n\}
$$

for all integers n. For any $\pi \in \mathcal{S}_{n}$, $\operatorname{Des}(\pi):=\{i \in[n-1] \mid \pi(i)>\pi(i+1)\}$ is the descent set of π. The Solomon descent algebra \mathcal{D}_{n} is the linear span of the sums $\sum_{\substack{\pi \in \mathcal{S}_{n} \\ \operatorname{Des}(\pi)=D}} \pi$, where $D \subseteq[n-1]$. According to Malvenuto and Reutenauer, $\mathcal{D}=\bigoplus_{n \geq 0} \mathcal{D}_{n}$ is a Hopf subalgebra of \mathcal{P} ([MR95]); and as such, \mathcal{D} is isomorphic to the algebra of noncommutative symmetric functions ([GKL $\left.{ }^{+} 95\right]$). We mention that \mathcal{D}_{n} is also a subalgebra of the group algebra $\mathbb{Z} \mathcal{S}_{n}$, according to a remarkable result of Solomon ([Sol76]), although this is not of relevance here.

Let \mathbb{N}^{*} be a free monoid over the alphabet \mathbb{N} and denote by \varnothing the empty word in \mathbb{N}^{*}. The mapping $\pi \mapsto \pi(1) \cdots \pi(n)$ extends to a linear embedding of $\mathbb{Z} S_{n}$ into the semi-group algebra $\mathbb{Z} \mathbb{N}^{*}$. As is convenient for our purposes, elements of $\mathbb{Z} \mathcal{S}_{n}$ will be identified with the corresponding elements of $\mathbb{Z} \mathbb{N}^{*}$. Furthermore, products $\sigma \pi$ of permutations $\sigma, \pi \in \mathcal{S}_{n}$ are to be read from right to left: first π, then σ.

The following combinatorial characterization of \mathcal{D}_{n} was given in [BL93, 4.2].

Proposition 2.1 (Descent Relations) Let $\varphi=\sum_{\pi \in \mathcal{S}_{n}} k_{\pi} \pi \in \mathbb{Z} \mathcal{S}_{n}$, then $\varphi \in \mathcal{D}_{n}$ if and only if

$$
k_{u a w(a+1) v}=k_{u(a+1) w a v}
$$

for all $a \in[n-1], u, v, w \in \mathbb{N}^{*}$ such that $\pi=u a w(a+1) v \in \mathcal{S}_{n}$ and $w \neq \varnothing$.
Let $Q(\pi)$ denote the Schensted Q-symbol of π, for all $\pi \in \mathcal{S}_{n}$ ([Sch61]), then the set of all $\sigma \in \mathcal{S}_{n}$ such that $Q(\pi)=Q(\sigma)$ is a coplactic class in $\mathcal{S}_{n}{ }^{2}$. The coplactic algebra Q is the linear span of all sums of coplactic classes in \mathcal{P} :

$$
Q=\left\langle\left\{\sum_{Q(\sigma)=Q(\pi)} \sigma \mid \pi \in \mathcal{S}_{n}, n \in \mathbb{N}_{0}\right\}\right\rangle_{\mathbb{Z}}
$$

[^1]Accordingly, each element $\varphi \in \mathbb{Q}$ is called coplactic. According to Poirier and Reutenauer, \mathcal{Q} is a Hopf subalgebra of \mathcal{P} ([PR95]). The following characterization of $Q_{n}:=Q \cap \mathbb{Z} S_{n}$ is due to Knuth ([Knu70]).

Proposition 2.2 (Coplactic Relations) \quad Let $\varphi=\sum_{\pi \in \mathcal{S}_{n}} k_{\pi} \pi \in \mathbb{Z} \mathcal{S}_{n}$. Then $\varphi \in Q_{n}$ if and only if

$$
k_{u a w(a+1) v}=k_{u(a+1) w a v}
$$

for all $a \in[n-1], u, v, w \in \mathbb{N}^{*}$ such that $\pi=u a w(a+1) v \in \mathcal{S}_{n}$ and w contains the letter $a-1$ or the letter $a+2$.

Combining Propositions 2.1 and 2.2 implies, in particular, $\mathcal{D} \subseteq \mathcal{Q}$.
Let

$$
\omega_{n}=\sum_{\nu}(-1)^{\nu^{-1}(1)-1} \nu \in \mathbb{Z} S_{n}
$$

where the sum is taken over all valley permutations $\nu \in \mathcal{S}_{n}$, which are defined by the property $\nu(1)>\cdots>\nu(k-1)>\nu(k)<\nu(k+1)<\cdots<\nu(n)$, where $k:=\nu^{-1}(1)$. For instance, $\omega_{3}=123-213-312+321$. The element ω_{n} projects $\mathbb{Z} S_{n}$ onto the multilinear part of the free Lie algebra, by right multiplication ([Dyn47, Spe48, Wev49], see [BL93]). Accordingly,

$$
\operatorname{Lie}_{n}:=\mathbb{Z} S_{n} \omega_{n}
$$

is the set of Lie elements in $\mathbb{Z} \mathcal{S}_{n}$ for all $n \in \mathbb{N}_{0}$. Each $\varphi \in$ Lie $:=\bigoplus_{n \geq 0} \operatorname{Lie}_{n}$ is a primitive element of the Hopf algebra \mathcal{P} ([PR01]). The Lie convolution algebra \mathcal{L} is the (co-commutative) Hopf subalgebra of \mathcal{P} generated by Lie; there is also the relation $\mathcal{D} \subseteq \mathcal{L}([P R 01])$.

In view of a Proof of Theorem 1, consider the corresponding algebras $\mathcal{D}_{\mathbb{Q}}, \mathcal{L}_{\mathbb{Q} Q}$, $\mathcal{Q}_{\mathbb{Q}}$, and $\mathcal{P}_{\mathbb{Q}}$ over the field $\mathbb{O}_{\mathbb{Q}}$ of rational numbers, then $\mathcal{D}_{\mathbb{Q}}$ is contained in $\mathcal{L}_{\mathbb{Q}} \cap \mathcal{Q}_{\mathbb{Q}}$; the latter is a co-commutative Hopf subalgebra of $\mathcal{P}_{\mathbb{Q}}$, hence generated by its primitive elements, according to Milnor and Moore ([MM65]). But each primitive element in $\mathcal{L}_{\mathbb{Q}} \cap \mathcal{Q}_{\mathbb{Q}}$ is, in particular, a primitive element in $\mathcal{L}_{\mathbb{Q}}$ and therefore contained in Lie. In Section 3, it will be shown that any coplactic Lie element $\varphi \in \operatorname{Lie} \cap \mathcal{Q}$ is contained in \mathcal{D} (Theorem 2). This implies $\mathcal{L}_{\mathbb{Q}} \cap \mathcal{Q}_{\mathbb{Q}} \subseteq \mathcal{D}_{\mathbb{Q}}$. Observing that $\mathcal{D}_{\mathbb{O}} \cap \mathcal{P}=\mathcal{D}$, completes the proof of Theorem 1 .

A combinatorial characterization of the set Lie_{n} follows. Let $u ш v$ denote the usual shuffle product of $u=u_{1} \cdots u_{k}, v=v_{1} \cdots v_{m} \in \mathbb{N}^{*}$, that is

$$
u ш v=\sum_{w} w,
$$

where the sum ranges over all $w=w_{1} \cdots w_{k+m} \in \mathbb{N}^{*}$ such that $u=w_{i_{1}} \cdots w_{i_{k}}$ and $v=w_{j_{1}} \cdots w_{j_{m}}$ for suitably chosen indices $i_{1}<\cdots<i_{k}, j_{1}<\cdots<j_{m}$ such that $[k+m]=\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{m}\right\}$. Furthermore, set

$$
\bar{u}:=u_{k} \cdots u_{1}
$$

and denote by $\ell(u):=k$ the length of u.

Proposition 2.3 Let $n \in \mathbb{N}$ and $a \in[n]$, then $\left\{\sigma \omega_{n} \mid \sigma \in \mathcal{S}_{n}, \sigma(1)=a\right\}$ is a linear basis of Lie_{n}.

Furthermore, for any choice of coefficients $\boldsymbol{c}_{\sigma} \in \mathbb{Z}\left(\sigma \in \mathcal{S}_{n}, \sigma(1)=a\right)$, the coefficient of $\pi=$ uav $\in \mathcal{S}_{n}$ in $\left(\sum_{\sigma(1)=a} c_{\sigma} \sigma\right) \omega_{n}$ is

$$
\begin{equation*}
(-1)^{\ell(u)} c_{a(\bar{u} \amalg v)}, \tag{1}
\end{equation*}
$$

where $\sigma \mapsto c_{\sigma}$ has been extended linearly. In particular, the coefficient of $\sigma \in \mathcal{S}_{n}$ is \boldsymbol{c}_{σ} whenever $\sigma(1)=a$.

This result is seemingly folklore; a proof follows for the reader's convenience.
Proof Let $\pi=u a v \in S_{n}$ and $\sigma=a x_{2} \cdots x_{n} \in \mathcal{S}_{n}$, then the coefficient of π in $\sigma \omega_{n}$ is non-zero if and only if there is a valley permutation $\nu \in \mathcal{S}_{n}$ such that

$$
u a v=\pi=\sigma \nu=x_{\nu(1)} \cdots x_{\nu(k-1)} a x_{\nu(k+1)} \cdots x_{\nu(n)}
$$

where $k:=\nu^{-1}(1)$; that is, $u=x_{\nu(1)} \cdots x_{\nu(k-1)}$ and $v=x_{\nu(k+1)} \cdots x_{\nu(n)}$. Since $\nu(1)>\cdots>\nu(k-1)$ and $\nu(k+1)<\cdots<\nu(n)$, this is equivalent to saying that $x_{2} \cdots x_{n}$ is a summand in the shuffle product of \bar{u} and v; in this case, the coefficient of π in $\sigma \omega_{n}$ is $(-1)^{\nu^{-1}(1)-1}=(-1)^{\ell(u)}$. This proves (1). Since

$$
\operatorname{dim}_{\operatorname{Lie}_{n}}=(n-1)!=\#\left\{\sigma \omega_{n} \mid \sigma \in \mathcal{S}_{n}, \sigma(1)=a\right\}
$$

and the coefficient of $\tilde{\sigma}=a v \in \mathcal{S}_{n}$ in $\left(\sum_{\sigma(1)=a} c_{\sigma} \sigma\right) \omega_{n}$ is $c_{\tilde{\sigma}}$, the basis property follows.

Corollary 2.4 (Lie Relations) Let $\varphi=\sum_{\pi \in S_{n}} k_{\pi} \pi \in \mathbb{Z} \mathrm{S}_{n}$, then $\varphi \in \operatorname{Lie}_{n}$ if and only if

$$
\begin{equation*}
k_{u a v}=(-1)^{\ell(u)} k_{a(\bar{u} \amalg v)} \tag{2}
\end{equation*}
$$

for all $a \in[n], u, v \in \mathbb{N}^{*}$ such that $\pi=$ uav $\in \mathcal{S}_{n}$, where again, $\pi \mapsto k_{\pi}$ has been extended linearly.

Proof Let $\varphi \in \operatorname{Lie}_{n}$ and $a \in[n]$, then there are coefficients $c_{\sigma} \in \mathbb{Z}\left(\sigma \in \mathcal{S}_{n}\right.$, $\sigma(1)=a)$ such that $\varphi=\left(\sum_{\sigma(1)=a} c_{\sigma} \sigma\right) \omega_{n}$, by Proposition 2.3, and

$$
k_{u a v}=(-1)^{\ell(u)} c_{a(\bar{u} \amalg v)}=(-1)^{\ell(u)} k_{a(\bar{u} \amalg v)}
$$

by (1). Conversely, (2) implies $\varphi=\left(\sum_{\sigma(1)=a} k_{\sigma} \sigma\right) \omega_{n} \in \operatorname{Lie}_{n}$, by (1) again.
Proposition 2.2 and Corollary 2.4 may be restated as follows. Consider the scalar product on $\mathbb{Z} S_{n}$ which turns \mathcal{S}_{n} into an orthonormal basis. For all $T \subseteq \mathbb{Z} \mathscr{S}_{n}$, let T^{\perp} be the space orthogonal to T with respect to this scalar product. For all $\varphi, \psi \in \mathbb{Z} S_{n}$, write

$$
\varphi \equiv_{\mathrm{Q}} \psi \quad\left(\text { respectively, } \varphi \equiv_{L} \psi, \varphi \equiv_{\mathrm{LQ}} \psi\right)
$$

if $\varphi-\psi \in Q_{n}^{\perp}$ (respectively, $\left.\in \operatorname{Lie}_{n}^{\perp}, \in\left(\operatorname{Lie}_{n} \cap Q_{n}\right)^{\perp}\right)$. Now the necessity parts of Proposition 2.2 and Corollary 2.4 are

$$
\begin{equation*}
\operatorname{uaw}(a+1) v \equiv_{Q} u(a+1) w a v \tag{3}
\end{equation*}
$$

for all $a \in[n-1], u, v, w \in \mathbb{N}^{*}$ such that $u a w(a+1) v \in \mathcal{S}_{n}$ and w contains the letter $a-1$ or the letter $a+2$;

$$
\begin{equation*}
\operatorname{uav} \equiv_{L}(-1)^{\ell(u)} a(\bar{u} \amalg v) \tag{4}
\end{equation*}
$$

for all $a \in[n], u, v \in \mathbb{N}^{*}$ such that uav $\in \mathcal{S}_{n}$. For later use, note that applying (4) twice gives

$$
\begin{equation*}
a u b v \equiv_{L}(-1)^{n-1} \bar{v} b \bar{u} a \equiv_{L}(-1)^{n-1+\ell(v)} b(v ш \bar{u} a) \tag{5}
\end{equation*}
$$

whenever $a, b \in[n]$ and $u, v \in \mathbb{N}^{*}$ such that $a u b v \in \mathcal{S}_{n}$.
Remark The space Lie_{n}^{\perp} is linearly generated by all non-trivial shuffles $u ш v$, where $u, v \in \mathbb{N}^{*}$ such that $u v \in S_{n}$ (see, for instance, [Duc91]). As a consequence of Corollary 2.4, for fixed $a \in[n]$, the elements

$$
u a v-(-1)^{\ell(u)} a(\bar{u} ш v)
$$

where $u, v \in \mathbb{N}^{*}$ such that uav $\in \mathcal{S}_{n}$ and $u \neq \varnothing$, constitute a linear basis of $\operatorname{Lie}_{n}^{\perp}$. Another basis has been introduced by Duchamp (ibid.). This was pointed out to me by Christophe Reutenauer.

This section concludes with a helpful observation concerning the order reversing involution $\varrho_{n}=n(n-1) \cdots 1 \in \mathcal{S}_{n}$.

Proposition $2.5 \varrho_{n} \operatorname{Lie}_{n}+\operatorname{Lie}_{n} \varrho_{n} \subseteq \operatorname{Lie}_{n}$, and $\varrho_{n} Q_{n}+Q_{n} \varrho_{n} \subseteq Q_{n}$.
In particular, $\pi \equiv_{\mathrm{LQ}} \sigma$ implies $\pi \varrho_{n} \equiv_{\mathrm{LQ}} \sigma \varrho_{n}$ and $\varrho_{n} \pi \equiv_{\mathrm{LQ}} \varrho_{n} \sigma$, for all $\pi, \sigma \in \mathcal{S}_{n}$.
Proof First, $\omega_{n} \varrho_{n}=(-1)^{n-1} \omega_{n}$ yields $\operatorname{Lie}_{n} \varrho_{n} \subseteq \operatorname{Lie}_{n}$, while $\varrho_{n} \operatorname{Lie}_{n} \subseteq \operatorname{Lie}_{n}$ is obvious; and second, if $\sigma, \pi \in S_{n}$ such that $\sigma \equiv_{Q} \pi$, then $\sigma \varrho_{n} \equiv_{Q} \pi \varrho_{n}$ and $\varrho_{n} \sigma \equiv_{Q} \varrho_{n} \pi$, as is readily seen from Proposition 2.2. This implies $\varrho_{n} Q_{n} \subseteq Q_{n}$ and $Q_{n} \varrho_{n} \subseteq Q_{n}$.

In particular, it follows that $\varrho_{n}\left(\operatorname{Lie}_{n} \cap Q_{n}\right)^{\perp}+\left(\operatorname{Lie}_{n} \cap Q_{n}\right)^{\perp} \varrho_{n} \subseteq\left(\operatorname{Lie}_{n} \cap Q_{n}\right)^{\perp}$, since ϱ_{n} is an involution.

3 Coplactic Lie Elements

The aim of this section is to show Lie $\cap \mathcal{Q} \subseteq \mathcal{D}$, which implies Theorem 1, as was mentioned in the previous section. Throughout, $n \in \mathbb{N}$ is fixed. Bearing in mind Proposition 2.1, it suffices to show that

$$
\begin{equation*}
\operatorname{uaw}(a+1) s \equiv_{\mathrm{LQ}} u(a+1) \text { was } \tag{6}
\end{equation*}
$$

whenever $a \in[n-1], u, s, w \in \mathbb{N}^{*}$ such that $u a w(a+1) s \in \mathcal{S}_{n}$ and $w \neq \varnothing$.

Not surprisingly, the essential idea of the proof is to use proper coplactic and Lie relations on the left hand side of (6) to obtain an element $\varphi \in \mathbb{Z} \mathcal{S}_{n}$ such that $\varphi \equiv_{\mathrm{Q}} \hat{\varphi}$, where $\hat{\varphi}$ is obtained by exchanging a and $a+1$ in φ, and to apply the same coplactic and Lie relations (in reverse order) to $\hat{\varphi}$ to obtain the right hand side of (6) (see Proposition 3.4). This concept is illustrated by the following:

Example 3.1 Let $a=1, \pi=15234, \sigma=25134 \in \mathcal{S}_{5}$. Then π and σ are in descent, but not in coplactic relation. But applying (4) yields

$$
\begin{aligned}
\pi & \equiv_{L}-5(1 \text { ш } 234) \\
& =-51234-52134-52314-52341 \\
& \equiv_{Q}-51234-52134-51324-51342 \\
& =-5(2 ш 134) \\
& \equiv_{L} \sigma
\end{aligned}
$$

hence $\pi \equiv_{\text {LQ }} \sigma$.
In the general case, however, the proof has a quite intricate inductive structure. Some additional preparations are needed. $v \in \mathbb{N}^{*}$ is called a sub-word of $w=$ $w_{1} \cdots w_{m} \in \mathbb{N}^{*}$ if there exist $k \in[m]$ and $1 \leq i_{1}<\cdots<i_{k} \leq m$ such that $v=w_{i_{1}} \cdots w_{i_{k}}$. For instance, 23 is a sub-word of 52143.

For $a \in[n-1]$, denote by $\tau_{a}=(a, a+1)$ the transposition in \mathcal{S}_{n} swapping a and $a+1$. The word v allows the a-switch in \mathcal{S}_{n} if $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$ for all $\pi=u a w(a+1) s \in \mathcal{S}_{n}$ such that v is a sub-word of w. For instance, $v=a+2$ and $v=a-1$ allow the a-switch in S_{n}, by (3). To save trouble, let it be said that, if v contains a letter twice or a letter $b>n$ or $b \in\{a, a+1\}$, then v allows the a-switch in S_{n}; for in this case, there is no permutation $\pi=\operatorname{uaw}(a+1) s \in S_{n}$ such that v is a sub-word of w. Another way of stating (6) now is that $v \in \mathbb{N}^{*}$ allows the a-switch in S_{n} whenever $v \neq \varnothing$. The following three helpful observations will be applied frequently.

Proposition 3.2 Let $v \in \mathbb{N}^{*}$ such that $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$ for all

$$
\pi=a w(a+1) s \in \mathcal{S}_{n}
$$

such that v is a sub-word of w, then v allows the a-switch in S_{n}.
Proof Let $\pi=\operatorname{uaw}(a+1) s \in \mathcal{S}_{n}$ such that v is a sub-word of w, then

$$
\pi \equiv_{L}(-1)^{\ell(u)} a(\bar{u} \amalg w(a+1) s)
$$

by (4). Each summand in this shuffle product is of the form $a \hat{w}(a+1) \hat{s}$ such that w (hence also v) is a sub-word of \hat{w}. It follows that

$$
\pi \equiv_{\mathrm{LQ}}(-1)^{\ell(u)}(a+1)(\bar{u} \sqcup w a s) \equiv_{L} u(a+1) \text { was }=\tau_{a} \pi
$$

hence v allows the a-switch in \mathcal{S}_{n}.

Proposition 3.3 Let $v=v_{1} \cdots v_{m} \in \mathbb{N}^{*}$ and assume that v allows the a-switch in \mathcal{S}_{n}, then so does \bar{v}. Furthermore, if

$$
\tilde{v}:=\left(n+1-v_{1}\right) \cdots\left(n+1-v_{m}\right) \in \mathbb{N}^{*}
$$

then \tilde{v} allows the $(n-a)$-switch in S_{n}.
This is an immediate consequence of Proposition 2.5.

Proposition 3.4 Let $\pi \in \mathcal{S}_{n}$ and $\varphi_{0}, \ldots, \varphi_{m} \in \mathbb{Z} S_{n}$ such that
(i) $\varphi_{0}=\pi$,
(ii) $\varphi_{i} \equiv_{L} \varphi_{i+1}$, or $\varphi_{i} \equiv_{Q} \varphi_{i+1}$ and $\tau_{a} \varphi_{i} \equiv_{Q} \tau_{a} \varphi_{i+1}$, for all $i \in[m-1] \cup\{0\}$,
(iii) $\varphi_{m} \equiv_{\mathrm{LQ}} \tau_{a} \varphi_{m}$,
then $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$.
Proof $\varphi \equiv_{L} \psi$ implies $\tau_{a} \varphi \equiv_{L} \tau_{a} \psi$ for all $\varphi, \psi \in \mathbb{Z} \mathcal{S}_{n}$, since $\tau_{a} \operatorname{Lie}_{n}=$ Lie $_{n}$. Combined with (ii), this yields $\tau_{a} \varphi_{i} \equiv_{\mathrm{LQ}} \tau_{a} \varphi_{i+1}$ for all $i \in[m-1] \cup\{0\}$, hence

$$
\pi=\varphi_{0} \equiv_{\mathrm{LQ}} \varphi_{1} \equiv_{\mathrm{LQ}} \cdots \equiv_{\mathrm{LQ}} \varphi_{m} \equiv_{\mathrm{LQ}} \tau_{a} \varphi_{m} \equiv_{\mathrm{LQ}} \cdots \equiv_{\mathrm{LQ}} \tau_{a} \varphi_{1} \equiv_{\mathrm{LQ}} \tau_{a} \varphi_{0}=\tau_{a} \pi
$$

by (i) and (iii).

We now show in four steps that each $v \in \mathbb{N}^{*} \backslash\{\varnothing\}$ allows the a-switch in \mathcal{S}_{n}. The first step is crucial and depends heavily on Lie relations. In Steps 2 and 3, proper coplactic relations are then used to deduce from Step 1 that $v \in \mathbb{N}^{*}$ allows the a-switch in \mathcal{S}_{n} whenever $\ell(v) \geq 2$. As a final step, in Theorem 2, the general idea described at the beginning of this section is used once more to show that this already implies (6) as desired.

Step 1 Let $a, k \in[n-1]$ such that $k>a+1$, then $k(k+1)$ and $(k+1) k$ allow the a-switch in \mathcal{S}_{n}.

Proof Let $\pi=a w(a+1) s \in \mathcal{S}_{n}$ such that $k(k+1)$ or $(k+1) k$ is a sub-word of w. It suffices to prove $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$, by Proposition 3.2.

If $k=a+2$, then this follows from (3). Let $k \geq a+3$, and proceed by induction on k.

If $k-1$ occurs in w, then $\pi \equiv_{\text {LQ }} \tau_{a} \pi$, by induction. Let $k-1$ occur in s.
If $k=a+3$ and $\pi=a u_{1}(a+3) u_{2}(a+4) u_{3}(a+1) u_{4}(a+2) u_{5}$, then

$$
\pi \equiv_{Q} a u_{1}(a+2) u_{2}(a+4) u_{3}(a+1) u_{4}(a+3) u_{5} .
$$

Applying Proposition 3.4, yields $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$ in this case. In particular, $(a+3)(a+4)$ allows the a-switch in \oint_{n}, hence also $(a+4)(a+3)$, by Proposition 3.3.

Now let $k>a+3$. If $k-2$ occurs in w, then there are $u_{i} \in \mathbb{N}^{*}(i \in[5])$ such that either

$$
\begin{aligned}
\pi & =a u_{1} k u_{2}(k-2) u_{3}(a+1) u_{4}(k-1) u_{5} \\
& \equiv_{Q} a u_{1}(k-1) u_{2}(k-2) u_{3}(a+1) u_{4} k u_{5}=: \varphi
\end{aligned}
$$

or

$$
\begin{aligned}
\pi & =a u_{1}(k-2) u_{2} k u_{3}(a+1) u_{4}(k-1) u_{5} \\
& \equiv_{Q} a u_{1}(k-1) u_{2} k u_{3}(a+1) u_{4}(k-2) u_{5}=: \varphi .
\end{aligned}
$$

In both cases, $\varphi \equiv_{\mathrm{LQ}} \tau_{a} \varphi$, by induction, hence $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$, by Proposition 3.4.
Assume that $k-2$ occurs in s. Then there are $u_{i} \in \mathbb{N}^{*}(i \in[6])$ such that one of the following four cases holds.

Case $1 \pi=a u_{1}(k+1) u_{2} k u_{3}(a+1) u_{4}(k-2) u_{5}(k-1) u_{6}$, then $\pi \equiv_{Q} \tau_{k-1} \pi \equiv_{Q}$ $\tau_{k} \tau_{k-1} \pi$, and

$$
\tau_{k} \tau_{k-1} \pi=a u_{1} k u_{2}(k-1) u_{3}(a+1) u_{4}(k-2) u_{5}(k+1) u_{6} \equiv_{\mathrm{LQ}} \tau_{a}\left(\tau_{k} \tau_{k-1} \pi\right),
$$

by induction. Again Proposition 3.4 implies $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$.
Case $2 \pi=a u_{1} k u_{2}(k+1) u_{3}(a+1) u_{4}(k-1) u_{5}(k-2) u_{6}$, then put $m:=\ell\left(u_{4}\right)+$ $\ell\left(u_{5}\right)+\ell\left(u_{6}\right)+2$ and

$$
\varphi:=(-1)^{n-1+m}(a+1)\left(u_{4} k u_{5}(k-2) u_{6} ш \bar{u}_{3}(k+1) \bar{u}_{2}(k-1) \bar{u}_{1} a\right)
$$

to obtain $\pi \equiv_{Q} a u_{1}(k-1) u_{2}(k+1) u_{3}(a+1) u_{4} k u_{5}(k-2) u_{6} \equiv_{L} \varphi$, by (5). For all summands ν in φ with k to the left of a, that is $\nu^{-1}(k)<\nu^{-1}(a), \nu \equiv_{\mathrm{LQ}} \tau_{a} \nu$, by induction, while each of the summands ν with k to the right of a is of the form

$$
\nu=(a+1) v_{1}(k+1) v_{2}(k-1) v_{3} a v_{4} k v_{5} \equiv_{Q} \tau_{k} \nu
$$

hence $\nu \equiv_{\mathrm{LQ}} \tau_{a} \nu$, by induction and Proposition 3.4. Putting both parts together yields $\varphi \equiv_{\mathrm{LQ}} \tau_{a} \varphi$, hence $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$, by Proposition 3.4.

Case $3 \pi=a u_{1}(k+1) u_{2} k u_{3}(a+1) u_{4}(k-1) u_{5}(k-2) u_{6}$, then putting $m:=\ell\left(u_{4}\right)+$ $\ell\left(u_{5}\right)+\ell\left(u_{6}\right)+2$,

$$
\pi \equiv_{L}(-1)^{n-1+m}(a+1)\left(u_{4}(k-1) u_{5}(k-2) u_{6} \amalg \bar{u}_{3} k \bar{u}_{2}(k+1) \bar{u}_{1} a\right),
$$

by (5). For each of the summands, swapping a and $a+1$ yields an LK-equivalent permutation, since either $k-1$ stands to the left of a and the induction hypothesis may be applied, or $k-1$ stands to the right of a and Case 2 may be applied. Thus $\pi \equiv{ }_{\text {LQ }} \tau_{a} \pi$, by Proposition 3.4.

Combining cases 1 and 3 shows that $(k+1) k$ allows the a-switch in \oint_{n}, hence also $k(k+1)$, by Proposition 3.3. This, in particular, yields the assertion in the remaining case:

Case $4 \pi=a u_{1} k u_{2}(k+1) u_{3}(a+1) u_{4}(k-2) u_{5}(k-1) u_{6}$.
For the proof of the second step, an auxiliary result is needed, which is based on the following two observations:

$$
\begin{equation*}
(k+1) 123 \cdots(k-1) k \equiv_{Q} 2134 \cdots k(k+1) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
12 \cdots(j-2)(j-1)(j+1) j \equiv_{Q} 23 \cdots(j-1) j(j+1) 1 \tag{8}
\end{equation*}
$$

for all $j, k \in \mathbb{N}$.
Proposition 3.5 Let $k, x \in[n], j \in[k], v_{1}, \ldots, v_{k+1}, w \in \mathbb{N}^{*}$ and set $x_{i}:=x+i$ for all $i \in[k+1]$. If

$$
\pi:=v_{1} x_{1} v_{2} x_{2} \cdots v_{j-1} x_{j-1} \quad v_{k+1} x_{k+1} v_{j} x_{j} v_{j+1} x_{j+1} \cdots v_{k} x_{k} \quad w
$$

is contained in S_{n}, then

$$
\pi \equiv \equiv_{Q} v_{1} x_{2} v_{2} x_{3} \cdots v_{j-1} x_{j} \quad v_{k+1} x_{j+1} v_{j} x_{1} v_{j+1} x_{j+2} \cdots v_{k} x_{k+1} w
$$

Proof The proof is split into two parts, the first of which is (up to the constant summand x_{j-1}) covered by (7), applied to $x_{k+1} x_{j} x_{j+1} \cdots x_{k}$; while the second is (up to the constant summand x) immediate from (8), applied to $x_{1} x_{2} \cdots x_{j-1} x_{j+1} x_{j}$.

More formally, let $u:=v_{1} x_{1} v_{2} x_{2} \cdots v_{j-1} x_{j-1}$ and $\hat{u}:=v_{j+1} x_{j+2} \cdots v_{k} x_{k+1} w$. Then

$$
\begin{aligned}
& \pi=u v_{k+1} \underline{x_{k+1}} v_{j} x_{j} v_{j+1} x_{j+1} \cdots v_{k-1} x_{k-1} v_{k} \underline{x_{k}} \quad w \\
& \equiv_{Q} u v_{k+1} \underline{x_{k}} \quad v_{j} x_{j} v_{j+1} x_{j+1} \cdots v_{k-1} \underline{x_{k-1}} v_{k} x_{k+1} w \\
& \equiv_{Q} u v_{k+1} x_{j+1} v_{j} x_{j} v_{j+1} x_{j+2} \cdots v_{k-1} x_{k} \quad v_{k} x_{k+1} w \\
& =v_{1} x_{1} v_{2} x_{2} \cdots v_{j-2} x_{j-2} v_{j-1} \underline{x_{j-1}} v_{k+1} x_{j+1} v_{j} \underline{x_{j}} \quad \hat{u} \\
& \equiv_{Q} v_{1} x_{1} v_{2} x_{2} \cdots v_{j-2} \underline{x_{j-2}} v_{j-1} x_{j} \quad v_{k+1} x_{j+1} v_{j} x_{j-1} \hat{u} \\
& \equiv_{Q} v_{1} x_{2} v_{2} x_{3} \cdots v_{j-2} x_{j-1} v_{j-1} x_{j} \quad v_{k+1} x_{j+1} v_{j} x_{1} \quad \hat{u}
\end{aligned}
$$

as asserted, where the letters in question are underlined in each step.

Step 2 Let $a \in[n-1]$ and $x, y \in[n]$ such that $x, y>a+1$ or $x, y<a$, then $x y$ allows the a-switch in \mathcal{S}_{n}.

In particular, if $v \in \mathbb{N}^{*}$ such that $\ell(v) \geq 3$, then v allows the a-switch in \mathcal{S}_{n}.
Proof If $x=y$, there is nothing to prove; let $x \neq y$. Let $\pi=a w(a+1)$ s such that $x y$ is a sub-word of w.

Consider first the case where $x, y>a+1$. We may assume that $x<y$, by Proposition 3.3. The proof is done by induction on $m:=y-x$.

If $m=1$, then $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$ follows from Step 1 .
Let $m>1$, and set $x_{i}:=x+i$ for all $i \in \mathbb{N}$. Inductively, the case where x_{i} occurs in s for all $i \in[m-1]$ remains.

Choose $k \in[m-1]$ maximal such that $\pi^{-1}\left(x_{1}\right)<\pi^{-1}\left(x_{2}\right)<\cdots<\pi^{-1}\left(x_{k}\right)$, that is

$$
\pi=a u_{1} x u_{2} y u_{3}(a+1) v_{1} x_{1} v_{2} x_{2} \cdots v_{k} x_{k} v_{k+1}
$$

for suitably chosen $u_{i}, v_{i} \in \mathbb{N}^{*}$.
If $x_{k}=y-1$, then either $m=2$ and $\pi \equiv_{Q} \tau_{x} \pi$, or $m>2$ and $\pi \equiv_{Q} \tau_{y-1} \pi$; in both cases, $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$, by induction and Proposition 3.4.

Let $x_{k}<y-1$, then $y>x_{2}$; and there is an index $j \in[k]$ such that $\pi^{-1}\left(x_{j-1}\right)<$ $\pi^{-1}\left(x_{k+1}\right)<\pi^{-1}\left(x_{j}\right)\left(\right.$ where $x_{0}:=x$ if $\left.j=1\right)$. Let $t:=a u_{1} x u_{2} y u_{3}(a+1)$, then

$$
\begin{aligned}
\pi & =t v_{1} x_{1} v_{2} x_{2} \cdots v_{j-1} x_{j-1} v_{j}^{(1)} x_{k+1} v_{j}^{(2)} x_{j} v_{j+1} x_{j+1} \cdots v_{k} x_{k} v_{k+1} \\
& \equiv_{Q} t v_{1} x_{2} v_{2} x_{3} \cdots v_{j-1} x_{j} v_{j}^{(1)} x_{j+1} v_{j}^{(2)} x_{1} v_{j+1} x_{j+2} \cdots v_{k} x_{k+1} v_{k+1} \\
& =: \hat{\pi}
\end{aligned}
$$

by Proposition 3.5. For example, consider

$$
\pi=14122591061178 \in \mathcal{S}_{12}
$$

(and $a=1, x=4, y=12$), then $k=4$, since $x_{5}=9$ stands to the left of $x_{4}=8$. In this case,

$$
\pi \equiv_{Q} \hat{\pi}=14122671051189
$$

and there is the relation $\hat{\pi} \equiv_{Q} \tau_{4} \hat{\pi}$. Indeed, $\hat{\pi} \equiv_{Q} \tau_{x} \hat{\pi}$ holds in the general case, since $\hat{\pi}^{-1}(x)<\hat{\pi}^{-1}\left(x_{2}\right)<\hat{\pi}^{-1}\left(x_{1}\right)$. Now, by induction, $\tau_{x} \hat{\pi} \equiv_{\mathrm{LQ}} \tau_{a}\left(\tau_{x} \hat{\pi}\right)$, hence also $\hat{\pi} \equiv_{\text {LQ }} \tau_{a} \hat{\pi}$, by Proposition 3.4. Another application of Proposition 3.4 yields $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$ and completes the proof in the case $x, y>a+1$.

Now assume that $x, y<a$, then $n+1-x, n+1-y>(n-a)+1$, hence $(n+1-x)(n+1-y)$ allows the $(n-a)$-switch in \oint_{n}, by the part already proven. As a consequence, $x y$ allows the a-switch in \mathcal{S}_{n}, by Proposition 3.3.

If $v \in \mathbb{N}^{*}$ such that there are three distinct letters $\neq a, a+1$ occurring in v, then at least two of these are $<a$ or $>a+1$. This completes the proof.

Step 3 Let $a \in[n-1]$ and $v \in \mathbb{N}^{*}$ such that $\ell(v) \geq 2$, then v allows the a-switch in S_{n}.

Proof By (3) and Step 2, the case where $v=x y$ such that and $x<a-1$ and $y>a+2$, or $y<a-1$ and $x>a+2$, remains. By Proposition 3.3, it suffices to consider the case of $x<a-1$ and $y>a+2$. Let $\pi=a w(a+1) s \in \mathcal{S}_{n}$ such that $x y$ is a sub-word of w. If $\ell(w) \geq 3$, then $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$ follows from Step 2.

Let $w=x y$, then each of the letters $x+1, x+2, \ldots, a-1$ occurs in s, and $y>$ $a+1>a>a-1 \geq x+1$. Applying Step 2 a number of times implies

$$
\pi \equiv_{\mathrm{LQ}} \tau_{x} \pi \equiv_{\mathrm{LQ}} \tau_{x+1} \tau_{x} \pi \equiv_{\mathrm{LQ}} \cdots \equiv_{\mathrm{LQ}} \tau_{a-2} \cdots \tau_{x+1} \tau_{x} \pi=a(a-1) y(a+1) \hat{s}
$$

for a properly chosen $\hat{s} \in \mathbb{N}^{*}$, hence $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$ as asserted, by Proposition 3.4.
As the final step, we are now in a position to state and prove:

Theorem 2 Lie $\cap Q \subseteq \mathcal{D}$.

Proof It suffices to prove $\operatorname{Lie}_{n} \cap Q_{n} \subseteq \mathcal{D}_{n}$, since Lie $\cap \mathcal{Q}=\bigoplus_{n \geq 0} \operatorname{Lie}_{n} \cap Q_{n}$. By Proposition 3.2, Step 3 and (6), it thus remains to be shown that $\pi \equiv_{\mathrm{LQ}} \tau_{a} \pi$ whenever $x, a \in[n], s \in \mathbb{N}^{*}$ such that $\pi=a x(a+1) s \in \mathcal{S}_{n}$.

If $n=3$, this is immediate. Let $n>3$ and choose $y \in \mathbb{N}$ and $u \in \mathbb{N}^{*}$ such that $s=y u$, then

$$
\begin{aligned}
\pi & =a x(a+1) y u \\
& =a((a+1) ш x y u)-a(a+1) x y u-a x y((a+1) ш u) \\
& \equiv_{L}-(a+1) a x y u-a(a+1) x y u-a x y((a+1) ш u), \quad \text { by (4) } \\
& \equiv_{\mathrm{LQ}}-(a+1) a x y u-a(a+1) x y u-(a+1) x y(a ш u), \quad \text { by Step } 3 \\
& \equiv_{L}(a+1)(a \amalg x y u)-(a+1) a x y u-(a+1) x y(a ш u), \quad \text { by }(4) \\
& =(a+1) x a y u \\
& =\tau_{a} \pi .
\end{aligned}
$$

The theorem is proved.
Denote by Δ the coproduct in \mathcal{P} (as in [MR95, p. 977]), and by $\epsilon \in \mathcal{S}_{0}$ the identity of \mathcal{P}. For any a Hopf subalgebra \mathcal{A} of \mathcal{P}, let

$$
\operatorname{Prim}(\mathcal{A})=\{\alpha \in \mathcal{A} \mid \Delta(\alpha)=\alpha \otimes \epsilon+\epsilon \otimes \alpha\}
$$

be the primitive Lie algebra of \mathcal{A}, and denote by $\operatorname{Prim}(\mathcal{A})_{n}$ its n-th homogeneous component. The subalgebra \mathcal{C} of \mathcal{P} generated by $\operatorname{Prim}(\mathcal{P})$ (the domain of co-commutativity of \mathcal{P}) contains \mathcal{L}. Furthermore, $\mathcal{C} \cap \mathcal{Q}$ (the domain of co-commutativity of Q) is generated by $\operatorname{Prim}(\mathcal{Q})$ and contains $\mathcal{D}=\mathcal{L} \cap \mathcal{Q}$.

It turns out that \mathcal{D} is strictly contained in $\mathcal{C} \cap \mathcal{Q}$. Indeed, $\varphi=3412+2413-$ $(3142+2143) \in \mathcal{Q}_{4} \backslash \mathcal{D}_{4}$, and $\Delta(\varphi)=\varphi \otimes \epsilon+\epsilon \otimes \varphi$. For $n=4,5,6$, the dimension of $\operatorname{Prim}(\mathcal{D})_{n}$ is, respectively, 3,6 , and 9 , while the dimension of $\operatorname{Prim}(\mathbb{Q})_{n}$ is, respectively, 4,9 , and 26. A description of the elements of $\operatorname{Prim}(\mathcal{D})_{n}$ as well as of its dimension is known in general ([BL93, 4.5], [BL96, 1.5]). It would be of interest if analogous results for Q were obtained.

References

[AS]	M. Aguiar and F. Sottile, Structure of the Malvenuto-Reutenauer Hopf algebr permutations. Preprint math.CO/020328228.
[BL93]	D. Blessenohl and H. Laue, Algebraic combinatorics related to the free Lie algebra. In: Publ. IRMA Strasbourg, Actes 29, Séminaire Lotharingien, 1993, 1-21.
[BL96]	\qquad On the descending Loewy series of Solomon's descent algebra. J. Algebra 180(1996), 698-724.
[BS]	D. Blessenohl and M. Schocker, Noncommutative character theory of symmetric groups I: the Jöllenbeck method. Preprint.
[Cha00]	F. Chapoton, Bigèbres différentielles graduées associées aux permutoèdres, associaèdres et hypercubes. Ann. Inst. Fourier (Grenoble) 50(2000), 1127-1153.
[DHT]	G. Duchamp, F. Hivert and J.-Y. Thibon, Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras. Int. J. Alg. Comput. 12(2002), 671-717.
[Duc91]	G. Duchamp, Orthogonal projection onto the free Lie algebra. Theoret. Comput. Sci. 79(1991), 227-239.
[Dyn47]	E. B. Dynkin, Calculation of the coefficients of the Campbell-Hausdorff formula. Dokl. Akad. Nauk SSSR 57(1947), 323-326.
$\left[\mathrm{GKL}^{+} 95\right]$	I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. Retakh and J.-Y. Thibon, Noncommutative symmetric functions. Adv. in Math. 112(1995), 218-348.
[GR89]	A. M. Garsia and C. Reutenauer, A decomposition of Solomon's descent algebra. Adv. in Math. 77(1989), 189-262.
[Jöl99]	A. Jöllenbeck, Nichtkommutative Charaktertheorie der symmetrischen Gruppen. Bayreuth. Math. Schr. 56(1999), 1-41.
[JR01]	A. Jöllenbeck and C. Reutenauer, Eine Symmetrieeigenschaft von Solomons Algebra und der höheren Lie-Charaktere. Abh. Math. Sem. Univ. Hamburg 71(2001), 105-111.
[Knu70]	D. E. Knuth, Permutations, matrices and generalized Young-tableaux. Pacific J. Math. 34(1970), 709-727.
[LR98]	J.-L. Loday and M. O. Ronco, Hopf algebra of the planar binary trees. Adv. in Math. 139(1998), 293-309.
[LS81]	A. Lascoux and M. P. Schützenberger, Le monö̈de plaxique. In: Noncommutative Structures in algebra and geometric combinatorics, A. de Luca Ed., Quaderni della Ricerca Scientifica del C.N.R., Roma, 1981.
[MM65]	J. W. Milnor and J. C. Moore, On the structure of Hopf algebras. Ann. of Math. 81(1965), 211-264.
[MR95]	C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(1995), 967-982.
[PR95]	S. Poirier and C. Reutenauer, Algébres de Hopf de Tableaux. Ann. Sci. Math. Québec 19(1995), 79-90.
[PR01]	F. Patras and C. Reutenauer, Lie representations and an algebra containing Solomon's. J. Algebraic Combin. 16(2002), 301-314.
[Reu93]	C. Reutenauer, Free Lie Algebras. London Math. Soc. Monogr. (N.S.) 7, Oxford University Press, 1993.
[Sch61]	C. Schensted, Longest Increasing and Decreasing Subsequences. Canad. J. Math. 13(1961), 179-191.
[Sch63]	M. P. Schützenberger, Quelques remarques sur une construction de Schensted. Math. Scand. 12(1963), 117-128.
[Sol76]	L. Solomon, A Mackey formula in the group ring of a Coxeter group. J. Algebra 41(1976), 255-268.
[Spe48]	W. Specht, Die linearen Beziehungen zwischen höheren Kommutatoren. Math. Z. 51(1948), 367-376.
[Wev49]	F. Wever, Über Invarianten in Lieschen Ringen. Math. Ann. 120(1949), 563-580.

Mathematical Institute

24-29 St. Giles'
Oxford OX1 3LB
U.K.
e-mail: schocker@maths.ox.ac.uk

[^0]: Received by the editors September 24, 2002; revised December 4, 2002.
 The author was supported by the Research Chairs of Canada.
 AMS subject classification: 17B01, 05E10, 20C30, 16W30.
 Keywords: symmetric group, descent set, coplactic relation, Hopf algebra, convolution product.
 (C)Canadian Mathematical Society 2004.
 ${ }^{1}$ The algebra $(\mathbb{Z C}, *, \delta)$ introduced in [PR95] is the dual algebra of the algebra Q considered here (see [PR95, Théorème 3.4]).

[^1]: ${ }^{2}$ According to Schützenberger ([Sch63]), $P(\pi)=Q\left(\pi^{-1}\right)$ is the Schensted P-symbol of π; and the equivalence arising from equality of P-symbols leads to the plactic monoid ([LS81]). This is the reason why the word coplactic is used here.

