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G(n) denotes a graph of n ver t ices and G(n) denotes 
its complementary graph. In a complete graph every two 
distinct ver t ices a re joined by an edge. Let C (G(n)) denote 

the number of complete subgraphs of k ver t ices contained in 
G(n). Recently it was proved [1] that for every k 

(1) min 
it?) 

(C k (G(n))+C k (G(n))) < — 

where the minimum is over all graphs G(n). It seems likely 
that (1) is not far from being best possible and that 

Ck(G(n)) + Ck(G(n)) 2 

(2) Iim min 

("J SI) n->oo 
i v / 

2 
That this is t rue for k = 3 follows from the resul ts of 
Goodman [2], Sauvé [5], and Lorden [3]. We are unable to 
prove (2) for k > 3 but we can prove an analogous resul t for 
biparti te graphs. 

The biparti te graph B(m,n) consists of the ver t ices 
x . . . . , x and y . . . , , y and some of the edges (x., y.) . 

1 m 1 n l j 

B(m,n) has the same ve r t i ces , and the edge (x., y.) is in 

B(m,n) if it is not in B(m,n) . If B(m,n) contains mn 
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e d g e s then i t w i l l be r e f e r r e d to a s the c o m p l e t e ( m , n ) g r a p h . 

Le t C ( B ( m , n ) ) denote the n u m b e r of c o m p l e t e ( k , i ) 
k , i 

g r a p h s con ta ined in B ( m , n ) . We sha l l p r o v e the fol lowing 

T H E O R E M . F o r fixed p o s i t i v e i n t e g e r s k and I 

C k i ( B ( m , n ) ) + C k ^ (B(m, n)) 2 

l i m m i n 
/m\ / n \ „kj? 

n -*oo GKI 
w h e r e the m i n i m u m i s to be t aken ove r a l l g r a p h s B ( m , n ) a s 
m and n tend to infini ty i ndependen t ly . 

We sha l l p r o v e t h i s t h e o r e m in two s t e p s . F i r s t we 
o b s e r v e tha t 

QQ 
(3) m i n ( C ( B ( m , n ) ) + C ( B ( m , n ) ) ) < ^ . 

The proof of t h i s i s qui te s i m i l a r to tha t of (1) but for the sake 
of c o m p l e t e n e s s we s h a l l out l ine i t . 

T h e r e a r e / if J c o m p l e t e ( k , i ) g r a p h s con ta ined in 

the c o m p l e t e ( m , n ) g r a p h . The p r o b a b i l i t y tha t any one of 

t h e s e i s e n t i r e l y con ta ined in e i t h e r B ( m , n ) o r B ( m , n ) i s 
, kJL 

c l e a r l y 2 / 2 , a s s u m i n g a l l p o s s i b i l i t i e s equa l ly l ike ly . 
H e n c e , the e x p e c t e d v a l u e of Y = C, ( B ( m , n ) ) + C (B(m,n ) ) 

yd k , i 
e q u a l s the r i g h t - h a n d s ide of (3). Since Y i s g r e a t e r t han the 
r i g h t - h a n d s ide when B ( m , n) i s the c o m p l e t e (m, n) g r a p h , 
the s t r i c t i nequa l i ty (3) now fol lows i m m e d i a t e l y . 

The r e s t of our proof m a k e s u s e of the following s i m p l e 

LEMMA. Le t t h e r e be g iven i n t e g r a b l e func t ions f.(x) 

and g.(x), i = l , 2 , . . . , m , such tha t f.(x) + g.(x) = 1 and 
l i i 

0 < f . ( x ) < l for a l l 0 < x < l . L e t 
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0 v 1 
(x) . . . £. (x) + 2 g. (x) . . . g. (x)} 

\ \ \ I 
dx , 

where the sums a re over the [ J unordered k-tuples of distinct 

functions. Then, for every € > 0, 
1 

T ± ( 1 - V i ; ( k ) ' if m > m o 

Proof. Let 

H - Î T / 
' m V 

S f.(x) J + ( S g.{x) 

. k l 

dx 

Using the Cauchy-Schwa rz inequality and crude es t imates , we 
find that 

2 #mi 

i r l y ) < H < T + k T ( m - "W 

But m - m,, . =0(m ), for fixed k, as m -*oo . The 
(k) 

lemma now follows directly. 

We now show that for every € > 0 

(4) C k > i ( B ( m , n ) ) + C k > i ( B ( m , n , , > ( ! - , ) — £ ) ( » ) . 

if m > m and n > n . 
o o 

i-1 i 
If —— < x <— set f (x) = 1 or 0 according as the edge 

n — n i__ 
(x.,y.) is in B(m,n) or B(m,n) , respectively, for i = 1, 2 , . . . , m 

and j = l , 2 , . . . , n . Set f.(0) = 0 and g.(x) = 1 - f.(x) for all i. 
i l l 

Label the k-tuples of the x points from 1 to I j . Let t 

and h denote the number of points y for which the edge 
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(x.,y) is in B(m, n) or B(m,n) , respect ively, for each point 

x. in the v k-tuple of points. It is not difficult to see that 
l 

P 
2 (t + h ) = nT. v v 

v=l 

Applying Jensen1 s inequality, we have that 

C (B(m,n)) + C (B(m,n)) = S 
*•'*• ' l v = l 

Using the lemma, a simple calculation shows that this last 
quantity is grea ter than or equal to 

«-"Tsratfi • 2 

for sufficiently large m and n. This completes the proof 
of (4) and the theorem now follows by combining (3) and (4). 

It seems very unlikely that one can replace (4) by an exact 
lower bound in general . Lower bounds a re given in [4] for the 
case that m =n and k = i =2 but it isn11 known if even these 
are exact when n > 10. 

In closing, we r e m a r k that the above theorem can easily 
be extended to the case where the edges of the complete (m,n) 
graph are split into an a rb i t r a ry number of c l a s ses instead of 
just two, as supposed he re . 
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