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Abstract. A compact and isolated invariant set of a continuous flow possesses a so
called Conley index, which is the homotopy type of a pointed compact space. For
this index a well known continuation property holds true. Our aim is to prove in
this context a continuation theorem for the invariant set itself, using an additional
structure. This refinement of Conley's index theory will then be used to prove a
global and topological continuation-theorem for normally hyperbolic invariant sets.

1. Introduction
The homotopy index theory of C. Conley has proved to be a useful tool in the
investigation of qualitative properties of nonlinear problems. Postponing the tech-
nical definitions to the next section we recall that to any isolated invariant set S of
a continuous flow on F one can associate an index I(S), which is the homotopy
type of a pointed space XI A. Here the compact pair (X, A) is an arbitrary index
pair for S, X being an isolating neighbourhood of S and A being the exit set, see
[2] and [3]. One of the crucial and most useful properties of the homotopy index
is that it is invariant under continuation, similar to the invariance of the Leray
Schauder index.

In particular, if S, and S2 are related by continuation, then /(51) = /(S2) and
there is an isomorphism j of the Alexander cohomology

j:H*(X],A])^H*(X2,A2)

of the corresponding index pairs for 5, and S2, respectively. The topology of the
invariant set 5 is, however, in general not an invariant under continuation. In fact,
even if I(S) is very complicated, one cannot conclude that S contains more than
one point.

It is the aim of this note to show that an additional structure, which actually
occurs in applications, can be used to define an additional invariant of S under
continuation, which carries along some topology of S itself. To be more precise,
the additional structure is a continuous map a:F-*T into a topological space T.
Using this map one defines an operation of the cohomology ring H*( T) on H*(X, A)
by

•a:H*(T)xH*(X,A)->H*(X,A):(v, u)-> {a x)* v KJ u (1.1)
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94 A. Floer

Here, a\x :X^> T is the restriction of a and u : H*(X)®H*(X, A)^H*(X, A) is
the cup product. The first result is that this H*(T)-module structure of H*(X, A)
is an invariant of S under continuation.

We shall apply this construction to prove a continuation result for a normally
hyperbolic invariant manifold S in the special case where S is a retract of F. In
fact, as long as the hypothesis of the continuation invariance of the homotopy index
is preserved, the cohomology of S will be shown to be stable in a certain sense. It
is of course well known that under appropriate conditions, see [5] and [9], a normally
hyperbolic invariant manifold of a differentiable flow persists under small and
smooth perturbations. In contrast to this we prove a global continuation theorem,
giving up, of course, the differentiable structure of the invariant set. The motivation
for the above invariant in C. Conley's index theory comes from our proof of the
Arnold conjecture for fixed points of symplectic maps on surfaces of higher genus,
see [6] and [7]. It is used there to find critical points of the Hamiltonian action
functional on the loop space. The critical points are the solutions of the exact
Hamiltonian equations on the surface. In this application, the map a maps the loop
space onto the surface and is used to prove that the union of the bounded trajectories
of the gradient flow on the loop space inherits the topology of the surface.

I would like to thank C. Conley and E. Zehnder for valuable discussions.
This work was supported by the Stiftung Volkswagenwerk.

2. Statement of results

Recall that a flow on a Hausdorff space F is a continuous map

x:TxU+^Ur^T:(x,t)^x(x,t) = x-t, (2.1)

where Ur is a neighbourhood of F x{0} in FxR+ with the following property: If
(x, t) a n d ( x - t, s ) e Ur, t h e n ( x , t + s ) e Ur a n d

( x - t ) - s = x - ( t + s ) . (2.2)

For example, every Lipschitz continuous vector field on a differentiable manifold
M induces a flow on M. In some applications, a flow is equivariant with respect to
a topological group G, i.e. there is a continuous operation G x F -» F: (g, y) •* gy so
that for (y, t) e Ur we have (gy, t) e UT and g(y • t) = (gy) • t. We will always assume
that G is compact. A subset X of F is called G-invariant if g e G and y e X implies
gyeX. We call it invariant or flow invariant, if for all (y, t)e Ur with yeX we
have yteX.A map / : X -» Y is called equivariant if /(gy) = g(/(y)).

Definition 1. For any (G-invariant) subset U of F, define the maximal invariant set
in S( U) by

l / ° ° : = n U-t
ISO

t/"°°:={ye U\y te U for all t e R+}. (2.3)

S(U)= [/"nLf"00.

For any subset A of F, let A denote the closure and A the interior. We call U
isolating if S ( l / ) c U. An invariant (and G-invariant) set S is called an isolated
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invariant set if there exists a neighbourhood U of S so that S = S{ U). In this case,
U will be called an isolating neighbourhood of S.

In the following, we will restrict our attention to compact isolated invariant sets of
flows on locally compact spaces F. In this case, Conley [2] defines an invariant for
S in the following way.

Definition 2. Let S be a compact isolated invariant set of the flow x ° n F. An index
pair for S is a compact pair A<= X in F so that

(1) X- A is an isolating neighbourhood of S;
(2) A is positively invariant with respect to X, i.e. if y e A and y [ 0 , ( ] c X for

t>0, then y[0, f]<=A
(3) If y € X and -y • f g X for some t > 0, then there exists 5 € [0, t] so that z- seA.

In [2], the homotopy index I(S) is defined as the homotopy type of the quotient
XIA. In this paper, we will consider the cohomological index I*(S) defined by

I*(S) = H*(X,A). (2.4)

Here, H*{X, A) are the (G-equivariant) Alexander cohomology groups of the pair
(X, A) with coefficients in some ring R (see [10] and § 3 below for the equivariant
case). It is proved in [2] that I(S) does not depend on the choice of the index pair
but only on the flow and on the set S. The main point of Conley's index theory is
that it is also invariant under certain deformations of the flow, which we will describe
next.

Let A be some Hausdorff space and let X\. A e A, be a family of local flows on
F so that

X: A x F x R+ 3 (A, y, t) -» (A, *A(f, y))

is a flow on AxF . Such a flow will be called a product flow. Following [2, IV], we
define

Definition 3. A {G-invariant) parametrization p of a flow x on F is a ^-invariant
(and G-equivariant) map />:F-» A, where A is a Hausdorff space and G operates
trivially on A, i.e. g\ = A for all geG and A e A. We call p a local product
parametrization if for every y e F there exists an open neighbourhood U which is
equivalent to a local product flow with parameter set p{U). For any parametrized
local flow {x,p) and A e A, let X\ denote the flow restricted to the leaf FA := p~l[h].
As usual, two (G-equivariant) flows Xi o n r,> i = 1, 2, are called equivalent if there
exists a (G-equivariant) homeomorphism ft:F1-»r2 so that X2° h = h°x\- Now
consider the set

y= {(A, S) | A e A and S is an isolated invariant set of A'A}-

On if define the topology generated by the sets

0u - {$( U n TA) IA e A and U nVx is isolating in FA},

where U is any open (G-invariant) subset of F. Now we call two elements S and
S' of if related by continuation if they can be connected by a continuous path in if.
In this case it follows from [2] that I(S) is equal to I{S').
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96 A. Floer

Of course, one is interested in the topology of S rather than in I(S). As remarked
in the introduction, the topology of S is not in general related to the topology of
the homotopy index. As an additional structure, we therefore assume that there is
a continuous (G-equivariant) map

a.T^T (2.5)

where T is a topological space with a continuous operation of G. Then we define
an operation of H*(T) on I*(S) = H*(X, A) by

H*(T) x H*(X, A) -> H*(X, A): (v, u)-> v*au = (a\x)*vu u

Our first result is the following theorem:

THEOREM 1. Let x be a continuous (G-equivariant) flow on the locally compact
Hausdorff space F and let p:V^ A be a (G-invariant) local product parametrization.
Moreover, let a :F-* T be a (G-equivariant) continuous map.

Then for any compact isolated invariant (and G-invariant) set S in any leaf FA,
AeA, there exists a (G-invariant) index pair. Moreover, if two compact isolated
invariant (and G-invariant) sets S and S' in FA and FA, with index pairs (X, A) and
(X1, A'), respectively, are connected in if, then there exists an isomorphism
i: H*(X, A) -» H*(X\ A') satisfying

i(u*av) = u*ai(v). (2.6)

In view of theorem 1, we will from now on regard the module I*(S) of (2.4) as an
invariant of S alone. The proof of theorem 1 will be analogous to the proof of the
invariance of the homotopy index in [2]. We are in particular interested in a special
case. First recall that a subset X c: Y is a retract if there exists a continuous map
r: Y-*X so that r\x = idx- Such a map is called a retraction.

Definition 4. A connected compact isolated invariant (and G-invariant) set S of a
topological flow on a locally compact space F is called ^-hyperbolic of index nefJ
if S is a (G-equivariant) retract of some (G-invariant) neighbourhood Q of S in F
and if there exists u e I*(S) of dimension n so that the map

H*(S)->I*(S):a-*a*ru (2.7)

is an isomorphism for any (G-equivariant) retraction r.Q^S.
An example is described in the following proposition:

PROPOSITION 1. Assume that the flow \ on the C2-manifold M is induced by a
(G-invariant) C2-vector field V. Let S be a compact invariant (and G-invariant)
C2-submanifold of M. Assume moreover that there exists a decomposition

TM\S=TS®E+®E~

which is invariant under the covariant linearization DV: TM -* TM of the vector field
V with respect to some (G-invariant) metric ( , ) on M so that for some constant m> 0:

Then S is a ^-hyperbolic invariant set of x of index dim E+.
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The proof of this proposition will be given in § 4. Hyperbolic invariant sets as
described in the hypothesis of proposition 1 have certain stability properties with
respect to small perturbations of the flow (see, for example, [5]). The main applica-
tion of theorem 1 is the following stability property of the invariant set S.

THEOREM 2. Assume that for some A e A, the leaf FA contains a compact {G-invariant)
*-hyperbolic invariant set S which is a (G-equivariant) retract of F by the retraction
a. Then for every isolated invariant set S' in FV which is related to S by continuation,
the homomorphism

{a\s.)*:H*{S)^H*(S') (2.8)

is injective.

Theorem 2 will be proved in § 6. In the general situation of theorem 1, we can still
use the module structure of I*{S) in the following way:

Definition 5. For a compact isolated invariant (and G-invariant) set S, set

la{S) := 1 + max {/ e ̂ J | there exist classes

o-, • • • o-, € H*{ T), <r, £ H°{ T), and u e I*(S)

so that o-, *„ • • • *a cr, *a u ̂  0}.

The number la{S) can be used to estimate the cup length of S:

PROPOSITION 2. There are classes uteH*{S), I < i < / - 1 , l = la{S), dimw.X), so
that u,u • • • u U/_! r6 0. In fact, one can choose u, = a*\s at with a-j as in definition 5.

Proposition 2 is a reformulation of a remark by V. Benci [1]. Its proof is analogous
to that of theorem 2 and will therefore be omitted.

3. G-equivariant Alexander cohomology
In this section, we recall some well known properties of Alexander cohomology
theory (see, for example, [10]) and establish the corresponding statements for
equivariant cohomology, following the exposition in [4]. Throughout this section,
we assume that A is a closed (G-invariant) subset of a compact space X with G
operating continuously on X.

We define the equivariant Alexander cohomology of the pair (X, A) as the ordinary
Alexander cohomology of the pair {{Ex X)/ G,{Ex A)/ G) where £ is a contractible
space with a free operation of G (see [4]). E is not a compact space in general,
but there exists an approximation of E by G-invariant compact subsets Em<=E,
m € N so that for any pair (X, A) as above, the inclusions

im:{{Em xX)/ G,{Em x A)/ G)^({ExX)/ G,{ExA)/ G)

induce isomorphisms in (Alexander) cohomology in dimensions less than m.
We will need the following two properties, which are related to the so-called

continuity property of Alexander cohomology.

LEMMA 1. If (X,,A(), te[0,oo), is a family of {G-invariant) compact pairs with
(X, A) — P),a0 (X,, A,), then the inclusions i,: (X, A) -* {X,, A,) induce isomorphisms
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98 A. Floer

in (G-equivariant) Alexander cohomology in the direct limit for t-*°o. In particular,
ifH*{X,, A,) = 0 for all t, then H*(X, A) = 0.

Proof. In the non-equivariant case, this lemma is theorem 6 of [10, 6.6]. The
equivariant case can be reduced to this case since

n •
LEMMA 2. Let X/A denote the quotient of X by A, i.e. the topological space where
all points of A are identified to one point {A}. Then the projection map r:(X,A)->
(X/A, {A}) induces isomorphisms in (G-equivariant) cohomology.

Proof. For the same reason as in the proof of lemma 1, it suffices to consider the
non-equivariant case. Note that r is the composition of maps

(X, A) X (X u CA, CA) 4. (X u CA/CA, {CA}) = (X/A, {A})
where CA is the cone over A and X u CA is the mapping cone of the inclusion
Ac X (see [10, p. 365]). i induces cohomology isomorphisms by the strong excision
theorem ([10, p. 317]) and r induces cohomology isomorphisms by [10, theorem
6.9.15]. •

4. Proof of theorem 1
In [2], it is proved that for every isolating neighbourhood Q of S there exists an
index pair (X, A) with the additional property that both X and A are positively
invariant with respect to Q. In this case we call (X, A) an index pair in Q. It is also
convenient to drop the condition that A<= X and to write H*(X, A):=
H*(X, AnX). In the equivariant case, the existence of G-invariant index pairs in
any G-invariant isolating neighbourhood of S follows from

LEMMA 3. Assume that Q is a G-invariant isolating neighbourhood of the compact
invariant and G-invariant set S. Then if (X, A) is an index pair in Q, then so is
(GX, GA), where GX = {gy \ g e G and y e X}.

Proof. Property (1) in definition 2 holds for (GX, GA) since G is compact. The
verification of properties (2) and (3) is left to the reader. •

For the rest of this section, in the equivariant case all sets are G-invariant and all
maps are G-equivariant. We say that two compact pairs in T are a-equivalent and
write (Xl,A-i)~(X2,A2), if there exists a continuous map of pairs f:(Xu A,)->
(X2,A2) inducing isomorphisms f*: H*(X2, A2)-»//*(X,, Aj) and satisfying
a\x2°f— alx!- In the usual way, this relation generates an equivalence relation for
which we will use the same name and notation. Obviously, it suffices to show that
the index pairs in the assertion of theorem 1 are a-equivalent.

Following [2], we define for any index pair (X, A) for S in F the compact sets

x'= n X-T,

0}. (4.1)

One can verify that if (X, A) is an index pair for S in Q, then so is (X, A~').
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LEMMA 4. (1) For each neighbourhood Q' <= Q of S there exists an index pair (X, A)
in Q so that X - A c Q' and (X nQ',An Q') is an index pair in Q'.

(2) For any two index pairs (X, A) and (X, A) in Q, there exists t>0 JO that
(X',AnX')<=(X,XnA-').

(3) The inclusions

(X\ A) -X (X, A)

(4.2)

-)
induce isomorphisms in Alexander cohomology and are therefore a-equivalences.

Proof. The first two assertions are statements 4.1.D and 4.2.D, respectively, of [2,
III]. To prove (3) we follow [2, III.4] and consider the map f,:(X, A)-*(X'/A,
{A}) given by/ (?) = ?• tit y • [0, t] <= X and f(y) = {A} otherwise. Let r:(Y, fl)-»
(Y/ B, {B}) denote the contracting map. Then there is a homotopy

given by the family (iT °/T)TE[o,i]- Moreover, a homotopy

is given by the family of maps (/T ° i,)Te[Oir]. (Note that fT preserves X' for T < t).
Obviously, all these maps are G-equivariant whenever the flow is. Hence in (G-
equivariant) cohomology, we have ff if = r* and iff? = r*, and by lemma 2, if has
a two sided inverse.

In the same way, one shows that j , is an isomorphism, using the map g,: (X, A~')-*
(X/A, {A}) given by gt(y) = y t for y [0, f]<=X-A and g(x) = {A} otherwise.
Finally, repeating the first argument with (X, A) replaced by the index pair (X, A~')
proves property (3). For more details, see [2, III.4.2]. •

From (1) and (3), it follows immediately that any 2 index pairs (X, A) and (X, A)
in the same isolating neighbourhood Q are a-equivalent by the inclusions (X, A)*-
(X1, A)^ (X, A"')«- (X, A"). Moreover, the inclusion (XnQ' , An <?')-»(X, A) in
(1) of lemma 2.1 is an a-equivalence by excision. Consequently, all index pairs in
Q'c Q are a-equivalent to all index pairs in Q. If Q and Q are two different isolating
neighbourhoods, then apply this consideration to Q s Q n Q c Q .

We now prove the continuation invariance. Since we only consider path connected
elements in £P, we can assume that F = R. It also suffices to consider a small
neighbourhood t/M of /J. e R. Moreover, since the parametrization is locally product,
and since we can restrict ourselves to a compact subset of F, we can assume that
*A, Ae t/M, is a continuous family of flows on FM. The continuous map a then
corresponds to a continuous family of maps aA: F -» T in the sense that the map
Fj, x Up-* T: (y, A)-» aK{y) is continuous.

Now assume that Q is an isolating neighbourhood of S = S(Q, x^.) with respect
to the flow X>L- By [2, IV. 1.2.A], there exist two index pairs (X, A) and (X', A') of
SM in Q so that

X c X ' and A^ A' (4.3)
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and X ' - A c Q. Define for A € l/M the set AA = PA(A, Q) as the intersection of all
positively invariant subsets of Q with respect to X\ which contain A. Correspond-
ingly, define XA = PA(X,Q), A'K = P,{A\Q), and X'A = PA(X',Q). Again by [2,
IV.1.2.A], there exists a neighbourhood VM c £/̂  of ju. so that for A e VM:

(1) Q is isolating with respect to *A;
(2) Both (XA, AK) and (X^, AA) are index pairs of SA := S(Q, *A) in Q with respect

to Xx-

Moreover, it follows from (4.3) that we can make VM small enough that (XA, AA)c
(XA, AA) for all A € VM. Now consider the inclusions

(X, A) c (XA, AA)<= (X', A') c (XA, AA).

Since it was shown above that (X, A) ~ (X', A') and (XA, AA) ~ (XA, AA) as index
pairs, and since a^ — a^, this completes the proof of theorem 1. •

5. The proof of proposition 1
We construct a 'small' index pair for S which is homotopy equivalent to the Thom
complex (compare [10, p. 259]) of E+. For every e > 0 , define the disc bundles

and the fibrewise product Be = BEx B+
e. Consider for x e M the exponential map

expx: TXM -» M defined with respect to the metric ( , ) (see, for example, [8,1, § 6]).
It is well known that for e0 small enough, the map

is a diffeomorphism onto its image. Instead of V we can therefore consider the
vector field W = (S~!)* V on B^, which induces a flow Xw equivalent to the original
flow x-

Let 77*: v(S) -> E± be the projections corresponding to the decomposition of TM\S

and define on Be the smooth functions b±{s, £) = ||7r±(s)f||2. Consider the sets

For every (s, | ) e At, we have

J((b+(X'W(S, {))) = 2(TT+l TT+W(S, f))

= 2<77+£ n+«DV)(s)t+ R2 W(s,

>2m\\7r+t\\2-\\n+t\\\\R2W(s,t)\\,
where

(
IEB,

e2<Ce 2 ,

by Taylor's theorem. Hence there exists an et e (0, e0) so that for all e e (0, et) and
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Similarly, we can choose e-i small enough so that for all e £ (0, e j and (s, £) € A~:

It follows immediately that for e e (0, ej), Be is an isolating neighbourhood for the
flow Xw, since every (s, £) e dBE = A+

e u A~ leaves Be either forwards or backwards
in time. Moreover, it is easy to see that A* is an exit set for Be. Since n o < E < £ Be = S,
there exists an e e (0, e j so that (X, A) := (Be, A

+
e) is an index pair for S. Such an

index pair is also called an isolating block.
Any local retraction a : Be -* S is homotopic to the fibre bundle projection ir:Be^S

by the homotopy H(T, (S, €)) = a(s, T£). Obviously, n+:BE-*B* defines a fibre
homotopy equivalence (X, A) -* (B+

E, dB*). By the Thorn isomorphism theorem (see
[10, p. 259]), there exists a class u<=H*{B+

e,BB+
e) so that the map

H*(S)-> H*{B~,dB~) given by v->a*vuu is an isomorphism. Then for uw-=
{IT*)'1!*, the homomorphism

v^ V*auw

is an isomorphism.
In the equivariant case, we obtain a Thorn isomorphism in equivariant cohomology

from the ordinary Thorn isomorphism of the disc bundle (E x B*)/G over
(E x S)/G. This completes the proof of proposition 1. •

6. Proof of theorem 2
Let (X, A) be an index pair of the isolated invariant set S'. In order to find a relation
between I*(S') and H*(S'), consider the compact set X°° of definition 1 and the
commutative diagram

H*(X, A)®H*(X, X°°) -H H*(X,

H*(X,A)®H*(X)

H*(X°°)

H*{S')

where the homomorphisms /*, j * , and fe* are induced by inclusions.
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102 A. Floer

LEMMA 5. / / (X, A) is an index pair for S', then H*{X, A u X°°) = 0.

Proof. We apply lemma 2 to X°° = (~]t>0 X', see (4.1). Consider the exact sequence
of the triple (X ,AuX' ,A)

H*(X,AuX' )

H*{X,A) -> H*(X'vA,A),

see, for example, [10, p. 201]. i* is an isomorphism, since in the diagram

(X',AnXl) 4.(X'uA,A)

(X,A)

i* is an isomorphism by excision and i* is an isomorphism by (4.2). Therefore,
H*(X, A u X') = 0. This proves the lemma. •

We now show that the map (2.8) is injective. In fact, let us assume that (r|s-)*«A = 0
for a class t/s e H*(S). Then by (1) of lemma 4, we have

for some index pair (X, A) of S'. By exactness of the sequence (i*,j*), there exists
a class <f> e H*(X, X°°) with j*cj> = (r\x)*^. But then for all u e /*(5') = H*(X, A):

(A*rw = uu(r|x)*./» = fc*(uu<A)=0, (6.1)

since the group H*(X, A u X°°) vanishes by lemma 5. Here, *r denotes the operation
of H*(S) on I*(S') = H*(X, A) denned by the continuous retraction r: F-» S, see
(1.1). Now note that by the hypothesis of theorem 2, the isolated invariant sets S
and S' are related by continuation. Hence by theorem 1, the H*(5)-module structure
of I*(S') denned by this operation is isomorphic to the H*(S)-modu\e structure
of /*(5). Since /*(S) is a free /f*(S)-module by the definition of a *-hyperbolic
set, the same is true for I*(S'). Consequently, (6.1) holds for every we/*(S'), so
that tp = 0 in H*(S). This completes the proof of theorem 2. •
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