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THE SET OF JULIA POINTS FOR FUNCTIONS 
OMITTING TWO VALUES 

B Y 

P. M. GAUTHIER AND J. S. HWANG 

Let / be a function denned in the unit disk D(\z\ < 1). For each point el9 on 
the unit circle C(\z\ = 1) and each subset S of D, we denote by Cs(f, e10) the 
cluster set of / at el° relative to 5, i.e. 

Cs(f,e
ie)=nf(SnN(ei6J)\ 

j - i 

where N(eie, j) = {zeD:\z-eie\< 1//}. 
By a Stolz angle A(eie) at e10, we mean a triangle A with one vertex at ew and 

A c D. A point eie on C is called a Plessner point of /, if CA(e
ie)(/, e10) = W for 

each possible choice of A(e10), where W denotes the Riemann sphere. We 
denote the set of all Plessner points of / by 1(f). 

In [5], Peter Lappan has proved the following two theorems. 

THEOREM A. Iff is a meromorphic function in D, then 1(f) is a G8 subset of C 

THEOREM B. If E is a Gs subset of C, then there exists a holomorphic function f 
in D for which 1(f) = E. 

On the other hand, in [1] E. F. Collingwood and G. Piranian have intro
duced the notion of Julia point. A point el9 is called a Julia point of /, provided 
in each Stolz angle A(eie) the function / assumes all values on the Riemann 
sphere except possibly two. We denote the set of all Julia points of / by / ( / ) . P. 
Colwell [2] has proved that both Theorems A and B are true for / ( / ) instead of 
1(f). As far as Julia point is concerned, we may ask whether there can actually 
be constructed a function / such that / omits two values and yet / ( / ) = E. For 
this, we claim the following 

THEOREM C. If E is a Gs subset of C, and if wu w2e W, then there exists a 
meromorphic function f in D which omits wu w2, and J(f) = E. 

Proof. Without loss of generality, we may assume that 

E= fl En,E1^E2^>- • O E . D . . . , 
n = l 
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and 
oo 

En = U In,j, where InJ is an open arc on C, / = 1, 2, 

For each InJ, we form a circular triangle Gnj in D by joining the endpoints of 
JnJ with two segments which are equal length and orthogonal to each other in 
D. We set 

G n = U GnJ, Fn = D-Gn, D n = z : | z | < l — , 

and 
Hn = D n U F n , n = l , 2 , . . . . 

It is geometrically clear that we can construct two sequences {zk} and {zk} of 
points in D such that 

(1) z k , z U H „ , for>k fc(n). 
(2) for any eie eE, any Stolz angle A(el°) contains infinitely many of the pairs 

zk, z'k, and 
(3) the hyperbolic distance p(zk, zk) -> 0 is k -> oo, 

Clearly each Hn is a compact set for which the complement W - H n is 
connected and therefore by a theorem of S. N. Mergelyan [6, Theorem 1.4], 
there is a polynomial Pn(z) such that 

(4) |P n ( z ) |<^ r , for z 6 H n . 

By virtue of J. L. Walsh's lemma [7, p. 310] and the property (1), those 
polynomials Pn(z) can be chosen to interpolate at the points zk and zk in the 
following manner 

n 

(5) ZPyUk) = 0, for zkeHn+1\Hn 

and 

(6) I P / ( z D = 10, for z ' k eH n + 1 \H n . 

Let g(z) = Xn=i -Pn(^), then by (4) we can see g is holomorphic in D. 
Moreover, from (4), we find that no point of the complement C — E is a Plessner 
point. It remains to prove that each point eleeE is a Julia point. By the 
properties (2) and (3) and a result in [3, Theorem 1], it suffices to prove that 
there exists a real number 8 such that 

(7) âf(g(zk), g(zk)) > 8 > 0 for sufficiently large k, 

where â?(a, ft) is the chodal distance between a and b. 
Now, from (4) and (5), we have for sufficiently large k, |g (z k ) |< l while (4) 

and (6) give |g(zk) |>9. This yields (7) and therefore J(g) = E. 
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Finally, if Wi = °° and w2 is finite, set 

f(z) = e*(*) + w2, 

while if both Wi and w2 are finite, set 

f(z) = (w1-w2e
8(z)/(l-egiz)). 

It is obvious that / omits wu w2, and J(f) = E. This completes the proof. 

REMARKS 

1. If we call a point eie a strong Julia point provided in each Stolz angle 
A(e10), the function / assumes all values on the Riemann sphere, and if we 
denote by /*(/) the set of all strong Julia points, then for meromorphic 
functions the above theorem is still true for /*(/) instead of / ( / ) . Simply 
replace / b y g ° / where g is any non-constant elliptic function. 

2. Since a Julia point is also a Plessner point, Theorem B follows im
mediately from the above theorem. 

3. Our theorem also improves the following theorem of Lappan and Pira-
nian [4]: 

For each number a ( 0 < a <27r), there exists a holomorphic function in D 
whose set of Plessner points is dense on C and has measure a. 

4. Our theorem is sharp in the sense that it is impossible to improve / 
omitting more than two values. 
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