The role of plant secondary metabolites in mammalian herbivory: ecological perspectives

Glenn Iason
Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK

Plant secondary metabolites (PSM) have many ecological functions, but have long been considered as defences against pathogens or herbivores (vertebrate or invertebrate), reducing the likelihood and extent of attack. However, mammalian herbivores ingest many foods containing PSM and use both behavioural methods and physiological strategies to limit their negative effects. Most physiological counter-adaptations are inducible in response to ingested PSM, providing efficient protection against toxic effects. Possible positive effects of PSM include antioxidant and anthelmintic properties and complex formation between protein and condensed tannins that protects dietary protein from degradation by the symbiotic microflora of foregut fermenters, increasing its utilisation by the animal. This protein effect is probably only beneficial to animals under a narrow range of nutrient-rich conditions found mainly in agricultural systems. There are many examples of PSM causing food avoidance or reducing food intake, but there is as yet relatively little evidence for positive selection of them by herbivores. Although the feedback mechanisms relating the post-ingestive consequences of PSM to subsequent foraging behaviour are beginning to be understood, knowledge of the integration of behavioural and physiological strategies for regulating the effects of PSM is relatively poor. The opportunities for learned avoidance of PSM may be restricted in animals with complex diets that cannot associate a particular feedback signal with a given food type. A greater emphasis on the study of subclinical effects of PSM rather than acute effects, on pharmaco-kinetic studies in relation to behavioural studies and on the use of realistic experimental models is advocated.

The evolution and ecology of plant secondary metabolites

Plant secondary metabolites (PSM) have no known function in the primary metabolism of plants. They were formerly considered to be a means of depositing excess C fixed by photosynthesis, but the early suggestion that they mediate a range of specific ecological interactions between species (Fraenkel, 1959) sparked a wealth of subsequent research on these roles (see Rosenthal & Berenbaum, 1991; Appel, 1993). Given the enormous diversity of PSM and the way in which their structure determines their function, it is unsurprising that these specific effects can also combine to affect broader aspects of ecosystem function. Often the same chemical characteristics of PSM can influence and integrate different aspects of ecosystem function, such as the determination of plant-litter quality via plant–herbivore interactions and the degradation characteristics of that litter (McInnes et al. 1992; Pastor & Naiman, 1992).

There are clearly numerous reasons why the range of PSM as a whole could have evolved, but they are unlikely...
to have arisen, or to have been maintained, for a single selective evolutionary advantage. Even single compounds may act in many ways. It is widely accepted that many PSM act as plant defences against herbivores (Palo & Robbins, 1991; Rosenthal & Berenbaum, 1991) and pathogens (Kosuge, 1969), and these functions are likely to interact, as wounded by herbivores can predispose plants to pathogenic attack (Hatcher et al. 2004). It has been suggested recently that some phenolic PSM protect plants from photo-induced oxidative damage (Close & McArthur, 1994, and other alkaloids are neurotoxic to mammals, including as toxins or digestibility reducers, modifying their food quality and their foraging behaviour (Palo & Robbins, 1991). They may in some cases be beneficial to mammals (for example, see Athanasiadou & Kyriazakis, 2004). The present review aims to draw together recent developments in the knowledge of how PSM act on mammalian herbivores, and focuses on how their negative effects are counteracted by behavioural and physiological processes. It identifies important current questions and areas of future research, and potentially fruitful approaches to addressing these questions.

Effects of plant secondary metabolites on mammals

The most successful PSM would render the plant so unpalatable as to be never eaten. However, it is commonly observed that most plants are eaten to some extent despite containing some form of putative chemical or physical defence. So, from the plant’s viewpoint PSM may be effective by reducing the probability of herbivory or the amount eaten by a herbivore (Augner, 1994). Similarly, from the mammalian herbivore’s viewpoint the main question does not concern avoidance, rather how do herbivores regulate their intake of PSM within limits that are tolerable (Foley et al. 1999). The effects of, and counter-adaptations to, PSM are initially considered as physiological and behavioural, although the final analysis suggests that these two interact and should not be separated.

Modes of action of plant secondary metabolites and counteraction by mammals

Toxic plant secondary metabolites (negative). Toxic PSM generally enter the animal via absorption from the gastrointestinal tract and exert their effects via their lipophilicity, causing them to reside in membranes disrupting membrane function, or they enter the cells. Toxic PSM can as a group exert a plethora of negative effects on animals, such as induction of cysts and tissue damage, and ultimately lead to death (Scheline, 1991). For example, some phenolics can be carcinogenic (Singleton, 1981), and damage to the intestinal wall has been shown in small mammals following ingestion of tannic acid (Mitjavila et al. 1977; Freeland et al. 1985b). Such damage is bound to interact with the metabolic functions of the affected tissue. Pyrrolizidine alkaloids can also be carcinogenic and hepatotoxic (Cheeke, 1988, 1994), and other alkaloids are neurotoxic (Panter et al. 1988).

Detoxification in mammals is largely a result of the action of mixed function oxidase enzymes that catalyse
the oxidation of lipophilic compounds. In the ‘phase I’ reactions the cytochrome P450 enzymes add functional groups to toxins, increasing their polarity and thereby facilitating excretion in solution via the urine or, for large molecules, their return to the gut in the bile (Rozman & Klaassen, 2001). These enzymes are now classified into several subfamilies within which there is broad functional similarity, although specific catalytic characteristics depend on their precise amino acid sequences (Guengerich, 1997). The so-called phase II reactions of detoxification effect the conjugation of the PSM with other molecules to form conjugates that have increased polarity (Scheline, 1991). It is known that the main detoxifying chemical reactions can occur in a range of tissues, including the intestinal epithelium (Powell et al. 1974; Smith & Watkins, 1984; Watkins et al. 1987; Scheline, 1991), but most of the work on both phase I and phase II reactions in mammals has focused on the endoplasmic reticulum of the liver as the main site of action (Scheline, 1991; Cheeke, 1994). In many cases this focus on liver metabolism is likely to be well founded. However, the lack of consideration of the detoxification functions in the gastrointestinal epithelium is surprising considering that this tissue represents the first tissue to be encountered by ingested PSM. This omission may be a result of the inadequacy of in vitro cellular models in which to study the processes (Carrière et al. 2001). It has been recently hypothesised that P450 acts in the gut epithelium in concert with P-glycoproteins, an efflux system that actively pumps lipophilic substances from cells, thereby together preventing absorption and further effects of toxins (Hunter & Hirist, 1997; Sorensen & Dearing, 2003). This process implies that faecal excretion of plant secondary metabolites, which is often attributable to gut microbial effects (Boyle & McLean, 2004), or biliary excretion of detoxification products, may also be a result of active processes in the gut wall. This challenging hypothesis remains to be tested.

Although conjugation with a range of moieties is possible, including with glucuronic acid, sulfate, glycine and glutathione (Scheline, 1991), the conjugate considered most often in studies of mammalian herbivory is glucuronic acid, perhaps because it is the easiest to quantify (Foley et al. 1999). Many PSM do not undergo phase II reactions, e.g. the eucalypt terpenes that are mainly secreted in an unconjugated form by common brushtail possums (Trichosurus vulpecula; McLean et al. 1993). When assessing the costs of detoxification, consideration of the range of possible conjugations is essential as the costs vary greatly among them; sulfates are energetically the most costly (Brattsten, 1979). The substrate and other costs of the phase II reactions would be expected to vary with the nutritional status of the animal, e.g. glycine (an amino acid) and glutathione (a tripeptide).

Pro-oxidants and antioxidants (positive or negative). Many phenolics can theoretically act against animals that ingest them by being oxidised and generating free radicals such as superoxide and other free radicals that can attack DNA and inactivate enzymes (Appel, 1993). Conversely, some flavonoids such as quercetin can, depending on the conditions, act as antioxidants; their unsaturated C-ring structure scavenges free radicals produced from normal oxidative metabolic processes, thereby limiting oxidative damage (Kahl, 1991; Hollman & Katan, 1997; Alessio et al. 2002). Despite great interest from the medical world because of the possible use of phenolics for treatment and prophylaxis against mutagenesis and carcinogenesis, the possible advantages of phenolics have not been specifically shown to be a determinant of mammalian herbivore foraging behaviour or food intake.

Digestibility inhibition (negative). Digestibility inhibition is a well-studied series of processes, in which PSM act within the gut of animals by either forming a complex with a food substrate and preventing degradation, e.g. condensed tannins binding with proteins on mastication, or inhibiting digestive degradation by the animal’s endogenous or microbiologically-derived digestive enzymes, e.g. protease inhibitors (Ryan, 1979). The complex interactions of condensed tannins during ingestion and digestion have been comprehensively reviewed elsewhere (Foley et al. 1999), and have been shown in particular to reduce apparent N digestibility in all twenty-six studies of foregut and hindgut-fermenting species of placental mammals in which the diets offered contained condensed tannins. As their name implies hydrolysable tannins can be hydrolysed to aglycones that are readily absorbed and need to be dealt with in the same way as other absorbable toxins and non-tannin phenolics, although they may also possess protein-binding activity (Hagerman et al. 1992). Dietary tannins can be counteracted by some herbivores, particularly those whose diet is tannin-rich, by the production of salivary tannin-binding proteins. These have a high affinity for, and preferentially bind with, dietary tannins on mastication, rendering them ineffective in forming complexes with dietary proteins, and reducing their negative effects on protein digestibility (Robbins et al. 1991; McArthur et al. 1995). Further partial counter-defence against dietary tannins may be provided by microbial populations able to degrade tannin–protein complexes present in the hindgut of some species of herbivore (Osawa & Sly, 1992).

Protection of protein from microbial degradation (positive). The same processes that inhibit digestive protein degradation can in some circumstances have positive effects. The binding of condensed tannins with proteins depends on the specific chemical characteristics of both reactants and is pH dependent (Hagerman & Butler, 1981; Hagerman et al. 1992). For tannins of certain forage species, at low concentrations, the formation of complexes with protein in the forestomach of ruminants can limit the degradation of protein by rumen bacteria and deliver more essential amino acids for absorption in the small intestine, where the tannin–protein complexes dissociate as a result of the change in pH (Barry & Manley, 1984; Barry et al. 1986; Min et al. 2003). This process can therefore be viewed as the condensed tannin protecting the protein from microbial degradation in the rumen. However, although this means by which protein by-passes the rumen may be an important advantage in agricultural conditions where the ruminants’ diets may be of high quality (protein and energy), these conditions are likely to occur only very rarely in wild, free-ranging or extensively-managed ruminants, which have mixed lower-quality diets.
Anthemminthic effects (positive). The positive nutritional role of condensed tannins, proposed to be functional in ruminant livestock, may underlie their suggested effectiveness as anthelmintics. This effect is hypothesised to function either via the enhanced amino acid absorption that increases the effectiveness of the immune system, or via the condensed tannins directly inhibiting parasite larvae (Barry et al. 2002; Marley et al. 2003; see Athanasiadou & Kyriazakis, 2004). If the effect is a result of a general enhancement of the immune system, then future work may demonstrate positive effects of condensed tannins against other pathogens.

Depression of the activity of symbiotic microbial populations (negative). Many herbivorous mammals that lack cellulase enzymes have populations of symbiotic microorganisms in their gastrointestinal tracts, which ferment cellulose to volatile fatty acids that are absorbed and used as an energy source by the host (Van Soest, 1982). The activity of these microbial populations can be depressed by ingested PSM (Wallace, 2004), although microbial populations can adapt to become tolerant to PSM such as hydrolysable tannins (Odeny & Osuji, 1998). Furthermore, the presence of a foregut fermentation system is hypothesised to represent an important anti-PSM strategy, providing a medium for microbial detoxification of PSM before they reach the animal’s tissues (Freeland & Janzen, 1974; Palo, 1987), e.g. the metabolism of pyrrolizidine alkaloids by the rumen microflora of sheep (Cheeke, 1994). However, conversely, in some cases the process of herbivore foraging can render compounds more toxic or harmful; for example, rumen microbial populations can toxify as well as detoxify some PSM, and the hydrolysis of phenolic glycosides in the rumen can increase their toxicity (Smith, 1992). The action of plant or animal enzymes on precursors that are brought together on mastication can yield toxic products; for example, the action of plant cyanogenic glycosides in generating HCN from \(\alpha \)-hydroxycynitriles, or the formation of isothiocyanates or nitriles from glucosinolates catalysed by plant myrosinase (Duncan, 1991). The action of the rumen microbiota on S-methyl cysteine sulphoxide in brassicas yields toxic dimethyl disulphide (Earl & Smith, 1982). On the other hand, in some cases the hydrolysis of phenolic glycosides can yield deconjugated sugar moieties that can themselves be fermented (Murray et al., 1996).

Disruption of the sodium mineral balance (negative). Disruption of the Na mineral balance in response to ingestion of diets rich in PSM has been recorded in a range of lagomorphs (Pehrson, 1983; Reichardt et al., 1984, 1990; Iason & Palo, 1991) and mice (Freeland et al., 1985b). This effect has been attributed to PSM-induced Na wasting via the urine (perhaps a result of impaired kidney function in the lagomorphs), or to greater faecal loss following poor absorption or enhanced salivary or intestinal mucosal cycling of Na to the gut (Freeland et al., 1985b). Foley et al. (1995, 1999) consider the Na loss in lagomorphs to be related to the general phenomenon of acidsis induced by the detoxification of PSM in many species. The phase I and II detoxification reactions generally lead to the formation of organic acids, the excretion of which may be associated with the loss of cations such as Na that accompanies the excretion of phosphate used to buffer the urinary pH.

The energy costs of detoxification (negative). The energy costs of detoxification are hypothesised to be small (Brattsten, 1979), and the effects of PSM on whole-animal energy metabolism have been rarely measured. This shortcoming is surprising given the importance of energy as a common currency in animal foraging studies (Stephens & Krebs, 1986). The energetic effects of infusion of low-molecular-weight phenolics into the gastrointestinal tract of sheep, after controlling for their effects on reduced food intake and digestibility, are quite small (Iason & Murray, 1996). However, infusion into the peripheral circulation shows increased energy metabolism, which has been explained in terms of a toxic effect in the animal tissues (Singleton & Kratzer, 1969). Gallic acid ingestion increases the BMR of voles (Microtus pennsylvanicus; Thomas et al., 1988), although a depressed energy metabolism following ingestion of some monoterpene PSM has been recorded (Boyle & Dearing, 2003).

Diuresis (negative). Diuresis results from the ingestion of the monoterpene \(\alpha \)-pinene and creosote resin by woodrats (Neotoma spp.; Dearing et al., 2001). This water loss is an integral part of the general processes of detoxification and excretion of PSM, but its importance in the determination of the nutritional ecology of animals occupying water-scarce environments such as deserts or high-latitude zones in winter is unexplored.

Summary of the effects and counter-adaptations to plant secondary metabolites

The conclusion is that in most cases the effects of PSM are negative rather than positive in relation to mammalian herbivores (Table 1). However, under some special circumstances particular effects of protein protection from digestion, anthelmintic effects or antioxidant effects may be beneficial to the herbivore. It has been suggested that PSM such as tannins and saponins can interact with one another, one nullifying the effect of the other (Freeland et al., 1985a), although examples of such interactions are scarce in living systems. In vitro stimulation of cellulose digestion by phenolics and inhibition by tannins of enzyme-catalysed cyanogenesis from cyanogenic glycosides have been demonstrated and positive nutritional benefits have been hypothesised (Goldstein & Spencer, 1985; Mole & Waterman, 1985). However, their relevance to the nutrition of mammals has not yet been demonstrated. The potentially-beneficial effects of ingestion of PSM must be balanced against the potentially-negative effects of the same compound or set of compounds. The list of potential positive effects of PSM on mammalian herbivores is quite short and as yet relatively unexplored, particularly the anthelmintic and antioxidant functions. This position contrasts starkly with the broad range of benefits from PSM that may be gained by insects, e.g. host finding, location of oviposition sites, phagostimulation and sequestering toxins to protect themselves from predation by higher trophic levels (see Feeney, 1991; Appel, 1993).
Plants as animal foods: a case of catch 22?

Comparative studies of plant secondary metabolite–mammal interactions

A framework for understanding the range of nutritional strategies in relation to the feeding strategies of ungulates refers to grazers, intermediate feeders and browsing strategists (Hofmann, 1989), which have an increasing likelihood of ingestion of PSM. However, this classification also applies to a wider range of mammalian species and to their likely responses to PSM in available food (Fig. 1; McArthur et al. 1991). There are several examples of negative effects being less or counter-adaptations to PSM being present or better developed among species that commonly ingest food types rich in the particular PSM. Mountain hares (Lepus timidus) that commonly browse woody plants do not suffer the extreme urinary Na losses that the European hares (Lepus europaeus; a grazer) suffer when ingesting phenolic extracts of birch (Betula pendula; Jason & Palo, 1991). The salivary tannin-binding proteins tend to be present in browsing herbivores, but not in grazing herbivores (Austin et al. 1989; Mole et al. 1990). Specialist folivorous marsupials have greater liver microsomal metabolism of leaf monoterpenes (Pass et al. 2001, 2002) and dietary specialist woodrats maintain lower plasma circulating levels of α-pinene than generalist woodrats (Sorensen & Dearing, 2003).

Integration of physiological effects of plant secondary metabolites with foraging behaviour

Feedback mechanisms

A hierarchy of routes by which PSM affect foraging behaviour has been identified. These routes range from pre-ingestive stimuli (e.g. taste and smell) to post-ingestive mechanisms that involve feedback from reduced digestibility, or to post-absorptive effects of PSM (Foley et al. 1999). The pre-ingestive mechanisms are likely to act rapidly (e.g. via stimulation of the trigeminal nerve) to determine whether or not a food is eaten, whereas the post-ingestive mechanisms would involve a lag before being sensed and take longer to affect foraging. The effects of digestibility reducers such as condensed tannins are probably perceived by the herbivore as a forage of lower quality.

Food intake and diet composition can be modified by herbivores learning to associate negative effects, such as malaise as a result of emetics, with particular food types (Provenza, 1995, 1996), and these conditioned food aversions have also been shown using secondary metabolites (Kyriazakis et al. 1997, 1998). A role for previous learning as a determinant of food choices is particularly likely for PSM, since negative stimuli produce stronger learning responses than positive ones (Ginane et al. 2004); although it should be remembered that herbivore diet selection is in many cases probably the result of influences of both the nutrient and PSM content of the available foods (Foley et al. 1999; Villalba et al. 2002). However, although these learning processes are probably effective where stimuli are strongly and clearly associated with a particular food, animals foraging in heterogeneous environments may receive a complex set of temporally-overlapping signals from PSM. This outcome may limit their ability to associate particular stimuli with particular forages and thereby restrict the power of associative learning (Duncan & Young, 2002). It is hypothesised that this effect may be most acute in foregut-fermenting herbivores, in which the direct effects of ingested PSM are buffered by the enlarged forestomach, and in larger herbivores that process PSM more slowly than smaller animals because of their slower mass-specific metabolic rates (Freeland, 1991).

Intake regulation

Although some forages are avoided almost completely by herbivores, it has been argued that these situations are rare, and that PSM intake is considered to be regulated to within limits that are tolerable by the herbivore (Provenza, 1996). This form of regulation implies an interaction between behavioural and physiological mechanisms, which are only beginning to be understood. Both ecological responses to PSM and the physiological and pharmacological

<table>
<thead>
<tr>
<th>Negative effects of PSM (toxicity)</th>
<th>Physiological counter-adaptations</th>
<th>Positive effects of PSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue damage</td>
<td>Detoxification system, e.g. MFO, conjugation and excretion</td>
<td>Protection of protein function</td>
</tr>
<tr>
<td>Energy expenditure</td>
<td>Detoxification and excretion</td>
<td>Antioxidant function</td>
</tr>
<tr>
<td>Oxidative damage</td>
<td>Antioxidant system</td>
<td>Antioxidant function</td>
</tr>
<tr>
<td>Acidosis</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Na imbalance</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Diuresis</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Digestive inhibition, e.g. substrate binding, enzyme inhibition, antimicrobial effects</td>
<td>Tannin-binding salivary proteins</td>
<td>Antihelminthics Protection of protein interaction with other PSM</td>
</tr>
</tbody>
</table>

MFO, mixed-function oxidases.

Fig. 1. The continuum of mammalian foraging strategies from grazers to browsers and folivores, which have increasing use of plants containing plant secondary metabolites (PSM). (Redrawn from McArthur et al. 1991.)
mechanisms on which they are based are likely to be threshold phenomena with ranges of sensitivity and tolerance (Appel, 1993). Such a threshold effect has been demonstrated in the case of cattle responses to increasing doses of alkaloids in larkspur (Consolida ajacis; Pfister et al. 1997). Considerable progress on the key relationships between the concentration of PSM and food intake, the consequent dose of the PSM ingested and identification of thresholds of plasma concentration has recently been made using arboreal marsupial folivores. Development and application of this pharmaco-kinetic approach (Boyle & McLean, 2004) in conjunction with behavioural studies of foraging (Wiggins et al. 2003) in this and other appropriate model systems is advocated. In general, as the concentration of a PSM in the forage increases the intake decreases, and where this response has been measured it has shown to be either linear or curvilinear (Foley et al. 1999; Lawler et al. 2000; Stapley et al. 2000; Boyle & McLean, 2004). However, relatively few other studies have investigated a sufficient range of concentrations to quantify the precise relationship. There is some evidence of temporal cyclicity in the intake response to ingested PSM, i.e. the animals follow periods of ingestion of PSM-containing food with periods of low intake that permit plasma toxin levels to decrease below a threshold level (Pfister et al. 1997; Stapley et al. 2000).

Diet choice

There are many correlational studies that have identified PSM as determinants of diet choice by mammals, but the current view is that the choices made by herbivores reflect both the concentration of PSM and nutrients in available food plants (Whiten et al. 1991; McArthur et al. 1993; Barton & Whiten, 1994). Examples of positive selection for PSM are rare. However, the preference for natural forages by roe deer (Capreolus capreolus) is positively correlated with the presence of protein-binding phenolics (Tixier et al. 1997). Although roe deer exhibit lower rates of ingestion of diets containing high concentrations of hydrolysable tannins than a control diet with no tannins, they eat relatively more of an artificial diet to which moderate levels of hydrolysable tannins have been added than the control diet (Verheyden-Tixier & Duncan, 2000). These results probably arise from physiological adaptations of this species to ingestion of tanniferous diets, including the large salivary glands that secrete saliva containing a tannin-nullifying protein (Duncan et al. 1998).

A basic tenet of the Freeland & Janzen (1974) hypothesis is that a herbivore’s ingestion of a particular food source is limited by its ability to detoxify and excrete specific secondary metabolites. A reduction in intake is likely to lead to a herbivore seeking alternative foods. Several studies support the resultant prediction that herbivores choose mixed diets in order to minimise the effects of particular PSM, thereby avoiding nutritional limitation as a result of saturation of specific detoxification pathways. Both brush-tail possums and lambs are able to eat more food when given the choice of foods with different PSM added than they can when offered no choice or a diet containing only one of the PSM (Wiggins et al. 2003; Villalba et al. 2004).

It remains a major challenge for future research to translate these known and hypothesised physiological relationships from intake regulation into herbivore food choices under field conditions and to generate behaviourally-based predictable management of plant communities by herbivores (Provenza et al. 2002).

The costs and benefits of herbivore counter-adaptation to plant secondary metabolites

Generalisations about the costs that detoxification of PSM imposes on animals are difficult, given the diversity of PSM and the range of different metabolic effects of even a single compound. The absolute costs of any one of the physiological avoidance or elimination strategies are likely to be small (Iason & Murray, 1996), but are hypothesised to vary with the nutrient intake, becoming excessive when nutrient intakes are below maintenance levels (Illius & Jessop, 1995). The fact that the cytochrome P450 system and the salivary tannin-binding proteins are inducible on exposure to the PSM stimulus (Mehansho et al. 1983; Pass et al. 2001) suggests that these systems are efficient, in that their maintenance carries at least some costs that are not borne unless they are necessary, i.e. when the diet contains PSM (Table 1). Regardless of their magnitude, the physiological costs of counter-adaptations should be weighed against their benefits. Animals that merely ingest PSM and bear the effects of reduced digestibility, or chronic or acute toxicity, could suffer major physiological and (evolutionary) fitness costs. The extent of chronic and acute toxicity in wild herbivores is unknown, but acute toxic effects observed in animals typically occur when a system such as an agricultural system contains a non-native animal or plant species that lacks a shared co-evolutionary history. This outcome is a testimony to the efficacy of evolved herbivore counter-adaptations to PSM (Feeeny, 1991).

The costs of seeking higher-quality food elsewhere because of the presence of PSM are not easily quantified, but involve increased costs of foraging as a result of greater movement and energy expenditure, as well as the feeding interruptions that reduce the short- and long-term rate of food intake. In addition to compromising nutritional status, if PSM cause greater search times and ranging behaviour, then animals are also likely to incur a greater risk of predation. These hypothesised effects of PSM are poorly quantified in mammals.

Acknowledgements

This work was funded by the Scottish Executive Rural Affairs Department and has benefitted from helpful discussions with Bill Foley, Stuart McLean, Juan Villalba and Alan Duncan, who also provided helpful comments on the manuscript.

References

