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ABSTRACT 

The present study deploys a continuum mechanics approach called peridynamics to investigate the 
damage behaviour of a 2D microstructure, which was taken from a plasma sprayed ceramic coating used 
in solid oxide fuel cell (SOFC) sealing systems. At the beginning, two benchmark cases, namely, plate with 
a hole as well as plate with a single edge notch, are considered. The results are compared to an analytical 
solution and a very good agreement is obtained. Based on these findings, a microstructural model from a 
plasma sprayed ceramic coating of SOFC sealing systems is investigated. These micromechanical 
simulations show that structural defects influence the crack initiation as well as the crack propagation 
during interconnecting the defects. Typical crack mechanisms, such as crack deflection, crack shielding or 
multiple cracking, are observed. Additionally, an anisotropy of the effective mechanical properties is 
observed in this heterogeneous material, which is well known for plasma sprayed materials. 
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1.  INTRODUCTION 
 
Numerical methods have increased their importance in 

materials science and mechanical engineering with 
increasing computational power during the last decades.  
Widely used numerical approaches are e.g. the finite 
element method (FEM) as a classical continuum 
mechanics approach or molecular dynamics (MD) in the 
nanometer range.  FEM is a local, mesh-based method, 
which represents the treated component with a fixed mesh.  
It is usually chosen to simulate e.g. deformation of 
components or the mechanical behaviour of micro- or 
meso-structures.  This approach has the advantage of 
highly accurate results of complex numerical problems 
with reasonable computational effort.  However, due to 
these characteristics modelling of discontinuities e.g. 
crack initiation and crack growth increases the numerical 
effort.  On the other hand, MD is a non-local simulation 
approach, which represents each atom or molecule by a 
discrete particle.  The interaction between those particles 
is defined by a so-called potential function.  The 
movement of each atom is based on Newton’s equations 
of motion.  The advantage of MD is the modelling of 
discontinuities in a natural way just by increasing the 
distance between two neighbouring atoms due to 

deformation.  However, this high accuracy on the nano 
scale increases the computational effort dramatically. 

The present study uses a rather new continuum 
mechanics approach called peridynamics (PD) that can be 
used with a mesh or a meshless approach [1].  PD is used 
to investigate the damage behaviour of a complex 
microstructure, which was taken from a plasma sprayed 
ceramic coating used in SOFC sealing systems.  Plasma 
spraying is a typical industrial manufacturing procedure 
to produce ceramic coatings time and cost effective and is 
widely used for producing thermal barrier coatings on 
turbine blades for power generation or aircraft engines 
[2, 3]. 

Peridynamics combines the advantages of FEM and 
MD by representing components or microstructures, but 
with a non-local approach, that enables the modelling of 
discontinuities naturally.  Especially on the microstructure 
scale several discontinuities exist, that can be represented 
by peridynamics.  De Meo et al. (2016) and Wang et al. 
(2017) show the potential of this method by investigating 
the damage due to corrosion in polycrystalline materials 
and the thermomechanical behaviour of electrode material, 
which is typically deployed in solid oxide fuel cells, 
respectively [7, 8]. 

Due to the novelty of this approach, the study starts with 
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(a) (b) 

Figure 1 Schematic representation of the function principle of peridynamics (a) and the linear elastic constitutive model 
with fracture at the critical stretch s0 (b). 

 
 

a benchmark procedure.  Two different cases are selected 
to validate the resulting stress distribution on the one hand 
and to compare the damage behaviour on the other hand.  
Both benchmark problems possess analytical expressions 
with an exact solution for the assumed boundary 
conditions.  After completing the benchmark procedure 
peridynamics is applied on a complex, plasma sprayed 
microstructure to investigate the damage behaviour. 

 
 

2.  METHODS OF SOLUTION 
 
For the simulation, bond-based peridynamics (PD) is 

used [4], a non-local generalization of continuum 
mechanics, with a focus on discontinuous solutions as 
they arise in fracture mechanics.  Within the context of 
continuum mechanics methods, peridynamics is basically 
a reformulation of the equation of motion in solid 
mechanics.  In the bond-based PD theory the 
acceleration of each material point can be obtained by 
taking into account all the interactions associated with the 
material point x. 
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where Hx represents the area or volume of the horizon and 
b refers to the body force density.  The interactions are 
given by the pairwise force density f as spring forces 
between pairs of material points.  These interactions 
only depend on the relative displacement (and potentially 
its history) of the interacting points and are thus 
independent of other points.  Figure 1 (a) depicts the 
non-local representation in peridynamics.  The 
interactions of the nodes are considered within a well 
defined region Hx.  This region is determined by the so 
called horizon , which is the radius of this region.  The 
stretch of a bond can be calculated with the initial bond 
length  x’ - x) and the relative displacement 

(= u(x’, t) - u(x, t)) as 

 s
  


 

  (2) 

The parameter, which defines the spring forces is the so 
called bond constant c.  A linear elastic isotropic material 
model is well defined for this bond-based approach due to 
the following expression of the pairwise force function 
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where  is the coefficient of thermal expansion, Tavg is the 
average temperature of the material points x and x’ and µ 
is the failure parameter of the peridynamic bond, which is 
in the range between 0 and 1 and describes the state of the 
bond.  The corresponding linear elastic material 
behaviour with brittle fracture is revealed in Figure 1 (b). 

Generally, peridynamics is able to simulate 2D (2-
dimensional) as well as 3D (3-dimensional) problems.  
Each dimensionality leads to a certain derivation of the 
final equations.  In the framework of this study only 2D 
problems are considered.  The corresponding bond 
constant c is linked to the Young’s modulus E, the horizon 
 and the model thickness t in the 2D case by the following 
expression [6]. 

 
3t

9E
c

 
  (4) 

Due to the derivation of the bond constant c in 
equation (4) a fixed Poisson’s ratio  of 1/3 as well as the 
relations  = E/2(1-) and  = 2G are considered.  The 
damage behaviour is triggered by a critical stretch s0, 
which has to be reached to initiate damage.  This damage 
parameter is directly linked to the strain energy release 
rate Gc and can be calculated with the horizon δ by the 
following equation [6]. 
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(a) (b) 

Figure 2 Schematic representation of the first case: plate with a hole under uniaxial tension (a) and the region of interest 
to evaluate the results, including the positions of monitoring lines along the symmetry axes to generate 
displacement and stress profiles (b). 
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Here, the above mentioned constraints hold for the 
derivation of the critical stretch in Equation (5).  
Choosing an appropriate value for the parameter horizon 
is crucial to obtain reasonable simulation results with an 
acceptable computational effort.  On the one hand, if the 
value is chosen too small, the accuracy of the solution can 
be low.  On the other hand, a large value leads to high 
accuracy while the computational effort due to the large 
number of interactions is significantly large.  It is 
obvious that the minimum value of the horizon size shall 
be the distance between the nearest particle neighbours.  
This distance is also known as discretization size.  
Previous studies from Silling and Askari (2005) have 
obtained the best results with a horizon / discretization 
size ratio of 3 [5].  This leads to a horizon, which 
includes all the particles within a distance of three nearest 
neighbour distances.  For the simulations the 
peridynamics module in the open-source molecular 
dynamics program LAMMPS [9, 10] was deployed.  
Here, the bond-based PD approach with a linear elastic 
isotropic constitutive model is represented by the so called 
Prototype Microelastic Brittle (PMB) model.  Similar to 
the theoretical derivations, as input parameter the bond 
constant c, the horizon  and the critical stretch so are 
required to describe the linear elastic isotropic material 
behaviour.  Basically, a completely independent 
behaviour of the critical stretch of a given bond is assumed, 
which is a simplification in the PD theory.  Hence, to 
take into account the difference in the damage behaviour 
due to tensile and compressive loading, as observed in real 
brittle materials, an additional material parameter 𝛼෤  is 
introduced. 

 0 0 mins s s     (6) 

This parameter 𝛼෤  is a constant, which triggers the 

enhancement of strength by compressive strain while the 
minimum stretch smin is generally compressive.  Based 
on the investigations in [4, 5] this material parameter is 
defined as 1/4.  

Due to the circular horizon and the single cubic 
discretisation the volumes of the points near the horizon 
surface are truncated depending on the position with respect 
to the centre of the horizon.  Thus, the corresponding 
volume of these surface points has to be assigned 
proportionally.  Considering this fact in the calculation, a 
modification of the particle volume with a linear unitless 
nodal volume scaling function is implemented to overcome 
this discrepancy of the circular horizon and the single cubic 
discretisation. 

 
 

3.  RESULTS AND DISCUSSION 
 
In order to validate the PD theory implemented in 

LAMMPS software two benchmark cases are calculated 
and compared with FEM results and results from 
analytical solutions.  These benchmark cases enable the 
validation of the deformation or stress distribution and the 
damage behaviour, respectively. 
 
3.1 Case 1: Plate with a hole under uniaxial loading 
 

The first case is used to validate the overall 
deformation behaviour with corresponding stresses.  For 
this purpose, the simple case “plate with a hole under 
uniaxial tension” is selected.  Figure 2 (a) shows the 
schematic representation of this case.  The stress 
distribution as well as the displacement field can be 
expressed by an analytical solution, which was postulated 
by Kirsch in 1889 [11].  Due to the symmetries an 
evaluation of a quarter of the plate is sufficient.  Thus, 
the considered part of the model to evaluate the results is 
shown Figure 2 (b).  Besides, to be able to compare the 
analytical and the numerical results in detail, two 
monitoring lines are introduced to generate profiles of the  
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Table 1 Material properties and structural parameters for the simulation. 

Young’s Modulus E (GPa) 100 

Poisson’s ratio 　 (-) 0.33 

Density 　 (kg/m³) 2200 

Tension 　 (MPa) 95 

Strain energy release rate GIc (J/m²) 2 

Discretization size x (m) 0.00075 

Horizon 　 (m) 0.00225 

Thickness t (m) 0.00075 

Particle volume V (m³) 0.422 x 10-9 

 
 

displacements and stresses along the symmetry axes. 
In cylindrical coordinates the stress can be calculated 

in terms of loading 　 and the radius a of the hole at the 
centre.  The actual position at a certain point P on the 
plate is defined by the distance r from the centre of the 
hole and the angle 　 between the symmetry axis in 
loading direction and the vector from the centre to the 
point P. In radial direction the stress is defined by the 
following equation. 
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A similar expression for the stress in tangential 
direction can be written as 
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Finally, the stress in shear direction can be written as  
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In order to compare the calculated stress with the 
numerical results the coordinate system was transformed 
from cylindrical coordinates to Cartesian coordinates.  
Due to this transformation the normal stress components 
in x and y directions and shear stress were calculated 
with the following equations. 

 2 2 2x r rsin cos sin           (10) 

 2 2 2y r rcos sin sin           (11) 

 ( ) 2xy r rsin cos cos           (12) 

Finally, a reformulation of the previous equations was 

used to calculate the displacements in x and y direction. 
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where G = E/2(1+) is the shear modulus and  = (3-
)/(1+) is a constant.  With these expressions the 
analytical solutions are obtained to compare with the 
numerical results using PD. 

A full simulation model of the whole plate was set up.  
A radius a of 10 mm and a plate edge length of 200 mm 
was defined.  Table 1 summarizes the material properties 
used as input parameters.  Applying these data in 
equation (4) the bond constant c is calculated as 
1.91 x 1023 Pa/m4.  The loading is displacement-
controlled with a strain rate of 0.1 1/s.  The whole model 
is surrounded by an additional boundary layer because 
surface correction is not available in LAMMPS. 
Furthermore homogenous displacement is only possible in 
periodic directions, therefore periodic boundaries are used 
in loading direction.  The result is not influenced by this.  
In the second direction, perpendicular to the loading 
direction, free surfaces are used.  An explicit simulation 
scheme was deployed with an increment of 1.0 x 10-7 s. 
Preliminary studies have delivered the simulation 
parameter to ensure quasi static conditions. 

The FE model represents the quarter of the whole set 
up due to the symmetry according to the analytical model.  
A plane stress element type is selected for the FE mesh 
with an average element size of 0.2 mm.  Along the 
symmetry axes only the degree of freedom perpendicular 
to the regarded axis is constrained as well as the rotational 
degrees of freedom.  On the upper edge of the plate the 
displacement-controlled loading in Y direction was 
applied.  The outer edge perpendicular to the loading 
direction and apart from the symmetry axis is considered 
as a free surface. 

Calculating the analytical solution with the input 
parameters above leads to the displacement field depicted  
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(a) (b) 

(c) (d) 

Figure 3 Displacement field in loading direction (a) and perpendicular to the loading direction (b) calculated by the 
Kirsch equation and the corresponding PD results in loading direction (c) and perpendicular to the loading 

direction (d). 
 
 

in Figs. 3 (a) and (b).  Due to the symmetry of the sample 
only a quarter of the plate is shown.  Lower stiffness due 
to the hole at the centre of the sample increases the 
displacement in loading direction Y in front of the hole 
(Fig. 3 (a)).  The free surface on the sample edge 
perpendicular to the loading direction apart from the 
symmetry axis leads to contraction of the sample in 
X direction (Fig. 3 (b)).  The corresponding PD results 
are shown in Figures 3 (c) and (d).  The displacement 
fields match quite well with the analytical results. 

Knowing the displacement field and the Young’s 
modulus for a linear elastic material one can calculate the 
stress distribution.  Figure 4 shows the resulting stress 
field of the analytical solution as well as the PD results. 
For PD the stress at each material point is obtained by 
utilizing the compute pressure function without the kinetic 
energy part, which is provided by LAMMPS [9].  A 
maximum stress of 285 MPa is obtained in loading 
direction adjacent to the hole at the symmetry axis (Fig. 4 
(a)).  In front of the hole a stress free region occurs.  
Perpendicular to the loading direction the obtained stress 
level is lower.  The maximum stress in X direction is 
localized at an angle of 45 ° on the edge of the hole.  The 
previous observations in the displacement fields coincide 

with the comparison of the stress field.  The overall 
stress field is very comparable to each other. 

In order to validate the numerical results more in detail, 
the displacements as well as the stresses parallel and 
perpendicular to the loading direction are compared along 
the symmetry axis.  The locations of the monitoring lines 
correspond to the sketch in Figure 2 (b).  Figure 5 
depicts the displacement profiles in both directions of the 
FE as well as the PD results and the results from the 
analytical solution.  With the applied boundary 
conditions, for the displacements in loading direction 
(Fig. 5 (a)) a good match of all results is observed.  Only 
a slight deviation between the results of the analytical 
solution and the numerical results is noticed.  The 
deviation can be attributed to the assumptions in the 
analytical solution, which consider an infinite extent 
perpendicular to the loading direction.  Due to the 
numerical effort, a cut off length was determined in 
preliminary studies, which ensures a sufficient accuracy 
with feasible calculation time.  However, in the vicinity 
of the hole the difference in the displacements are 
negligible. 

Due to the peridynamics algorithm, a proper particle 
volume is needed to calculate the stress distribution.   
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(a) (b) 

(c) (d) 

Figure 4 Stress field in loading direction (a) and perpendicular to loading direction (b) calculated by the Kirsch equation 
and the corresponding PD results in loading direction (c) and perpendicular to the loading direction (d). 

 
 

  
(a) (b) 

Figure 5 Comparison of the displacement profile in loading direction (A-A) along the monitoring line A-A (a) and 
perpendicular to the loading direction (B-B) along the monitoring line B-B calculated with analytical model, 
FEM and peridynamics (see monitoring lines A-A and B-B in Fig 2 (b)). 
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(a) (b) 

Figure 6 Comparison of the stress profile in loading direction (A-A) along monitoring line A-A (a) and perpendicular 
to the loading direction (B-B) along monitoring line B-B calculated with analytical model, FEM and 
peridynamics (see monitoring lines A-A and B-B in Fig 2 (b)). 

 
 

 
 

(a) (b) 

Figure 7 Schematic representation of the second benchmark case: plate with a single-edge notch under uniaxial tension 
(a) and the resulting stress-strain curve of the PD simulation (b). 

 
 
Typically, a particle volume, which is the cubic of the 
lattice constant, is deployed (see Table 1).  Figure 6 
shows the stress profiles along the symmetry axes parallel 
(a) and perpendicular to the loading direction (b).  The 
shapes of the profiles coincide well.  In figure 6 (a) a 
good match of the peridynamics results with the analytical 
results is observed.  However, in the stress profile of the 
stress in X direction in Figure 6 (b) an underestimation 
near the hole is obtained.  The deviation of the maximum 
shear stress is caused by the assumptions of the relation 
between bulk modulus and shear modulus in the 
derivation of the PMB constitutive model.  This shear 
behaviour is not straightforward to be reproducible by the 
constitutive models of the analytical solution as well as 
the FE model, which is based on the classical derivation 
of linear elastic isotropic material behaviour.  The slight 

underestimation of the stress apart from the hole is caused 
by the finite size of the numerical models in contrast to the 
assumption of an infinite extent of the analytical model, 
which already indicates the displacement profile in 
figure 5 (b). 

Considering the aforementioned particle volume over 
the whole sample the results match quite well.  Attention 
should be paid on the shear behaviour of the utilized PMB 
constitutive model, which delivers slightly different 
stresses perpendicular to the loading direction due to the 
fixed Poisson ration in the derivation of the PMB 
constitutive model.  With these insights the validation of 
the peridynamics approach was successful with respect to 
the calculated stress distribution.  The following second 
benchmark case focuses on modelling macroscopic 
damage behaviour. 
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(a) (b) (c) 

Figure 8 Resulting contour plot of displacement in loading direction at crack initiation (a) and after cracking (b) and the 
contour plot of stresses in loading direction at crack initiation (c). 

 
 

 

 

Figure 9  Cross-section of a plasma sprayed Mg spinel coating (source: DLR, Stuttgart). 

 
 
3.2 Case 2: Plate with a single-edge notch 
 

A schematic representation of the plate with a single 
edge notch is shown in Figure 7 (a).  According to [12] 
an analytical expression exists, which allows the 
calculation of the fracture stress under a certain ratio of 
notch length a and plate width L.  The comparison of the 
fracture stress by keeping the previous boundary 
conditions of the PD simulation fixed allows an 
adjustment of the critical stretch s0 in the peridynamics 
model.  Again, an explicit simulation scheme was 
deployed with a time increment size of 1.0 x 10-7 s. The 
discretization size was set to 0.0004 m.  Figure 7 (b) 
depicts the resulting stress-strain curve of the PD 
simulation.  A maximum stress, which is the fracture 
stress, of 3.16 MPa was observed. 

In order to evaluate the simulation results, the moment 
of crack initiation was determined.  Then, the results at 
that time are compared with the analytical solution.  
Figure 8 shows contour plots of the displacements and 

stresses in loading direction at crack initiation and after 
cracking.  The contour plot of the displacements in 
figure 8 (a) shows the deformation of the plate in positive 
and negative Y direction, respectively.  Figure 8 (b) 
shows the final configuration of the cracked sample.  
The plate is separated into two parts due to the crack, 
which is indicated by the uniform red and blue colour of 
the upper and lower parts, respectively.  The maximum 
stress at the crack tip is determined with 16.25 MPa, 
which depicts Figure 8 (c).  Finally, the fracture stress is 
validated by comparison with the analytical solution. 

The fracture stress can be calculated according to [12] 
based on linear elastic fracture mechanics (LEFM): 
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(a) (b) 

Figure 10 Histogram with applied minimum value method with an identified grey scale threshold value of 131 (a) and 
the corresponding binarized image with the different cutout positions. 

 
 
where KIc is the fracture toughness, which can be 
calculated from the strain energy release rate.  Assuming 
an initial notch length a = 4 mm, a fracture stress of 
3.1 MPa is thus obtained.  From the peridynamics 
simulation, a fracture stress of 3.16 MPa is obtained by 
applying a critical stretch s0 of 0.13 x 10-3, which is 
derived using equation (5). 

Concluding both benchmark simulations, a good 
reproducibility of the stress distribution as well as the 
damage behaviour with peridynamics is observed.  
However, attention has to be paid on the shear behaviour 
of the PMB material model, which leads to a slight 
underestimation of the calculated stresses.  With these 
results, the numerical method is proved on the continuum 
level and the following microstructure-based investigations 
are conducted. 
 
3.3 Microstructure-based Simulation 
 

The microstructural approach reveals relevant 
mechanical properties of the plasma-sprayed coating by 
taking into account the characteristic microstructural 
features such as pores or microcracks and their orientation.  
Figure 9 shows a SEM image used to investigate fine 
cracks and pores in the microstructural simulation.  The 
SEM image magnification is 2000 x and the micrograph 
size is 1024 x 768 pixels in the treated image 
corresponding to a pixel edge length resolution of 
0.11 µm/px.  By visual inspection, three main phases can 
be distinguished.  The largest area is filled with a light 
grey color and represents the bulk material.  The black 
area indicates the pores and cracks in the microstructure.  
Besides, a third phase characterized with dark grey pixel 
is detected.  This secondary phase is distributed over the 
whole microstructure in a wavy manner.  It seems that 
this, so called contact zone, covers each splat layer.  
Therefore, it is assumed that this phase with a different 
concentration or density arises due to solidification and 
remelting during the spraying process.  In this image the 

spraying direction is in y direction.  From literature, it is 
well known that the spraying direction influences the 
effective material properties significantly [15, 16]. 

A fundamental step in this microstructural approach is 
the conversion of the greyscale MgAl2O4 SEM images 
into binary images by applying a subsequent brightness 
threshold technique.  The threshold value controls the 
grey values and therefore describes the amount of pores in 
the numerical model.  Several techniques to determine 
an adequate grey scale value threshold are reported in 
literature [13].  The most straightforward method is the 
visual comparison of the binary image with the original 
image.  The threshold is adjusted until the best match of 
both images is reached.  Another method uses the 
measured porosity as a parameter to fit the threshold until 
the same porosity can be calculated for the binary image.  
Further, more advanced, methods analyse the grey scale 
value distribution of the original image in more depth.  
Such types of procedures are e.g. the tangent method and 
the minimum value method.  In the framework of this 
study the minimum value method, which was postulated 
by Tsai, is selected [14].  As a result of this procedure, 
the treated images consist of black and white pixels 
corresponding to the pores and cracks and the matrix 
phase, respectively.  This so called segmentation 
procedure delivers the geometry for the simulation model.  
The grey scale value ranges from 0 to 255 representing the 
colour black at the grey scale value 0 and white at 255. 
The shape of the grey scale value distribution is similar to 
a normal curve with a maximum in the range of the grey 
scale values between 150 and 200 (Figure 10 (a)).  A 
closer look on the shape of the distribution curve reveals 
that it can be approximated by three Gaussian curves 
(dashed lines), where each curve corresponds to one phase 
in the image.  The first Gaussian with a maximum 
around grey scale value 75 corresponds to cracks and 
pores.  The second curve with its maximum around 160 
belongs to the splat interphases and the third Gaussian 
curve with a maximum around 175 belongs to the ceramic  

0

0.2

0.4

0.6

0.8

1

D
en

si
ty

0 50 100 150 200 250

Gray Level

https://doi.org/10.1017/jmech.2019.58 Published online by Cambridge University Press

https://doi.org/10.1017/jmech.2019.58


192   Journal of Mechanics Vol. 36, No. 2, April 2020 

  
(a) (b) 

Figure 11 Schematic representation of the constraints and boundary conditions of the PD simulation models with loading 
in x direction (a) and loading in y direction (b). 

 
 

  
(a) (b) 

Figure 12 Resulting stress-strain curves of the frames loaded in X direction (a) and loaded in Y direction (b) according 
to the boundary conditions in Fig. 11 

 
 

phase itself.  Figure 10 (a) shows the application of the 
so called minimum value procedure [14].  The 
intersection of the first and the second fitted curve was 
identified and the corresponding grey scale value was 
determined with a grey scale threshold value of 131 and 
applied in the segmentation procedure.  The resulting 
binarized image with the threshold 131 is presented in 
figure 10 (b).  Applying the threshold in the 
segmentation procedure on the SEM image a binarized 
image with a porosity of 5.4 % is obtained, which matches 
the measured porosity of 4 % to 6 %.  The visual 
inspection leads to a good agreement with the original 
SEM image in figure 9. 

In order to establish the simulation model, the prepared 
binary image is divided into quadratic frames.  Each 
frame is deployed as one simulation model with an edge 
length of 20 µm.  A frame at position 1 is shown in 

Figure 11 (a) as an example.  In total, six frames are 
extracted from the binarized image and are deployed for 
further investigations.  The discretization size of the 
simulation models was set to 0.0005 m.  Periodic 
boundary conditions and uniaxial tensile loading in x- and 
y-directions are applied to the simulation models as shown 
in Figure 11.  An explicit simulation scheme was 
deployed with an increment size of 1.0 x 10-7 s similar to 
the benchmark simulations.  The material parameters 
such as the bond constant c = 1.91 x 1023 Pa/m4 and the 
critical stretch s0 = 0.13 x 10-3 are taken from the 
benchmark simulations, too.  In order to analyse the 
anisotropic behaviour of the plasma-sprayed coating the 
simulations with different loading directions are 
compared.  Considering the findings of the benchmark 
simulations only the stresses in loading direction are 
evaluated. 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

S
tr

es
s 

(M
P

a)

3.5

Strain(-) 10
-5

Pos 1
Pos 2
Pos 3
Pos 4
Pos 5
Pos 6

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

S
tr

es
s 

(M
P

a)

3.5

Strain(-)

Pos 1
Pos 2
Pos 3
Pos 4
Pos 5
Pos 6

10
-5

https://doi.org/10.1017/jmech.2019.58 Published online by Cambridge University Press

https://doi.org/10.1017/jmech.2019.58


Journal of Mechanics Vol. 36, No. 2, April 2020 193 

  
(a) (b) 

(c) (d) 

Figure 13 Resulting crack pattern of the microstructures of position 1 (a, b) and 3 (c, d) under uniaxial loading 
perpendicular to the spraying direction (in x direction) at different snapshots from the PD simulations. 

 
 
Evaluating the microstructure models the resulting 

stress strain curves are compared with each other and the 
crack paths are analysed.  The resulting stress-strain 
curves of all simulation models in x and y directions are 
shown in Figure 12.  The stress-strain behaviour is in 
accordance to the material model (see Fig. 1 (b)) with a 
linear elastic slope until cracking occurs.  After cracking a 
sudden dropdown to a stress free state and stress oscillations 
are observed (Fig. 12).  An anisotropic behaviour is 
observed, as indicated by the lower maximum stress of the 
results with applied loading in y direction (Fig. 12 (b)).  

In summary, the crack paths for each simulation 
model and loading direction at every snapshot are 
analysed.  As expected, the structural defects promote 
the crack initiation in several locations.  With further 
loading, exposed lying cracks start to grow.  Finally, 
these cracks interconnect the structural defects 
perpendicular to the loading direction until the crack 
divides the whole structure into two parts, mostly.  In 
each microstructure, the applied tensile loading results in 
the shortest crack path through the simulation model by 
interconnecting the initial crack like pores.  However, 
not only one straight crack appears but also crack 

branching is observed adjacent to clustered initial crack 
like pores.  Besides, multiple crack initiation and side 
crack activities occur in the microstructure.  These 
observations are typical for plasma sprayed ceramics and 
are proved by the investigations of Malzbender et al.  
[17] on the fracture behaviour of plasma sprayed thermal 
barrier coatings.  

In order to analyse the damage behaviour of the 
plasma-sprayed material the crack pattern at different 
snapshots are evaluated in detail.  Exemplarily, the 
frames of position 1 and position 3 with both loading 
conditions are selected for further evaluation.  The crack 
pattern of the microstructures loaded in x direction are 
depicted in Figure 13.  Figure 13 (a) and (c) show 
snapshots immediately after crack initiation.  In both 
cases the initiation occurs at the largest void in the centre 
of the frame on the upper and lower edge.  The cracks 
grow straight in both directions perpendicular to the 
loading direction until adjacent voids in the crack path are 
reached.  Then, the cracks move through these voids and 
proceed growing at the opposite edges.  Due to periodic 
boundary conditions and different starting points of the 
crack initiation, the cracks move through the boundary  
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Table 2 Simulation results with porosity and effective Young’s modulus. 

Frame Porosity (%) Eꓕ (GPa) E|| (GPa) Eꓕ / E|| 

Position 1 4.2 67.1 64.2 1.05 

Position 2 2.3 75.1 73.9 1.02 

Position 3 4.5 62.2 56.8 1.10 

Position 4 11.5 52.6 42.8 1.23 

Position 5 4.0 58.4 44.3 1.32 

Position 6 4.2 64.2 48.5 1.32 

 
 

  
(a) (b) 

  
(c) (d) 

Figure 14 Resulting crack pattern of the microstructures of position 1 (a, b) and 3 (c, d) under uniaxial loading parallel 
to the spraying direction (in y direction) at different snapshots from the PD simulations. 

 
 

and appear on the opposing side.  This effect leads to a 
straight crack through the whole microstructure 
(Fig. 13 (b)) or to a crack path with an offset (Fig. 13 (c)). 
Latter observation leads to crack shielding, which lock the 
crack due to energy dissipation.  Besides, typical 
mechanisms as multiple cracking and void deflection are 
observed in Figure 13 (b). 

Figure 14 shows the crack pattern of the same microstructures 
but loaded in y direction at different snapshots.  The 
evaluation of the crack pattern immediately after crack 
initiation in (a) and (c) delivers that crack initiation occurs 

at the same large void in the centre of the frame.  In 
contrast to the microstructures, which are loaded in x 
direction, the initiation sites appear only on the right edge 
of the voids.  In both microstructures, the cracks grow 
through the boundary and appear on the opposing edge.  
Again, crack shielding is observed (Fig. 14 (b)). 

The stiffness of each model corresponds to its porosity.  
With increasing porosity, a decrease of the effective 
Young’s modulus and maximum stress is observed.  
Besides, a scatter of the maximum stress is observed, 
which is typical for brittle materials.  Table 2 
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summarizes the porosities of the frames and the resulting 
effective Young’s moduli.  The analysis of the porosity 
delivers an intermediate porosity of position 1, position 3, 
position 5 and position 6, a low porosity of position 2 and 
a high porosity of position 4.  Besides, a measure for the 
anisotropy, the ratio of Young’s moduli perpendicular and 
parallel, is calculated and shown in this table.  A mean 
value of 1.17 slightly underestimates the investigations of 
Wang et al. [15, 16] on the anisotropic material behaviour 
of plasma sprayed ceramic coatings.  However, from 
literature it is known that a so called contact zone between 
the single splats exists in plasma sprayed materials [18].  
This contact zone possesses a weaker material behaviour 
compared to the bulk material.  Due to the different 
distribution parallel and perpendicular to the spraying 
direction along the splats an enhanced anisotropic 
behaviour is expected [19].  Further studies will take into 
account such a secondary phase. 

 
 

4.  CONCLUSIONS 
 
In this study, microstructural investigations were 

performed using bond-based peridynamics.  The 
complete workflow beginning at the SEM image, the 
image analyses for binarization and the final simulation 
model with the numerical results were presented.  In 
order to validate the simulation method, two benchmark 
cases, which possess analytical expressions, were chosen 
and compared with other numerical and analytical results 
successfully.  These benchmark cases cover the stress 
distribution (plate with a hole under uniaxial loading) as 
well as the damage behaviour with the fracture stress 
(plate with a single edge notch).  The microstructural 
investigations on six different frames deliver a well 
known anisotropic behaviour of the plasma-sprayed 
ceramic coating, although the typical contact zone in 
between the single splats, which is assumed to have a 
weakening effect on the plasma-sprayed coating, was not 
yet taken into account in the simulation.  This leads to 
the conclusion that the consideration of such a secondary 
phase can enhance the anisotropic behaviour further.  
In this study, the observed anisotropic behaviour is 
caused by the characteristic nonuniform shape of the 
larger voids in the coating, which appear due to 
shrinkage of the splats during the production process.  
The resulting crack path in each frame was analysed in 
both loading directions.  As expected, these results 
show that the structural defects influence the crack path 
significantly as well as the crack propagation by 
interconnecting the defects.  Further studies will focus 
on the effect of such a contact zone in the plasma-
sprayed coatings on the anisotropic behaviour.  
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NOMENCLATURE 
 

E Young’s modulus, N/m2; 
K bulk modulus, N/m2; 
G shear modulus, N/m2; 
F fracture stress, N/m2; 
GIc strain energy release rate, J/m2; 
KIc fracture toughness, MPam-1/2; 
 Poisson’s ratio; 
 horizon, m; 
t thickness, m; 
x discretization size, m; 
c bond constant, N/m6; 
V particle volume, m3; 
s0 critical stretch, m/m; 
Tavg average temperature, K; 
 thermal expansion coefficient, 1/K; 
 density, kg/m3; 
µ failure parameter; 
𝛼෤ material parameter; 
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