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A CHARACTERIZATION OF WHITE NOISE

TEST FUNCΠONALS

H.-H. KUO, J. POTTHOFF AND L. STREIT

§ 1. Introduction and main result

In a recent paper [PS 89], two of the present authors have found a

characterization of a certain space (S?)* of generalized functional of white

noise, i.e. generalized functionals on ^ ' (R) equipped with the σ-algebra

gβ generated by its cyclinder sets and with the white noise measure μ

given by

f exp(*<*, O)dμ(x) = exp (-^- |

for ξ e <^(R). Here, | |2 denotes the norm of L2(R), and < , > dual pair-

ing. Below, we shall shortly recall the construction of the space {&)*

as the dual of a space (S^) of "smooth" functionals on ^ ' (R) . The char-

acterization mentioned above is of considerable power: it provides an

extremely convenient way to decide whether a certain given functional

is an element in {J¥)%. This has been shown in [PS 89] for a number of

examples (especially for certain measures on 5^(R)). The purpose of the

present note is to give a similar characterization for the elements (£f) of

test functionals. For notation, definitions, more background and refer-

ences, we refer the reader to [PS 89].

Let Γ(A) denote the second quantization of the self-adjoint L2(R)-

operator A which on <^(R) is defined as

Aξ(u) = - ? ' ( " ) + (1 + uηξ(u), ξ e ^(R), u 6 R.

Let 0* denote the algebra of smooth polynomials on ^ ( R ) , i.e. 0 is

generated by the random variables Xξ = < , ξ>, ξ e ^ ( R ) . For p ;> 0, let

denote the completion of Sf(R) with respect to the norm \ξ\2lP =

2, and let (y)p denote the completion of & with respect to the norm
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\\φ\\2§p = \\Γ(A)'φ\\i9 where || . ||ρ, q > 1, denotes the norm of L«(^'(R), St9 μ)

= (LQ). The corresponding dual spaces are denoted by 5^_P(R) and (50-p,

respectively. Then we define the space (50 of test functionals of white

noise as the projective limit of the family {(50P, p e No}, and denote by

(50* its dual. Note that 5*(R) is the projective limit of the family

{5^(R), p e No}, cf. e.g. [Si 71]. Every element φ e (L2) admits a chaos

decomposition

(1.1) Ψ = ΣUFW),

where F ( n ) e L2(Rn), ^ denoting symmetrization, and In(F(n)) is the multiple

Wiener integral of F(n) of order n. It can be shown that φe(^) implies

that for every 7ieN, Fin) has a version belonging to ^ ( R n ) . Moreover,

φe(L2) corresponding to (F ( w ) ; n e N 0 ) belongs to (50 if and only if for

every p e R,

(1.2) \\φ\\lP = Σnl\(A^yF^\l.

The norms under the last sum will also be denoted by |F f w ) | 2 j 2 , .

On (L9), q > 1, and for £ e ̂ (R) , we define the ̂ -transform (cf. also

[KT 80]) of an element φ by

= ^ φ(x + ξ)dμ(x) .

Note that we have the formula

S?φ(ξ) = J φ(x): exp <x, f >: dμ(x),

where we have set

: exp <*, f> : = exp (<x, f> - i | f g) .

If φ e (L2) has a chaos decomposition as in (1.1) then

(1.3)

as an easy direct computation shows.

Since for all λ e C and ξ e y(R)9 : exp <̂ , ξ) : e (Sf), we may extend

the ^-transform consistently to («^)* by setting for Φ e

(1.4) ^Φ(f) = <Φ,: exp
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It is not hard to see that for all Φ e (&*)*, and ξ e ^(R) , the mapping

λ >-> yΦ(λξ) has an entire analytic extension to C Clearly, it is given

by

In the following we shall study analytic properties of this function.

To this end we introduce the following notions for mappings

For R > 0, and ξ e

Also, we shall use

for real p.

(*,£)

^ ( R ) set

M(B, ξ) = ^

the notation

R) • C

.' >f(z,ξ).

Jlφ_Jf(z,ξ)\.

DEFINITION 1.1.

(a) / is called of p-order p, p > 0, if and only if

r ln\n M(R,ξ)
h m sup ^ > y / = p ,

Λ-OO lni?

uniformly on JB*.

(b) Assume that / is of p-order p, p > 0. / i s called of p-type τ, τ e

[0, +oo], if and only if

lim sup R~p In M(R, ξ) = τ ,

uniformly on JB .̂

(c) / is called of p-growth (p, τ), if and only if / is of p-order not

exceeding p, and if of p-order p, then / is of p-type not exceeding r.

Assume that F is a ray entire function on Sf(R), i.e. for every ξ, ηe

^(R), the mapping λ •-» i^(^f + ^) has an entire analytic continuation.

The function z H-» F(zξ) is denoted by f(z, ξ). Then we shall use the

notions p-order, p-type and p-growth also the function F.

In [PS 89] a ray entire F of ( —p)-growth (2, τ), for some p > 0, and

τ ;> 0, was named a U-functίonal. The main result of [PS 89] was the fact

that any element in {&*)* has an ^-transform which is a [/-functional, and
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conversely, for any [/-functional F there is a unique element Φ e C$0*

with SfΦ(ξ) = F(f).

The main result of the present paper is the following theorem.

THEOREM 1.2. If φe (Sf) then ^ψ is ray entire and for every p > 0

of p-growth (2, 0). Conversely, if F is ray entire on «$̂ (R), and for every

P ΐ> 0 F is of p-growth (2, 0), then there is a unique element Φ e (£?) whose

^-transform is equal to F.

The plan of the paper is as follows. Section 2 contains the proof

of Theorem 1.2. In Section 3 we discuss some of consequences and ex-

amples.

ACKNOWLEDGEMENT. TWO of us (J.P. and L.S.) acknowledge gratefully

the warm hospitality of Professor T. Hida and the Department of Math-

ematics at Nagoya University.

§ 2. Proof of Theorem 1.2

Assume that F is ray entire and of p-order p > 0. If F is of p-type

0, we have by definition

lim sup JR-> In M(R, ξ) = 0

uniformly on B* and consequently

limR-p)nM(R,ξ) = 0

uniformly on J5*. But this implies that for every ε > 0 we have

(2.1) limM(R,ξ)e-εRp = 0,

uniformly on J5*. On the other hand, if (2.1) holds uniformly on JB*, then

it entails that F is of p-type 0. Thus we have proved the following

result.

LEMMA 2.1. F is of p-growth (2, 0) if and only if for every ε > 0 and

, ξ)e~εR2 = 0,

uniformly on ΰ * .

Now we prove the first statement of Theorem 1.2.
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LEMMA 2.2. If φe (S") then £fφ is for every p e N of p-growth (2, 0).

Proof. Let φe(SO and ξe^(R). Denote by z *-* f(z, ξ) the entire

extension of λ t-> S?φ(λξ). The self-adjointness of Γ(A) and Schwarz' ine-

quality provide for every q > 1, and z e C, the following estimation.

The last norm can easily be evaluated:

Therefore we have the bound

which is valid for all z e C and all q e R. Clearly, this gives the estimate

for all R > 0, and all real g.

Now choose q large enough so that for given p e N , and given ε > 0,

2«<p-«> < e. Then we find for ξ e ^ ( R ) with | ί | 2 , . p < 1

M(R9 ξ)e~^ < \\φ\\2,q exp

since for q > p we have ||AP"9|| < 2P~Q. Obviously this tends uniformly on

J3* to zero. Thus an application of Lemma 2.1 concludes the proof. •

The proof of the second statement of Theorem 1.2 will be done in a

sequence of lemmas.

From now on assume that F is a ray entire function on ^(R), which

is of p-growth (2, 0). Also denote

zeC, ξ

The power series expansion of /( , ξ) will be denoted as follows.
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The next result has been shown in [PS 89].

LEMMA 2.3. Let F be ray entire and of p-growth (2, 0). Then F is

infinitely often Gateaux differentiable in every direction of ^ (R) . Moreover,

for all neN, ξe

Γn\

where Dξ denotes the Gateaux derivative in direction ξ. In particular,

f{n)(ξ) is homogeneous in ξ of degree n.

LEMMA 2.4. If F is of p-growth (2, 0), then for all K > 0 there is

n0 e N so that for all n > n0, and for all ξ e

(2.2)

Proof Assume for the moment that \ξ|2t_p = 1. It follows from

Lemma 2.1 that for every ε > 0

limM(R,ξ)e-εR* = 0,

uniformly on JB*.

Let K\ > 0 and choose ε = e'1K\ Choose Ro large enough so that for

all R > RQ

M(R, ξ)e-εE* < 1.

Note that RQ is independent of ξeB*. Let R = max(i?0, n
ί/2eKi). Then

for nQ large enough we have R — nίβeKl for all n > nQ. Cauchy's theorem

gives the estimate

for all n > nQ. Stirling's theorem shows that

where K2 is a certain constant. Choose Kx above such that Kx — if2 = K

and inequality (2.2) is proved for ξ with \ξ\2,-p = 1.

For general ξ eS?(Έ) inequality (2.2) follows now by homogeneity of

/». D
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Next we construct from /„ by polarization an w-linear form Fln) on

Sf(R). For ξu • • •, ξ. e S?(R) we set

(2.3) F< >(ξ» •••,ξJ = - \ t ( - 1 ) - * Σ /«(&, + + f j

If we combine Lemma 2.4 with formula (2.3) we easily obtain the

following estimate (an analogous result is proved in detail in [PS 89]).

LEMMA 2.5. For every K > 0 there is n0 e N so that for all n > n0,

and all &, , ? n e <

(2.4) |F<»>(£t, ., f J | < e-««n\-w f[ \ξk\^p .

Let e^
7_p(Rn) denote the completion of ^(Rn) under the norm \g\2,-p

= |(A®n)-p^|2. Note that the set of elements {(g^f*; ffc e ^(R)} is total

in ^_ p (R n ) . Then inequality (2.4) tells us that the ^-linear form F(n\

which we may consider as a linear form on £f(R)®n, has a continuous

extension to <9*_p(Rn). We denote this extension by the same symbol.

Therefore, we may now consider F(n) as an element in 5%(Rn), the dual

of y_p(Rw). The next lemma estimates the | |2;J)-norm of F ( n ) under a

slightly stronger hypothesis.

LEMMA 2.6. Assume that F is of (p + q)-growth (2, 0) with q > 1/2.

Then for all K> 0 there is nQ e N so that n> n0 implies

Proof. Note that

\F(n)\iP= Σ

k

where {efc; A e No} is any CONS of L2(R) in the domain of Ap. Choose e

to be the £-th Hermite function and note that Aek = 2(k + l)efc, fe e No.

Then we know that for any Kί > 0 there exists n0 (depending on Kl9p9 q)

so that for all n > nQ we have

Therefore,
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p \F™(A*ekl, .. .,A'eJf < nl-'e'^^-^ίξ (k + 1)-2«Y

for some constant K2 > 0. Finally, choose Kx so that Kx — K2 = K. Π

LEMMA 2.7. // F is of (p + q) growth (2, 0) for some q > 1/2, then

there is a unique element φ in (£f)p so that Sfφ = JF.

Proof, First of all note that the hypothesis that F is of (p + q)

growth (2, 0) implies that for every n e N, Fin) e £%+9(Rw), so in particular

p{n) e ^p(R«). Also, by construction F{n) is symmetric. Now set

By construction, φ e {Sf)p if and only if (1.2) is finite. But the estimate

of Lemma 2.6 shows that this is true. •

It is clear that the second statement of Theorem 1.2 follows imme-

diately from Lemma 2.7.

§ 3. Consequences and examples

As a first illustration of our theorem let us investigate the question

whether the composition of /o Xη of a function / in the Schwartz space

^ ( R ) of test functions with the random variable Xη = < ,τ?>, ηeSf(R),

belongs to (^). As a special case, let us choose / to be the Gauss func-

tion f(u) = exp(—}u2). It is an easy exercise to compute

for

φ(χ) = foXη = e x p ί - -

It is obvious that ό^φ is not of type 0. Therefore φ does not belong to

(^), and consequently in general the answer to the above raised question

is negative.

Based on Theorem 1.2 we can very easily establish a result which

has already been proved in [PR 89] by other methods, and which describes

a large class of examples in (£f) of the above type.
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THEOREM 3.1. Let η e 5^(R), and f be a function on R whose Fourier
transform f belongs to D(Έ) and has compact support. Then foXηe(£f).

Proof. By Fubini's theorem, we find that

S?foX,(ξ) = (2π)-><* f f(p)ye^\ξ)dp .
JR

It is plain to compute the ^-transform under the last integral:

= exp (ip{ξ, η) - ~pz\

where ( , •) is the inner product of L2(R). Thus we have the formula

(seC)

(3.1) ^/o X,(*f) = (2π)"^2 £/(p) exp

First of all note that the fact that / has compact support allows us to
differentiate with respect to z e C under the integral sign in (3.1). From
this we obtain immediately that the function z H-> yfoXη(zξ) admits the
Cauchy-Riemann equations and therefore y / o j ? is ray entire.

Assume that supp/ c [—N, N], iV>0. Then we can estimate for
every p e N as follows.

where | \x is the L1(R)-norm. Clearly, this bound shows that y / o l ? is
for every p e N of p-order 1 and consequently of p-growth (2, 0). •

EXAMPLE 3.2. Note that the function f(u) = u"1 sinu, ueΈl satisfies
the hypothesis of Theorem 3.1. Therefore ψ given by

φ(x) = ^<XV)^ χ e y W l

belongs to ψ). Since (SO is an algebra (e.g. [HPS 88]), so φ2 e ψ). φ2

was used in [PR 89] to show that every smooth bounded cyclinder func-
tion can be approximated by sequences in (Sf) in the topology defined by
certain Dirichlet forms over

EXAMPLE 3.3. If / is entire and of growth (2, 0) (cf. e.g. [Bo 54]), and

https://doi.org/10.1017/S0027763000003469 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003469


194 H.-H. KUO, J. POTTHOFF AND L. STREIT

we pick η e ^(R), then for all p e N ,

F(ξ):=fo(v,ξ)

is of p-growth (2,0). This follows as above from the estimate \{η, ξ)\ <

l^kplίk-p? and the finiteness of \η\2tP for all p. Therefore any such pair

(/»y) gives rise to an element in (6?). For example, we may choose for

f the functions z >-• cos V 2 or £ •-> Γ(z)~\

Note added in proof. After this manuscript was submitted, we

learned that Ju. G. Kondrat'ev had obtained similar results in "Nuclear

spaces of entire functions in problems of infinite-dimensional analysis";

Soviet Math. DokL, 22 (1980), 588-592.
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