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In the general theory of locally convex spaces, the idea of inductive limit is pervasive,
with quotient spaces and the less obvious notion of direct sum being among the instances.
Bornological spaces provide another important example. As is well known (cf. [7]), a
HausdorfT locally convex space E is bornological if, and only if, E is an inductive limit of
normed vector spaces. Going even further in this direction, a complete HausdorfT
bornological space is an inductive limit of Banach spaces.

Inductive limits of Banach spaces form a distinguished subclass of the class of all
bornological spaces; members of this subclass are termed ultrabomological (cf. [10]).
Ultrabornological spaces, being inductive limits of barrelled spaces, are also barrelled.
Moreover just as barrelled spaces can be characterized by a closed graph theorem [6], M.
De Wilde [2] has characterized ultrabornological spaces in terms of a closed graph
theorem. In a barrelled space, every vector subspace of countable codimension is again
barrelled [9], [11]; as M. Valdivia [17] has shown, however, unlike barrelled spaces,
ultrabornological spaces can even contain hyperplanes which fail to be ultrabornological.
At this point, it seems pertinent to ask whether it is possible to identify a larger collection
of (barrelled and) bornological spaces which would exhibit improved stability properties,
while retaining the nicer characteristics of ultrabornological spaces. Our present purpose
is to show that this is indeed the case by introducing a class of barrelled and bornological
spaces which we shall term hyperbomological. In so doing, we actually provide a general
approach to describing and studying inductive limit generated subclasses of the bornologi-
cal spaces, and then proceed to develop permanence and stability properties of these
collections, as well as provide alternative characterizations including one in terms of a
closed graph theorem.

1. Classes of bornological spaces. A subcollection Z£ of the class N = Jf{K) of all
normed vector spaces (over the field Ke{IR, C}) will be called a bomology class (or
b-class) whenever the following conditions are satisfied:

(i) ££f cj£, where 3?{ denotes the collection of all finite dimensional members of Jf;
(ii) if £ ei? and if M is a closed vector subspace of E, then E/MeJ£;

n

(iii) if {£k}'k = i is any finite subset of if, then {[ Eket£.
k = l

Of course, JV is the largest bornology class, while S£f is the smallest. Other examples
include the collection S£B of all EeJf such that E is a Banach space,

Xr = {E e i?B : E is reflexive},

and the collection if, consisting of all barrelled members of J{. We note in passing that
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Let £ be a Hausdorff locally convex (topological vector) space. If 6 is a (nonvoid)

absolutely convex bounded subset of E, then E(B) = U fcB is a vector subspace of E and

the gauge pB of B in E(B) is a norm on E(B); the normed space (E(B), pB) will hereafter
be denoted by EB. Now, if if is a b-class, then a set A s E will be termed SB-bounded
whenever there exists an absolutely convex bounded set B in E such that A g B and EB is
topologically isomorphic to some Feif ; the collection of all if-bounded subsets of E will
be denoted by if(E).

Some properties of if-bounded sets are listed below. Since verification is straightfor-
ward, it will be omitted.

PROPOSITION 1.1. Let E be a Hausdorff locally convex space, and let if be a b-class.
(i) If A eif(]5), then A is bounded, while every subset of A, the convex hull F(A) of

A, and the absolutely convex hull Ta(A) of A also belong to S£{E);
(ii) if A, B eif(E) and A eIK, then A A, A+B, and A UB are all in %{E);
(iii) £ = U { A : A e i ( £ ) } .

In other words, if(E) is a convex vector bornology in the sense of H. Hogbe-Nlend

Given two b-classes if t and if2, if each E e ifi is topologically isomorphic to some
Feif2, then we will write ifi<if2. Since ifj(E) will coincide with if2(E) for every
Hausdorff locally convex space E if, and only if, if t<if2 and <£2 — %u let us agree to
identify <£x and if2 whenever both ifx<if2 and S£2^&\- With this understanding, we
shall proceed to describe the classes of bornological spaces to which we alluded earlier.

DEFINITION. A Hausdorff locally convex space E will be termed ^-bornological,
where if is a b-class, if each absolutely convex subset U of E which absorbs every
A e if(E) is a neighborhood (of zero).

If ifj and if2 are b-classes with iEy<5£2, then every ifx-bornological space is clearly
if2-bornological. Moreover, a Hausdorff locally convex space E is jV-bornological if, and
only if, E is bornological, and therefore, for any b-class if, every if-bornological space is
indeed bornological. It is also easy to check that every member of a given b-class if is
if-bornological.

THEOREM 1.2. Let E be a Hausdorff locally convex space. Then, given a b-class if, E
is %'-bornological if, and only if, E is an inductive limit of normed vector spaces belonging to
SB.

Proof. Assuming that E is if-bornological, let A be the collection of all absolutely
convex members B of if(E) such that EB is topologically isomorphic to some FB e if.
Then, clearly,

E = ind{EB :BeA} = ind{FB : B e A}.
B-> B->

On the other hand, suppose that E = ind{EK : A e A}, where EK e if, A e A, and note that

there is no loss of generality in further assuming that each Ek g E. Now, if U is an
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absolutely convex subset of E which absorbs every A eS£(E), then U necessarily absorbs
the (closed) unit ball of Ex, A e A, whereby U is a neighborhood in E.

COROLLARY 1.3. Let E be a Hausdorff locally convex space. Then
(i) E is ultrabornological if, and only if, E is 3? B-bomological;
(ii) E is 3? f-bomological if, and only if, E has its finest locally convex topology.

Comment on i?r-bornological spaces will be reserved until Section 5. In the mean-
time, the focus will be on the if,-bornological spaces; members of this latter class will also
be called hyperbomological spaces. Since ££B s j£(, every ultrabornological space is hyper-
bornological. However, as we shall later demonstrate, the converse is not true.

COROLLARY 1.4. Every hyperbomological space is barrelled and bomological.

If if is a b-class such that every if-bornological space is barrelled, then each Ee^£ is
barrelled whence 3?<££t; the converse assertion is an immediate consequence of
Theorem 1.2. Unfortunately, though, the hyperbomological spaces do not exhaust the
class of barrelled and bomological spaces (cf. [15]). Indeed, as we will see in Example 5.5,
even more can be said in this direction.

Fixing a b-class SB, let E be a Hausdorff locally convex space. We will say that E is
SB-quasibarrelled if every barrel in E which absorbs every A&5£(E) is a neighborhood.
Further' a subset 98 of i?(E) will be termed a generating set (for the if-bounded subsets of
£) if (a) each B e 38 is absolutely convex and (b) every absolutely convex set in E which
absorbs each Be98 also absorbs every Ae££(E); if, in addition, each BE98 is closed in
E, we will refer to S3 as a closed generating set. For example, the collection of all
absolutely convex compact subsets of E is readily seen to be a closed generating set for

PROPOSITION 1.5. The following are equivalent for a Hausdorff locally convex space E:
(i) E is barrelled;
(ii) E is <£B-quasibarrelled;
(iii) E is S£-quasibarrelled with respect to a b-class ££ such that there is a generating set

98 for i£(E), where each Be98 is sequentially complete;
(iv) E is ££-quasibarrelled for some b-class S£ with !£^Z£t.

Proof. That (i) implies (ii) is obvious, while the implication (ii) ̂  (iii) follows from the
remark above. Assume that (iii) holds, and let U be a barrel in E which absorbs every
Aeif , (£) , Since EB is a Banach space for each Be38, SScj^E) wherefore U absorbs
every AeS£(E), i.e. U is a neighborhood. To see that (iv)^(i), let U be a barrel in E,
take A eS£(E), and choose an absolutely convex set B eZ£(E) so that AQB and EB is
barrelled. Since the canonical embedding \\iB :EB -» E is continuous, ip^iU) is a barrel in
EB. But this implies U absorbs B, and the proof is complete.

For any b-class .2?, of course, every i£-bornological space is if-quasibarrelled, while
each i£-quasibarrelled space is quasibarrelled. In Section 5, we will consider the question
of whether being i£-quasibarrelled does indeed offer a middle ground between the notions
of barrelled and quasibarrelled.
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2. Local convergence. The concept of local (or Mackey) convergence has proved
useful in studying continuity of linear mappings on bornological spaces (cf. [5]), and so it
is not surprising that the same is true for the obvious modification in the context of this
article. To be precise, for a given b-class SB, we shall say that a sequence {xn}"=1 in a
Hausdorff locally convex space E is ^-locally convergent to xeE if there exists an
absolutely convex set B e.Z£(E) such that xn, n = 1, 2 , . . . , and x all belong to EB and
{*„}"=, converges to x in (the normed vector space) EB. A sequence {xn}"=1 in E which
i£-locally converges to zero will be termed ^-locally null. Further, a linear mapping /
from E into a locally convex space F will be called ^-locally bounded if f(B) is bounded
for each Be£(E).

Since it is straightforward to check that an absolutely convex set U in E absorbs
every B e i£{E) exactly when U absorbs each i?-locally null sequence, and since the
collection of all absolutely convex subsets of E which absorb every B e $£{E) is a base (at
zero) for a locally convex topology T{££) on E which is at least as fine as the initial
topology on E, we have the following natural analogue of a standard result for bornologi-
cal spaces.

PROPOSITION 2.1. The following are equivalent for a b-class Z£ and Hausdorff locally
convex space E:

(i) E is S£-bomological;
(ii) every ^-locally bounded linear map f from E into any locally convex space F is

continuous;
(iii) every absolutely convex subset U of E which absorbs each %-locally null sequence

is a neighborhood.

COROLLARY 2.2. Assume that SB is a b-class, and take E to be ££-bomological. Then a
linear mapping ffrom E into a locally convex space F is continuous if, and only if, the image
under f of every ^-locally null sequence is bounded.

COROLLARY 2.3. For a given b-class i£, a Hausdorff locally convex space E is
^£-bornological if, and only if, every ̂ -locally bounded linear functional on E is continuous
and E has the Mackey topology T{E, E').

Proof. Since T(E, £') is always coarser than T{5£), it suffices to note that, as a
consequence of the Mackey-Arens theorem, T(E, E') is finer than T(J£) whenever each
if-locally bounded linear functional on E belongs to E'.

The dual characterization of bornological spaces due to G. Kothe (cf. [5, p. 386]) also
extends, although the statement is less than satisfactory.

THEOREM 2.4. Fixing a b-class S£, let Ebe a Hausdorff locally convex space. Then E is
^-bornological if, and only if, the following conditions are satisfied:

(i) E has its Mackey topology T(E, E');
(ii) every absolutely convex subset of E which absorbs each B e !£ (E) likewise absorbs

the closure of every B e
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(iii) E' is complete in the topology o-(Z£) of uniform convergence on all ^-locally null
sequences.

Proof. If E is if-bornological, then Corollary 2.3 gives us that (i) holds, while (ii)
follows since the closure of each B e i£(E) is bounded. For (iii), first note that a Cauchy
n e t (/A) ' n (E',a(iB)) is a Cauchy net in the algebraic dual E* with its weak topology
a{E*, E) whereby {/x} is a(E*, £)-convergent to some feE*. A standard argument then
shows that / is i?-locally bounded, and hence feE' by Corollary 2.3, and that {/x} is
cr(.2?)-convergent to /.

For the converse, again using Corollary 2.3, it will suffice to show that each if-locally
bounded feE* belongs to E'. Because of (ii), however, if B e££(E) is absolutely convex
and feE* is if-locally bounded, then / | Eg is bounded. From this point, the argument
exactly parallels Kothe's proof for the bornological case, and so we omit the details.

Given a b-class S£ and a Hausdorff locally convex space E, let 35 be any generating set
for %{E). Then, since feE* is .Sf-locally bounded if, and only if, f(B) is bounded for
every Be39, Corollary 2.3 can be rephrased in terms of "33-local boundedness." With
this in mind, the proof of 2.4 can be obviously modified to yield the following variation.
For convenience, we shall refer to a sequence {xn} in E as being 38(i?)-locally null
whenever there exists some B e 59 such that {*„} is a null sequence in EB.

THEOREM 2.5. Fixing a b-class X, let E be a Hausdorff locally convex space such that
$8(E) has a closed generating set 38. Then E is ££-bomological if, and only if, E has its
Mackey topology T{E,E') and E' is complete in the topology cr(38(if)) of uniform con-
vergence on all 88(i?)-focaJ/y null sequences.

COROLLARY 2.6. A Hausdorff locally convex space E is ultrabornological if, and only
if, E has the topology T(E, E') and E' is o-(2ft(l£m))-complete, where 39 is the collection of all
absolutely convex compact subsets of E.

In the setting of 2.6, the 89(i?B)-locally null sequences are just the sequences in E
which are fast convergent to zero in the sense of De Wilde (cf. [2]).

3. Stability properties. Our first observation is an immediate consequence of
Theorem 1.2.

PROPOSITION 3.1. For a b-class ££, every Hausdorff locally convex space which is an
inductive limit of Z£-bornological spaces is itself &-bomological. In particular, any direct
sum of S£-bomological spaces or any quotient of a J£-bomological space (by a closed vector
subspace) is %-bomological.

The situation for products is a bit more delicate. In view of Corollary 1.3, for
instance, a denumerable product of <2?f-bornological spaces need not be i£rbornological,
whereas countable products of bornological spaces are always bornological (cf. [5, p.
384]).

For an infinite collection {Ek: A e A} of locally convex spaces, let e denote the
cardinality of A, and take d to be an infinite cardinal with d :£ e. Then the subset of the
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topological product E = Y\EK consisting of those xeE such that |{A e A:x(K) =£0}|^d is a

vector subspace of E which, when equipped with the relative product topology, we shall
denote by Ed; if d = No, then Ed is the X-product (with base point 0 6 E) introduced by H.
H. Corson [1]. Further, the topological product of d copies of the scalar field IK will be
denoted by cod.

If, for each A e A, EK is a Hausdorff locally convex space equipped with its Mackey
topology T(EA, E A ) , then the topological product E = l\ EA is known to have the topology

A

T(E, E'). A S we next note, this result can be extended to include our generalized
2-products.

LEMMA 3.2. Let {EK : A e A} be a family of Hausdorff locally convex spaces where, for
each A e A, EA has the topology T(EA, E'K). If d is an infinite cardinal such that d < |A|, then
Ed has its Mackey topology r(Ed, E'd).

Proof. Take A in E'd-E' to be absolutely convex and a(E', Ed)-compact. Since A is
<T(E', Ed)-bounded, and since any x s E which vanishes except on a countable subset of A
belongs to Ed, the projections of A in EA, A e A, can be nontrivial in only finitely many
instances whence A is also o-{E', E)-compact.

THEOREM 3.3. Given a b-class if with i f B < i f , let {EA:AeA} be a family of
i£-bornological spaces (with EA^{0} for every AeA), and assume that d is an infinite
cardinal such that d< |A | . Then Ed is SB-bornological if, and only if, <od is bornological.

Proof. Assuming that Ed is if-bornological, choose A £ A so that | A| = d. Then
F= II Ek is topologically isomorphic to a quotient of Ed, and hence, from Proposition

AeA

3.1, we have that F is bornological whereby so also is o)d [5, p. 390]. For the converse, let
us begin by assuming that feE* is if-locally bounded. Now, identifying each EA with its
image in Ed under the natural injection mapping, put A = {A e A: /1 Ex ^ 0}. If A were
infinite, then there would exist a null sequence {%„} in Ed such that f(xn) =_n, n - 1, 2 , . . . ,
and B =Ta({xn}) is contained in a complete vector subspace of Ed. Since B would then be
compact and therefore if-bounded, however, this would contradict our choice of /. Thus,
because A is finite, F = fl £ \ is if-bornological by Proposition 3.1, while f\F is

AeA

if-locally bounded and hence continuous by Corollary 2.3. Consequently, there exists
g e E j so that g\F = f\F and g(x) = 0 whenever xeEd with x(A) = 0 for all A e A ; put
h=f-g. Fixing x e Ed, let GA be the linear span of x(A), A e A. Then G = fl Gx is a vector

subspace of Ed which, under the relative topology induced by Ed, is topologically
isomorphic to a quotient of the bornological space a)d. Being complete, however, wd is
ultrabornological and therefore if-bornological whence G is also if-bornological. But this
implies h | G is continuous, and so, since h(y) = 0 whenever y belongs to the direct sum
£ © E A , we have h\G = 0 whereby h{x) = 0. Since Ed has the topology r{Ed, E'd) by
A

Lemma 3.2, another application of Corollary 2.3 now serves to conclude the proof.
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COROLLARY 3.4. Given a b-class SB with SBB^SB, let {Ex:\e\} be a collection of
SB-bomological spaces. Then the topological product E = Y[Ek is SB-bomological if, and only
if, E is bomological. k

Proof. Necessity is obvious, as is sufficiency when d = |{A. 6 A: £A ̂  {0}}| is finite.
Assume, therefore, that d is infinite and E is bomological. Then <od is bomological [5, p.
390], and thus Theorem 3.3 yields that Ed, and hence E, is i?-bornological.

COROLLARY 3.5. If {EA:AeA} is a collection of hyperbomological (respectively, ul-
trabornological) spaces, then E=\\Ek is hyperbomological (respectively, ultrabornological)

A

if, and only if, E is bomological.

Our next result is an immediate consequence of Theorem 3.3 and the Mackey-Ulam
theorem.

THEOREM 3.6. Given a b-class SB with SBB <SB, let {EK : A e A} be an infinite family of
SB-bomological spaces. If d is an infinite cardinal which is smaller than the first strongly
inaccessible cardinal and such that d^ |A | , then Ed is SB-bomological. In particular, the
%-product ENo is SB-bomological.

In [14], Valdivia establishes the fact that a S-product of barrelled and bomological
spaces is (barrelled and) bomological; the preceding theorem asserts that, among other
things, a S-product of bomological spaces is always bomological. The next observation
also follows directly.

COROLLARY 3.7. If {£ x :AeA} is an infinite collection of hyperbomological (respec-
tively, ultrabomological) spaces, then the ^-product EXo is hyperbomological (respectively,
ultrabornological).

If a Hausdorff locally convex space E contains a dense vector subspace F which is
barrelled in the induced topology, then E, of course, must itself be barrelled. However, as
the work in [14] serves to demonstrate, if F is bomological, or even ultrabornological, it
need not follow that E is bomological, but Valdivia has noted in [12] that a stronger
notion of density does yield a positive result. Given a b-class SB, let us say that F is
SB-dense in E whenever, for each x e E , there exists a sequence {x,,} in F which is
SB -locally convergent to x. Then, in our context, Valdivia's observation takes the following
form.

PROPOSITION 3.8. Let E be a Hausdorff locally convex space and fix a b-class SB. If E
contains a SB-dense vector subspace F which is SB-bomological in the topology induced by E,
then E is SB-bomological.

Proof. Utilize Corollary 2 .3 . It will clearly be enough to take feE* such that / is
5?-locally bounded and establish that / = 0 under the additional assumption that f\F = 0.
T o do this, fix xeE, and choose a sequence {xn} in F and an absolutely convex set
B e S£(E) so that {x^ converges to x in EB. Then, since f\EB is bounded, we must have
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We previously noted that vector subspaces of even finite codimension in an ultrabor-
nological space can fail to be ultrabornological. However, as we now proceed to show,
hyperbornological spaces are much better behaved in this respect. Our main result in this
direction is a strengthened, more general version of Corollary 1.3 in [13].

THEOREM 3.9. Let Ebe a 3?-bomological space, where i£ is a b-class with 1£^Z£,. IfF
is a vector subspace of countable codimension in E, then F is hyperbornological.

Proof. By Theorem 1.2, E is an inductive limit of normed vector spaces {EK : A e A}
belonging to i£\ identifying each Ek with its image in E, put Fx = J5X OF, A e A. Since
Se^Se,, Ex is barrelled for every A e A, and therefore, because Fx has countable codimen-
sion in Ex, the normed space Fx is barrelled (cf. [9]) for each AeA. But this means
FKe^£t, AeA, while F = ind{Fx : A £ A} by [13, Theorem 3]. Another application of

Theorem 1.2 now serves to conclude the argument.

COROLLARY 3.10. / / E is hyperbornological, then so also is every vector subspace of
countable codimension in E.

In passing, let us mention that, when taken in conjunction with Valdivia's work in
[17], Theorem 3.9 provides a ready source of hyperbornological spaces which are not
ultrabornological.

The final topic for discussion in the present section concerns stability under enlarge-
ments of the (continuous) dual. In the case of barrelled spaces, this question has
previously been considered by several authors; we refer the reader to an article by W. J.
Robertson and F. E. Yeomans [8] for additional details.

THEOREM 3.11. Let E be a hyperbornological space. If H is a finite dimensional vector
subspace of E*, then E is also hyperbornological under the Mackey topology T(E, E' + H).

Proof. It will suffice to consider the one dimensional case, and so let us assume that H
is the linear span of a fixed functional h e E*\E'. Then, by Corollary 3.10, the hyperplane
F = {xeE:h(x) = 0} is hyperbornological in the topology induced by r{E,E') which, in
turn, must coincide with the topology T(F, F'). Let G = E' + H. Then it is straightforward
to check that the topology induced on F by T(E, G) is T(F, E'), which is to say T(F, F').
Thus, (E, T(E, G)) is the direct sum of (two) hyperbornological spaces and therefore itself
hyperbornological by Proposition 3.1.

We next observe that, in some sense, the preceding theorem is the best possible.

THEOREM 3.12. IfE is hyperbornological and ifE*\E' £ 0, then there exists a countably
infinite dimensional vector subspace H of E* such that (E, T(E, E' + H)) is not hyperbor-
nological.

Proof. Since not every f&E* is bounded, E contains a bounded set which is not a
subset of any finite dimensional vector subspace of E. Consequently, there exists a
countably infinite dimensional vector subspace H of E* such that (E, T(E, E' + H)) is not
barrelled [8, Theorem 2] whence not hyperbornological in view of Corollary 1.4.
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4. Closed graph theorems. Let E and F be Hausdorflf locally convex spaces, and
take (: E —» F to be linear. Given a b-class if, we will say that the graph of t is ZE-closed
in E x F if, for every absolutely convex set B e if (E), 11 EB has a closed graph in EB x F.
Of course, the graph of f will always be if-closed in E x F whenever it is closed. For
convenience, we will refer to E as having the SB-closed graph property (for Banach spaces)
if, for any Banach space F, each linear mapping t:E—*F having a if-closed graph in
E X F is necessarily continuous.

De Wilde [2], in a result analogous to the aforementioned theorem for barrelled
spaces due to Mahowald [6], has shown that a Hausdorff locally convex space having the
ifB -closed graph property is ultrabornological. As we next note, there is a parallel
statement for arbitrary b-classes.

PROPOSITION 4.1. For any b-class if, if E is a Hausdorff locally convex space which
has the ^-closed graph property, then E is i£-bornological.

Proof. (DeWilde's argument is equally applicable to this more general situation, but
we shall include a brief sketch for the sake of completeness.) Let U be an absolutely
convex subset of E which absorbs every Aeif(E), take p to be the gauge of U, put
G = E/p~'(0) equipped with the norm induced by p, and denote the completion of G by F.
Then the projection f of E onto G has a if-closed graph in E x F whereby t is continuous,
and U is therefore a neighborhood in E.

In the converse direction, we have the following generalization of the closed graph
theorem for ultrabornological spaces originally established in [2].

THEOREM 4.2. // if is a b-class with if ^if, and if E is any ££-bornological space,
then E has the ££-closed graph property.

Proof. Take any linear mapping t from E into a Banach space F such that the graph
of r is if-closed i n E x F . In view of Theorem 1.2, it will suffice to show that tB = 1| £B is
continuous, where B is an absolutely convex bounded set in E for which EB is
topologically isomorphic to a member of if. However, since EB is thus barrelled and tB

has a closed graph in EB XF, this must indeed be the case (cf. [7, p. 116]).

One immediate consequence of 4.1 and 4.2 is a further characterization of hyperbor-
nological spaces.

THEOREM 4.3. A Hausdorff locally convex space E is hyperbornological if, and only if,
E has the if, -closed graph property.

Interestingly enough, and another argument in favor of hyperbornological spaces,
Theorem 4.2 is the best possible in that the converse assertion is also valid.

THEOREM 4.4. Given a b-class if, if every ££-bomological space has the Z£-closed
graph property, then <£^S£t.

Proof. Fixing E e if, let F be a Banach space, and assume that t: E -» F is a linear
mapping having a closed graph in E x F. Since the graph of t is then if-closed, and since E
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is if-bornological, t is continuous whereby E is barrelled in view of Mahowald's
characterization [6].

5. Observations and examples. The b-class ifr was introduced in Section 1, but
further consideration was then deferred. We now return to pick up that thread.

For any two subsets ~£ and 9 of Jf, let us agree to also write ~& < & whenever each
Ee€ is topologically isomorphic to some FeSF. Then, given # £ J V , there is a (unique)
b-class if* such that (a) g^if* and (b) if* <if for every b-class if with <§<if; we will
refer to if* as the b-class generated by *£. In particular, we will let S£h denote the b-class
generated by the singleton subset ~& of Jf consisting of the separable Hilbert space I2.

In [16], Valdivia established that every ultrabornological space is an inductive limit of
members of if,,, and the next result is an easy consequence of this fact.

PROPOSITION 5.1. The following are equivalent for a Hausdorff locally convex space E:
(i) E is £h-bomological;

(ii) E is S£r-bomological;
(iii) E is ultrabornological.

Thus, while ifr and ifB are distinct b-classes, the ifr-bornological spaces coincide
with the ifB -bornological spaces. Moreover, among b-classes which determine the ul-
trabornological spaces, the b-class ifh is in some sense minimal. These observations
suggest the possibility of minimal or maximal b-classes being associated with a given
b-class if, and we now proceed to address this question.

If if is a b-class, then there is a natural candidate for an associated maximal b-class;
put

M{£) = {E e Jf: E is if-bornological}.

In view of Proposition 3.1, M(3!) is clearly the right choice, but let us make this more
explicit.

PROPOSITION 5.2. / / if is a b-class, then M{Z£) is a b-class, and indeed the only one,
satisfying the following properties:

(a) every M(3!)-bomological space is if-bornological;
(b) if SB# is a b-class such that every i£#-bornological space is ^-bornological, then

Besides the case for Jf itself, it is also obvious that ££f = M{£f) and %,=M(<£,).
However, because there do exist ultrabornological normed spaces which are not complete
(cf. [3]), ifB is not maximal. In fact, as we next observe, the example of an incomplete
barrelled normed vector space given by Kothe [5, p. 369] is actually ultrabornological.

EXAMPLE 5.3. Recalling that a sequence <j>:N^N has density zero if lim —— = 0,
n->»4>(n)

let E be the (dense) vector subspace of Z1 consisting of all ge! 1 which vanish off a
sequence of density zero, and equip E with the topology induced by the /'-norm. Now,
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choose / e E * such that / is ifB-locally bounded, and consider the sequence {ek}cE,
where ek(n) = 8kn, k, n = 1, 2 , . . . . If the sequence {/(ek)} were not bounded, then there
would exist a sequence </>:N-*[\l of density zero such that \f(eMk))\>:k, k = 1, 2,
Then, putting E^ ={gs V :g{N\<f>(H)) = 0}, we have E^zE and E^, is a Banach space
under the induced topology whereby f\E^, is continuous by Corollary 2.3. But this is
clearly contradictory, and so there exists |3 >0 so that |/(ek)|<|3, keN. Fixing geE, let
(j>:M—»N be a sequence of density zero such that g(N\<f>(N)) = 0. As above, f\E4> is
continuous whence |/(g)|^/3 ||g||i, i.e. feE'. Since E is barrelled, E has its Mackey
topology T(E, E'), and thus Corollary 2.3 applies to show that E is ultrabornological.

Minimality is less straightforward. Of course, besides being maximal, i?f is minimal
by definition, but this is certainly a special case. As to £B, while Xh can be regarded as an
associated minimal b-class, uniqueness is ruled out by Theorem 4 in [16], and we do not
know whether if, even has an associated minimal b-class.

The following example should help clarify the position occupied by the generalized
barrelledness properties which we introduced in the first section.

EXAMPLE 5.4. Let E denote the vector subspace of i°° consisting of all absolutely
summable sequences equipped with the relative supremum norm topology, and consider
the b-class ££€ generated by ~g ={E}. Then E is ifjg-quasibarrelled, but E is not barrelled
since /' can not have a strictly coarser Hausdorff barrelled topology (cf. [7, p. 117]). If we
next take F to be the vector subspace of E consisting of those g e E which vanish off a
finite subset of N and give F the topology induced by E, then F is quasibarrelled. If
G e %*, however, then there is a corresponding closed vector subspace M of E such that
G is topologically isomorphic to E/M whereby each G e££€ is a Banach space under the
quotient norm induced by l\ Therefore, because %€ contains no elements having
countably infinite dimension, EB is finite dimensional whenever B is an absolutely convex
member of if*(F). Since any barrel in F will thus absorb every A e %AF), we have that F
is not ££<-quasibarrelled.

While not every bornological and barrelled Hausdorff locally convex space is hyper-
bornological, our characterization in terms of the if, -closed graph property (Theorem 4.3)
suggests asking whether bornological spaces with what one might term the "sequentially
closed graph property" are necessarily hyperbornological. We shall show that even this is
not the case.

EXAMPLE 5.5. Take E to be the example of an incomplete (LB)-space given by Kothe
[5, p. 434]. Then, since E actually fails to be sequentially complete, there exists y eE\E,
where E denotes the completion of E, and a sequence {x,,} in E such that {xn} converges
to y in E; let F be the linear span of E U{y} with the topology inherited from E. Valdivia
[15] has shown that F is a bornological (and barrelled) space which is not hyperbornologi-
cal, and so we only need verify that F satisfies the appropriate closed graph property. To
this end, let G be a Banach space, and consider a linear mapping f.F-* G which has a
sequentially closed graph in FxG. Since E is hyperbornological, t \ E is continuous by
Theorem 4.3. Thus, taking f:F-*G to be the continuous linear extension of t\E, we
have that the sequence {t(xj} converges to /(y) wherefore t(y) = f(y), i.e. t is continuous.
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