BADLY APPROXIMABLE FUNCTIONS AND INTERPOLATION BY BLASCHKE PRODUCTS

by L. A. RUBEL[†] and A. L. SHIELDS (Received 20th January 1975)

A continuous function ϕ on the unit circle is called badly approximable if $\| \phi - p \|_{\infty} \ge \| \phi \|_{\infty}$ for all polynomials p, where $\| \|_{\infty}$ is the essential supremum norm. In (4), Poreda asked whether every continuous ϕ may be written $\phi = \phi_W + \phi_B$, where ϕ_W is the uniform limit of polynomials (i.e. ϕ_W belongs to the disc algebra A) and ϕ_B is badly approximable. We call such a function ϕ decomposable. In (4), he characterised the badly approximable functions as those of constant non-zero modulus and negative winding number around the origin, i.e. ind (ϕ) < 0. (See (3) for two new proofs of this result.) We show that the answer to Poreda's question is *no* in general, but give a necessary and sufficient condition for a given ϕ to have such a decomposition. Then we apply this criterion to solve an interpolation problem.

Definition. For $\phi \in C(|z| = 1)$, $\phi^{\#}$ is the metric projection of ϕ into H^{∞} . That is, $\phi^{\#} \in H^{\infty}$ and

$$\| \phi - \phi^{\#} \|_{\infty} \leq \| \phi - g \|_{\infty} \quad \text{for all } g \in H^{\infty}.$$

It is well known and easy to prove that there is a unique function $\phi^{\#}$ satisfying this requirement.

Lemma. (Sarason (5)). If ϕ is a continuous function on |z| = 1 then $d(\phi, H^{\infty}) = d(\phi, A)$.

Theorem. A continuous function ϕ is decomposable if and only if $\phi^{\#} \in A$.

The proof is immediate once one remarks that the Lemma implies that ϕ is badly approximable if and only if ϕ is badly H^{∞} -approximable, i.e.

$$\|\phi - f\|_{\infty} \ge \|\phi\|_{\infty}$$

for all $f \in H^{\infty}$.

Since there exists a continuous ϕ with $\phi^{\#} \notin A$ (see (1)), it follows that not every ϕ is decomposable.

We now apply our Theorem to prove an analogue of the following classical result.

† This research was partially supported by grants from the National Science Foundation.

Theorem. (Carathéodory.) If $a_0, a_1, ..., a_n$ are complex numbers, and if the interpolation problem

$$F^{(j)}(0) = a_j, \quad j = 0, 1, ..., n$$
 (1)

has a solution F that is bounded and analytic in the unit disc (i.e. $F \in H^{\infty}$) satisfying $|F| \leq 1$, then there is a Blaschke product of order $\leq n+1$ that satisfies (1).

Our result has the following statement:

Theorem. The interpolation problem (1) always has a solution of the form $F = \lambda B$, where λ is a complex constant, and B is a Blaschke product of order $\leq n$.

Proof. Assume that the a_i are not all zero. Define

$$f(z) = a_0 + a_1 z + \frac{a_2}{2!} z^2 + \dots + \frac{a_n}{n!} z^n.$$

Then $\phi(z) = f(z)/z^{n+1}$ is a continuous function on $\{|z| = 1\}$ that does not belong to the disc algebra A. But since ϕ satisfies a Lipschitz condition, it surely satisfies Dini's condition $\left(\int_{0+}^{0+} \omega(t, \phi)/t dt < \infty\right)$ and so by the theorem of Carleson and Jacobs (2) the metric projection $\phi^{\#}$ of ϕ into H^{∞} must belong to A. By our Theorem then, we may write

$$z^{-(n+1)}f-g=\Psi,$$

where $g \in A$ and Ψ is badly approximable. By Poreda's theorem, we may take $\Psi = c\psi$ where $c \neq 0$, Ψ is unimodular, and ind $(\psi) < 0$. But then $z^{n+1}\psi = B$ belongs to A. Further, B is unimodular, and ind $(B) = (n+1) - ind (\phi) \leq n$. Hence B is a Blaschke product of degree $\leq n$, and the result is proved.

A quite analogous argument shows that if $w_1, w_2, ..., w_n$ are *n* distinct points in $\{|z| < 1\}$, and if $b_1, b_2, ..., b_n$ are complex numbers, then the interpolation problem

$$F(w_j) = b_j, \quad j = 1, 2, ..., n$$
 (2)

has a solution of the form $F = \lambda B$ where λ is a constant, and B is a Blaschke product of degree $\leq n-1$. Furthermore, there is no trouble in interpolating a finite number of the derivatives of F at the points w_i .

REFERENCES

(1) V. M. ADAMYAN, D. Z. AROV and M. G. KREIN, Infinite Hankel matrices and generalized problems of Carathéodory, Fejer and F. Riesz, *Functional Anal. Appl.* 2 (1968), 1-14.

(2) L. CARLESON and S. JACOBS, Best uniform approximation by analytic functions, Ark. Mat. 10 (1972), 219-229.

(3) T. W. GAMELIN, J. GARNETT, L. A. RUBEL and A. L. SHIELDS, On badly approximable functions, J. Approximation Theory, to appear.

(4) S. J. POREDA, A characterization of badly approximable functions, *Trans. Amer. Math. Soc.* 169 (1972), 249-256.

(5) D. SARASON, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN UNIVERSITY OF MICHIGAN

E.M.S.-20/2-L