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Abstract

Let O be a higher rank Exel–Laca algebra generated by an alphabet A. If A contains d commuting
isometries corresponding to rank d and the transition matrices do not have finite rows, then K1(O) is
trivial and K0(O) is isomorphic to K0 of the abelian subalgebra ofO generated by the source projections
ofA.
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1. Introduction

Several authors have considered the K -theory of generalized Cuntz–Krieger algebras.
For instance, the K -theory of the classical Cuntz–Krieger algebras yields a famous
invariant by Bowen and Franks [2] for shifts of finite type. Another important
application of K -theory of generalized Cuntz–Krieger algebras is their classification.
In the best case they may be completely classified by the theorem of Kirchberg [17]
and Phillips [20]: generalized Cuntz–Krieger algebras are often purely infinite and thus
determine candidates in advance. The computation of the K -theory of rank-one graph
C∗-algebras, see [11, 16, 19, 25, 30], and Cuntz–Krieger and Exel–Laca algebras,
see [9, 10, 14], is completed.

In return, the computation of the K -theory of higher rank graph C∗-algebras
[18, 23, 24] and Cuntz–Krieger algebras [27, 28] is extremely scanty. Explicit results
exist only for rank two and rank three, see [1, 4, 12, 29]. Evans [12] proves that the
K -groups of finitely generated higher rank graph C∗-algebras are finitely generated.
A duality theorem was proved by Popescu and Zacharias [22].
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22 B. Burgstaller [2]

In this article we compute the K -theory of higher rank Exel–Laca algebras having
the properties (I) and (II) for all ranks, see Theorem 5.6. The K1-group is always
trivial in this case, and the K0-group is always torsion free. We use a crossed product
representation A oα Zd , where A is an AF-algebra, and repeatedly apply the Pimsner–
Voiculescu sequence. The computation, however, is not easy, and a blindfold approach
would quickly collapse by the complexity of A and α. The property (II) is designed in
such a way that in each step the K1-group stays trivial. Without that assumption, that
is, in the general case, the computation may only work if in each step the Pimsner–
Voiculescu sequence would split naturally. This, however, is unsettled. The same
problem arises for Evans in [12] who uses a theorem of Kasparov [15]: the spectral
sequences that appear may not split naturally.

This paper is organized as follows. In Section 2 we recall the definition of higher
rank Exel–Laca algebras and define the properties (I) and (II). In Sections 3–5 we
prove the main result, Theorem 5.6. In Section 6 we use this theorem to compute the
K -theory of some rank-two Cuntz–Krieger algebras inspired by shifts of finite type in
dimension two [5].

2. Higher rank Exel–Laca algebras

A triple (A, F, I) of generators and relations consists of an alphabet A, the free
nonunital ∗-algebra F over the field C generated by A, and a two-sided self-adjoint
ideal I in F.

DEFINITION 2.1 (Higher rank Exel–Laca algebra [6]). Let (A, F, I) be a triple of
generators and relations, and let X be the quotient ∗-algebra F/I. It is convenient
by an abuse of notation to denote the equivalence class x + I in X by x for x ∈A or
x ∈ F. Throughout we use the notation Pa = aa∗

∈ X and Qa = a∗a ∈ X when a ∈A.
Assume thatA is endowed with a partitionA=

⊔
v∈V v such that the following six

properties hold.

Rank-one Cuntz–Krieger relations. There exists a family (sv)v∈V of maps sv : v ×

v → {0, 1}, each of which is called a transition matrix, such that for all v ∈ V and
all a, b ∈ v the identities aa∗a = a, Qa Qb = Qb Qa , Pa Pb = δa,b Pa and Qa Pb =

sv(a, b)Pb hold in X .

Permutation rules. For all v1, v2 ∈ V such that v1 6= v2, and for all a1 ∈ v1, a2 ∈ v2
and ε1, ε2 ∈ {1, ∗}, the product aε1

1 aε2
2 vanishes in X , or there exist b1 ∈ v1, b2 ∈ v2

such that both identities

aε1
1 aε2

2 = bε2
2 bε1

1 and bε1
1 (a

ε2
2 )

∗
= (bε2

2 )
∗aε1

1 ,

hold in X .
The next condition ensures the existence of certain gauge actions on X .

Invariance of the ideal. The ideal I is invariant under the automorphisms tλ : F → F
for all λ ∈ TV , where tλ(a)= λva for all a ∈ v ∈ V .

https://doi.org/10.1017/S1446788708000220 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000220


[3] K -theory of Exel–Laca algebras 23

The following property ensures that the norm closure of the fixed point algebra A
of certain gauge actions on X is an AF-algebra.

Stronger finiteness property. For an integer N ≥ 0 and a subset w ⊆A, define

Fw,N = {a1 . . . an Qc1 . . . Qcm b∗
n . . . b∗

1 ∈ X |

0 ≤ n ≤ N , 1 ≤ m, ai , ci , bi ∈ w} ∪ {0}.

For all finite subsets {v1, . . . , vn} ⊆ V and all finite subsets ui ⊆ vi , where
1 ≤ i ≤ n, we require that for all 1 ≤ i ≤ n there exist finite subsets wi ⊆ vi containing
ui , such that for all 1 ≤ i, j ≤ n we have

Fwi ,N Fw j ,N ⊆ span(Fw j ,N Fwi ,N ),

(Fwi ,N Fw j ,N denotes the set of products in X ) and

{Pa | a ∈ wi }Fw j ,N ⊆ span(Fw j ,N {Pa | a ∈ wi }). (1)

The next property is the counterpart to certain aperiodicity conditions for graphs.

Projections property. For all nonzero words x = x1 . . . xm ∈ X in the letters
xi ∈A, all v ∈ V , and all sequences (an)n≥1 ⊆ v there exists N ≥ 1 such that
xx∗a1 . . . aN a∗

N . . . a∗

1 6= xx∗ in X .
Finally we require a nontrivial representation π of X on a Hilbert space H as

follows. (Throughout Alg and Alg∗ denote the generated algebra and ∗-algebra
(without topology) respectively.)

Saturating A00-faithful representation. There exists a representation π : X → B(H)
which is injective on

A00 = Alg{aa∗
∈ X | a ∈A ∪A∗

},

and such that for all v ∈ V the strong operator sum
∑

a∈v π(Pa) is a unit for π(b) for
all b ∈A.

The norm closure π(X) is denoted byOA,F,I and called the higher rank Exel–Laca
algebra associated to (A, F, I). The cardinality card(V ) is regarded as the rank of the
Exel–Laca algebra (which, however, is not unique in general).

The ‘stronger finiteness property’ of Definition 2.1 is slightly sharper than the
‘finiteness property’ in [6]. However, the difference is minor and the extra amount
required (namely (1)) seems ‘natural’ (owing to the permutation rules).

REMARK 2.2. If the alphabet A is finite then there exists a higher rank graph 3 such
thatOA,F,I is ∗-isomorphic to the higher rank graph C∗-algebra C∗(3) defined in [18].
To be precise, the object set of 3 is defined by

30
= {(a1, a2, . . . , ak) ∈ v1 × v2 × · · · × vk | π(Pa1 Pa2 . . . Pak ) 6= 0},

where V = {v1, . . . , vk}. We introduce exactly one morphism θ i
a,b in 3ei with range

r(θ i
a,b)= a = (a1, . . . , ak) and source s(θ i

a,b)= b = (b1, . . . , bk) if and only if
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24 B. Burgstaller [4]

0 6= π(Pa1 Pa2 . . . Pak ai Pb1 Pb2 . . . Pbk ).

Then

sa = π(Pa1 Pa2 . . . Pak ) for a = (a1, . . . , ak) ∈30,

sθ i
a,b

= π(ai Pb1 Pb2 . . . Pbk ) for a, b ∈30, 1 ≤ i ≤ k,

is a Cuntz–Krieger family in π(X) which generates OA,F,I (see [7]).

In the rest of this paper we will fix a triple (A, F, I) of generators and relations
satisfying Definition 2.1. We also fix a finite partition V = {v1, . . . , vd} of A, a
family of transition matrices (sv)v∈V , and a saturating A00-faithful representation π
as required in Definition 2.1. Moreover, we assume that the following two properties
hold.
(I) The quotient ∗-algebra X has a unit I and there exists a family (Sv)v∈V of

commuting isometries such that Sv ∈ v for all v ∈ V .
(II) Denote by q the commutative algebra Alg{Qa ∈ X | a ∈A}. Then for all

1 ≤ i ≤ d , all finite subsets B ⊆ vi , and all non-zero z ∈ q we require that
P =

∑
b∈B Pb is not a unit for z (that is, Pz 6= z in X ).

REMARK 2.3. Each row of sv (for v ∈ V ) contains either no or infinitely many
zeros and contains either no or infinitely many ones. In particular, A is infinite
and the translation to graph algebras as in Remark 2.2 does not work. Hence,
the result in Theorem 5.6 is presumably disjoint from the K -theory results [1, 4,
12, 22, 29] for graph C∗-algebras [18]. To see the claim, assume that the set
Fg = {b ∈ v | sv(a, b)= g} is nonempty and finite for some fixed v ∈ V , a ∈ v and
g ∈ {0, 1}. Since π is saturating,

π(Qa)= π(Qa)
∑
c∈v

π(Pc)=

∑
c∈v

sv(a, c)π(Pc). (2)

However, this is a finite sum if g = 1. Since π is faithful on A00 and Qa −∑
c∈v sv(a, c)Pc ∈ A00, we have Qa =

∑
c∈v sv(a, c)Pc. However, this contradicts

property (II).

3. Proof part 1

In this section we write the stable form of OA,I,F as a crossed product of an AF-
algebra A by an action α of Zd .

Recall that we fixed a triple (A, F, I) which generates a higher rank Exel–Laca
algebra and satisfies the properties (I) and (II). Let Zd

+ be the elements of Zd with
nonnegative coordinates. If n = (n1, . . . , nd) ∈ Zd

+ then we write Sn
= Sn1

1 . . . Snd
d .

Let

W = {x1x2 . . . xn ∈ X | n ≥ 1, xi ∈A ∪A∗
},
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be the set of words. Let δi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zd (i th position) for 1 ≤ i ≤ d.
We call the involutive semigroup homomorphism

bal : W \ {0} → Zd
: bal(a)= δi , 1 ≤ i ≤ d, a ∈ vi ,

the balance function (see [6]). That means that we have bal(xy)= bal(x)+ bal(y) and
bal(x∗)= − bal(x). A word x 6= 0 is called zero-balanced if bal(x)= 0, otherwise we
call it non-zero-balanced. The linear span of all zero-balanced words forms a self-
adjoint subalgebra in X denoted by A.

By [6, Corollary 4.11], A is the inductively ordered union of the family 0 of
its finite-dimensional sub-C∗-algebras. Thus, the norm closure A may be regarded
as the C∗-direct limit A = lim

−→
M∈0M. For all n ≤ m ∈ Zd we put An = A, and

define injections

9m,n : An → Am :9m,n(x)= Sm−nx(Sm−n)
∗
.

Write A for the associated direct limit lim
−→n∈Zd An . Let9n : An → A denote the natural

embedding. Throughout we will regard An as a subset of A (via 9n), and spell out
9n only if there is danger of confusion. Consequently we regard A as

⋃
n∈Zd An . For

each 1 ≤ i ≤ d define an action αi ∈ Aut(A) by

αi (9n(x))=9n(Si x S∗

i )=9n−δi (x), n ∈ Zd , x ∈ A.

LEMMA 3.1. For all n ≤ m, K0(9m,n) is injective.

PROOF. It is enough to show that ψi : A → A, such that ψi (x)= Si x S∗

i , is injective
in K -theory for all 1 ≤ i ≤ d. First of all notice that ψi is injective and has image
ψi (A)= PiAPi , where Pi = Si S∗

i . Clearly K0(ψ
′

i ) is injective for the isomorphism
ψ ′

i : A → PiAPi given by ψ ′

i (x)= ψi (x). Thus, it remains to show that K0( j) is
injective for the identity embedding j : PiAPi → A.

Since finite-dimensional C∗-algebras have the cancellation property and A is the
inductive limit of finite-dimensional C∗-algebras, A has the cancellation property.
Consider projections p, q ∈ MN (PiAPi ) and assume that K0( j)([p] − [q])= 0.
Then there exists a partial isometry T ∈ MN (A) such that p = T T ∗ and q = T ∗T .
However, since p, q ≤ (1N ⊗ Pi ) ∈ MN ⊗ A, we have T = (1N ⊗ Pi )T (1N ⊗ Pi ) ∈

MN (PiAPi ). Hence, [p] − [q] = 0 in K0(PiAPi ). 2

By the last lemma K0(9n) is injective, and we therefore regard K0(An) as a
subgroup of K0(A), and regard K0(A) as

⋃
n∈Zd K0(An). Write α = (α1, . . . , αd).

PROPOSITION 3.2. There exists an isomorphism κ : P(A oα Zd)P →OA,F,I, where
P is the unit of A0, which maps 90(x) ∈ A0 to π(x) for x ∈ A.

PROOF. Basically we apply [5, Theorem 3.6]. To see that this is possible we argue as
follows. The proof of the uniqueness theorem [6, Theorem 2.3] relies on a uniqueness
theorem in [3]. Although the class handled in [3] is more general than the class of [5],
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the crossed product representation [5, Theorem 3.6] also holds for the class in [3].
Indeed the proof of [5, Theorem 3.6] remains valid if one uses the uniqueness theorem
of [3] instead of that of [5]. Hence, [5, Theorem 3.6] also holds for higher rank
Exel–Laca algebras. In the statement of [5, Theorem 3.6] a closed subgroup H ⊆ TA
appears, which in this case we choose as in [6], namely

H = {λ ∈ TA | ∀a, b ∈A : λa = λb whenever a, b ∈ vi }.

The dual Ĥ of H is isomorphic to Zd . We define the map S : Ĥ ∼= Zd
+ → F/I required

in [5, Theorem 3.6] by S(n)= Sn for all n ∈ Zd
+. The claim, including the shape of A,

can then be verified by an analysis of the proof of [5, Theorem 3.6]. 2

LEMMA 3.3. Let τ : P(A oα Zd)P → A oα Zd be the identical embedding. Then
K0(τ ) and K1(τ ) are isomorphisms.

PROOF. Let Pn be the unit of An . Then (Pn)n∈Zd is an approximate unit in A and
αm(Pn)= Pn−m . Using these facts we easily check that A oα Zd

=
⋃

n∈Zd On , where
On = Pn(A oα Zd)Pn . Denote by ιm,n :On →Om the identical embedding. For
m ≥ n we have a ∗-isomorphism ψn,m :Om →On by ψn,m(z)= Um−nzU∗

m−n , where
Uk denotes the unitary inducing the action αk . Therefore, we obtain the commutative
diagram

. . . // On
ιm,n // Om //

ψn,m

��

. . .

. . . // On // On // . . .

It remains to show that Ki (ψn,m ιm,n) is the identity map. Now for z ∈On ,

ψn,m ιm,n(z)= Um−nzU∗
m−n = Um−n Pnz PnU∗

m−n = T zT ∗,

where T = Um−n Pn is an isometry of On (since T = Um−n PnU∗
m−nUm−n Pn =

Pn−(m−n)Um−n Pn ∈On since Pn−(m−n) ≤ Pn). However, for a ∗-homomorphism ϕ :

C → C : z 7→ T zT ∗, T an isometry in some unital C∗-algebra C , it is an elementary
computation that Ki (ϕ) is the identity map for both i = 0 and i = 1 (for the case i = 1
the statement of [26, Exercise 8.9] is useful). 2

Our computation of K -theory is based on Proposition 3.2, Lemma 3.3, and
the following lemma, proved by successively using the Pimsner–Voiculescu exact
sequence.

LEMMA 3.4. Let α1, . . . , αd be commuting automorphisms of a C∗-algebra
A and assume that K1(A)= 0. Denote fi = K0(αi )− id ∈ End(K0(A)) and
Yi = Range( f1)+ · · · + Range( fi ). Assume that f −1

i (Yi−1)⊆ Yi−1 for all
i = 1, . . . , d − 1. Then

K0(A oα Zd) ∼= K0(A)/Yd ,

K1(A oα Zd) ∼= f −1
d (Yd−1)/Yd−1.
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PROOF. By induction on i ∈ {0, 1, . . . , d − 1}, suppose that K1(A o(α1,...,αi ) Zi )=

0 and hi : K0(A o(α1,...,αi ) Zi )→ K0(A)/Yi , such that hi ([a])= [a] + Yi for all
projections a ∈ M∞( Ã), is an isomorphism. We regard αi+1 as an action on
A o(α1,...,αi ) Zi in the canonical way. Then we consider the Pimsner–Voiculescu exact
sequence [21] (also see [8] where A is not supposed to be unital)

K0(A o Zi )
id−K0(α

−1
i+1) // K0(A o Zi )

K0(r)// K0(A o Zi+1)

��
K1(A o Zi+1)

OO

0oo 0oo

where r is the canonical embedding. Using the isomorphism hi we obtain

K0(A)/Yi

˜fi+1◦K0(α
−1
i+1) // K0(A)/Yi // K0(A o Zi+1)

��
K1(A o Zi+1)

OO

0oo 0oo

where gi+1 =
˜fi+1 ◦ K0(α

−1
i+1) denotes the quotient map of fi+1 ◦ K0(α

−1
i+1). Thus,

K0(A o Zi+1)∼= (K0(A)/Yi )/ Range(gi+1)∼= K0(A)/Yi+1.

Since Yi is invariant under K0(α
−1
i+1), and fi+1 and K0(α

−1
i+1) commute,

K1(A o Zi+1)∼= ker(gi+1)= f −1
i+1 ◦ K0(α

−1
i+1)

−1(Yi )/Yi = f −1
i+1(Yi )/Yi ,

and the right-hand term vanishes if i + 1 ≤ d − 1 by our assumptions. 2

4. Proof part 2

The aim of this section is to prove Lemmas 4.3, 4.4, and 4.5. The other
lemmas are preliminary to these lemmas and will not be used later on. We
put w∗

= {a∗
∈ F | a ∈ w} and w~

= w ∪ w∗ for subsets w ⊆A. We define the
subalgebras

A0 = span{xx∗
∈ A | x ∈ W },

q = Alg{Qa ∈ A | a ∈A}.

Note that q ⊆ A00 ⊆ A0 (A00 was introduced in Definition 2.1). It is important that
A0 is an abelian algebra, see [6, Lemma 4.4].
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Recall that A may be regarded as the C∗-direct limit A ∼= lim
−→
M∈0M. Hence, we

have a representation K0(A)∼= lim
−→
M∈0K0(M) and a surjection

ϕ :

⊔
M∈0

K0(M)→ K0(A),

mapping [p] − [q] ∈ K0(M) to ϕ([p] − [q])= [p] − [q] ∈ K0(A) for projections
p, q ∈ MN (M). Hence, we often regard K0(A) (and K0(An) for n ∈ Zd ) as
the union

⋃
M∈0 K0(M), where [p1] − [q1] ∈ K0(M1) is identified with [p2] −

[q2] ∈ K0(M2) for M1,M2 ∈ 0 if and only if there exists a N ∈ 0 such that
M1 ∪M2 ⊆N and [p1] − [q1] = [p2] − [q2] in K0(N ).

Next we are going to introduce notation for some special subgroups of K0(A) that
will play a central role in our further computations. For 1 ≤ i ≤ d, n ∈ Zd , k ∈ Zd

+ we
define

φi = K0(αi ),

B(n) = K0(An)⊆ K0(A),

B(n)k = Group{[9n(S
l QSl∗)] ∈ K0(A) | l ∈ Zd

+, 0 ≤ l ≤ k, Q ∈ q}.

Here Group denotes the generated subgroup in K0(A). Note that B(n)k is a subgroup

of K0(An). If k ∈ Zd
\ Zd

+ then we let B(n)k be the trivial group. Furthermore, we put

B = B(0) and Bk = B(0)k for k ∈ Zd .
In the next lemma we need the stronger finiteness property of Definition 2.1 and we

use the notation Fw,N of Definition 2.1.

LEMMA 4.1. The union of certain finite-dimensional C∗-algebras A is of the form
M= span(Fw1,N Fw2,N . . . Fwd ,N ) where N ≥ 1, w j ⊆ v j are finite sets such that
S j ∈ w j , and such that for all i = 1, . . . , d the sum

∑
a∈wi

Pa is in the center ofM.

PROOF. By [6, Lemma 4.10], A is the union of finite-dimensional C∗-algebras of the
form M= span Fw1,N . . . Fwd ,N where N ≥ 1 and each wi is a finite subset of vi .
In the proof of [6, Lemma 4.10], the sets wi are chosen according to the claim in
the ‘finiteness property’ in [6]. We modify the proof of [6, Lemma 4.10] in that we
use the ‘stronger finiteness property’ rather than the ‘finiteness property’ once where
it is needed. (Furthermore we may assume that Fwi ,N contains the unit I = S∗

i Si
by requiring that Si ∈ wi without loss of generality.) Consequently, the assertion in
line (1) holds. Hence, for all 1 ≤ k ≤ d , x ∈M and a ∈ wk there exist yb ∈M such
that Pa x =

∑
b∈wk

yb Pb, see (1). Let P =
∑

a∈wk
Pa . Then Px(I − P)= 0, and

consequently (I − P)x∗ P = 0, for all x ∈M. Hence, Px = x P . 2

The next lemma is the key lemma which encodes property (II). Actually we only
use property (II) in the proof of this lemma.
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LEMMA 4.2. Let 1 ≤ k ≤ d and put

qk = Alg{Qa ∈ A | a ∈ vk},

Ck = span{yz ∈ A | y ∈ qk, z ∈ W is a zero-balanced word

containing no letter of v~
k }.

Let wk ⊆ vk be a finite subset, let P =
∑

a∈wk
Pa and let x ∈ Ck . Then (I − P)x = 0

implies x = 0.

PROOF. So x has a representation x =
∑m

j=1 Q j x j where Q j ∈ qk and x j ∈ A is a
zero-balanced word containing just letters of (A \ vk)

~. Recall that π is the A00-
faithful saturating representation. We present

π(x j )=

∑
a,b,bal(a)=bal(b)=M j

λ j,a,bπ(ab∗),

as in [6, Lemma 4.12], where λ j,a,b are scalars, M j ∈ Zd
+, and a, b are words in the

letters of A \ vk . It follows from the proof of [6, Lemma 4.12] that we may assume
that M j = M for all j for some fixed M ∈ Zd

+. Now suppose that (I − P)x = 0. Then

π(I − P)π(x) = π(I − P)
m∑

j=1

π(Q j )
∑

a,b,bal(a)=bal(b)=M

λ j,a,bπ(ab∗),

0 = π(I − P)
∑

a,b,bal(a)=bal(b)=M

π(La,b)π(ab∗), (3)

for La,b =
∑m

j=1 λ j,a,b Q j ∈ qk . Fix a and b. By [6, Lemma 4.7] there exists a
finite set w′

k ⊆ vk such that for P ′
=

∑
c∈w′

k
Pc we have a∗(I − P)= (I − P ′)a∗.

By [6, Lemma 4.1] there exists L ′

a,b ∈ qk such that a∗La,b = L ′

a,ba∗. If we multiply
(3) from the left by π(a∗) and from the right by π(b) then we obtain 0 = π(I −

P ′)π(L ′

a,b)π(a
∗ab∗b). Since π is injective on A by [6, Proposition 4.8] (and recall

that π is supposed to be injective on A00) we get 0 = (I − P ′)L ′

a,ba∗ab∗b. By
property (II) we obtain a∗La,bab∗b = 0, and thus π(La,bab∗)= 0. If we sum here
over all a, b then we obtain π(x)= 0 (recall the representation (3)). Hence, x = 0
since π is faithful on A. 2

LEMMA 4.3. We have B =
⋃

n∈Zd
+

Bn .

PROOF. Let x ∈ B = B(0) = K0(A0). Then there exists a finite-dimensional C∗-
algebra M⊆ A ⊆ A0 such that x = K0( j)(y) for y ∈ K0(M) and the identity
embedding j :M→ A0. As explained in the proof of Proposition 3.2, the paper [6]
relies on the paper [3], and the conditions of [3, Proposition 3.3] are satisfied. By
[3, Proposition 3.3] and enlarging M if necessary, we may assume that M has the
maximal abelian subalgebra C =M ∩ A0. Hence, K0(M) is generated by elements
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of the form [p] where p runs through the minimal projections of C . We have a
representation of p in A0 as l1 X1 X∗

1 + · · · + lm Xm X∗
m , where X i are words and

li ∈ {+1, 0,−1} (since A0 is a commutative algebra, see [6, Lemma 4.4]). Since y
is a linear combination of such [p] in K0(M), K0( j)(y) is a linear combination of
such K0( j)([p])= l1[X1 X∗

1] + · · · + lm[Xm X∗
m] in K0(A). So any x ∈ K0(A0) is a

linear combination of elements of the form [X X∗
] in K0(A0). Each X X∗ is of the

form X X∗
= aQa∗ for some Q ∈ q and some (possibly empty) word a in the letters

ofA by [6, Lemmas 4.3 and 4.5]. Since a∗a ∈ q, we may assume that Q = Qa∗a. The
proof is completed by observing that [aQa∗

] = [Sbal(a)QSbal(a)∗
], since aQa∗

= T T ∗

and Sbal(a)QSbal(a)∗
= T ∗T for T = aQSbal(a)∗

∈ A0. 2

LEMMA 4.4. For all i = 1, . . . , d and n = (n1, . . . , nd) ∈ Zd
+ such that ni = 0 we

have that if x ∈ B and φi (x) ∈ Bn then x = 0.

PROOF. Let φi (x)= a ∈ Bn . Then a is a Z-linear combination of elements of the form
[90(Sk QSk∗

)] ∈ K0(A0) where ki = 0 and Q ∈ q. By identifying A and A0 we may
omit writing 90. By [6, Lemma 4.1] we can ‘permute’ all expressions Qa , for a ∈ vi ,
to the left in the expression Sk QSk∗

. Thus, we can achieve the identity

Sk QSk∗
=

m∑
l=1

Q′

l Sk Q′′

l Sk∗
∈ Ci ,

for some Q′

l ∈ qi and Q′′

l ∈ q such that Sk Q′′

l Sk∗
does not contain a letter of v~

i , where
we use the definition in Lemma 4.2 for qi and Ci .

Hence, there exist projections a1, a2 ∈ MN (Ci )⊆ MN (A0) such that a = [a1] −

[a2] in K0(A0).
We choose a finite-dimensional C∗-algebra M⊆ A such that Ci ⊆M and x =

[x1] − [x2] holds in K0(A0) for some projections x1, x2 ∈ MN (M). We use the
identity MN (M)∼= MN ⊗M for notational purposes. We have φi (x)= [x ′

1] − [x ′

2]

where x ′

k = (1N ⊗ Si )xk(1N ⊗ S∗

i ).
We enlargeM such that x ′

1, x ′

2 ∈ MN (M) and the identity

[x ′

1] − [x ′

2] = [a1] − [a2], (4)

holds in K0(M) (and consequently holds in K0(A0)). If necessary, we now enlarge
M to have the form

M= span(Fw1,m Fw2,m . . . Fwd ,m),

where S j ∈ w j and P =
∑

a∈wi
Pa is in the center of M by Lemma 4.1. Hence, M

may be written as the direct sum (I − P)M⊕ PM and

K0(M)∼= K0((I − P)M)⊕ K0(PM).
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If we use this decomposition in the identity (4) and consider the part
K0((I − P)M), then we obtain

[a11N ⊗ (I − P)] = [a21N ⊗ (I − P)],

since x ′

k(1N ⊗ (I − P))= 0 since S∗

i (I − P)= 0. Thus, by the cancellation property
of finite-dimensional C∗-algebras,

a1(1N ⊗ (I − P))= T T ∗
∼ T ∗T = a2(1N ⊗ (I − P)),

for some T ∈ MN ((I − P)M), and (a1 − T T ∗)(1N ⊗ (I − P))= 0.
Note that (I − P)M= (I − P)N for the subalgebra

N = span(Fw1,m . . . Fwi−1,m Fwi ,0 Fwi−1,m . . . Fwd ,m),

ofM (since P is in the center ofM and commutes with the subalgebras Fw j ,m ⊆M,
I − P cancels the elements of

⋃
1≤r≤m Fwi ,r ).

Hence, we may write T as t (1N ⊗ (I − P)) for some t ∈ MN (N ). Observe that
N ⊆ Ci for Ci of Lemma 4.2 (observe that Fwi ,0 ⊆ qi and use the permutation rules).
Then a1 − t t∗ = 0 by Lemma 4.2. Analogously we obtain a2 − t∗t = 0. Hence,
[a1] = [a2] holds in K0(M) and thus also in K0(A0). Therefore, φi (x)= a = 0 and,
thus, x = 0 by Lemma 3.1. 2

LEMMA 4.5. Let j : q → A be the identity embedding where q denotes the C∗-norm
closure of q. Then K0( j) is injective.

PROOF. The norm closure q of q = Alg{Qa ∈ A | a ∈A} may be regarded as the
direct limit of the finite-dimensional C∗-subalgebras of q. Thus, if x ∈ K0(q),
then x = [q1] − [q2] for some projections qi ∈ MN (q). Assume that 0 = j (x)=

[q1] − [q2] in K0(A). Then [q1] − [q2] = 0 in K0(M) for some finite-dimensional
C∗-subalgebra M of A. We enlarge M such that M= span Fw1,m . . . Fwd ,m and
P(i) =

∑
a∈wi

Pa is in the center ofM by Lemma 4.1. Write P = (I − P(1)) . . . (I −

P(d)) (which is in the abelian algebra A00). Then M= PM⊕ (I − P)M and
K0(M)= K0(PM)⊕ K0((I − P)M). Thus, [(1N ⊗ P)q1] − [(1N ⊗ P)q2] = 0 in
K0(PM). By the cancellation property of finite-dimensional C∗-algebras, there exists
T ∈ MN (PM) such that

(1N ⊗ P)q1 = T T ∗
∼ T ∗T = (1N ⊗ P)q2.

Note that (I − P(i))Fwi ,m = (I − P(i))Fwi ,0 where 1 ≤ i ≤ d . Hence, PM= PN
for the subalgebra N = span Fw1,0 . . . Fwd ,0 of M. Thus, we may write T = (1N ⊗

P)t where t ∈ MN (N ). Now we have

(q1 − t t∗)(1N ⊗ (I − P(1)) . . . (I − P(d−1))(I − P(d)))= 0.

Put

y = (q1 − t t∗)(1N ⊗ (I − P(1)) . . . (I − P(d−1))).
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Let yi j denote the matrix entries of y. By using the permutation rules or
[6, Lemma 4.1], ‘permute’ each expression Qa , for a ∈ vd , in yi j to the left such
that it becomes evident that yi j is an element of the set Cd defined in Lemma 4.2.
Hence, yi j = 0 by Lemma 4.2 (for k = d) and so y = 0. Successively continuing this
argument we end by showing that q1 − t t∗ = 0. Similarly q2 − t∗t = 0. Consequently
[q1] = [q2] in K0(q) since t ∈ MN (q). 2

5. Proof part 3

In this section we prove our main result, Theorem 5.6, by an application of
Lemma 3.4. For 1 ≤ i ≤ d we put

fi = φi − id ∈ End(K0(A)),

Yi = Range( f1)+ · · · + Range( fi )⊆ K0(A),

and Y0 = 0. Note that f1, . . . , fd , φ1, . . . , φd commute. We write φn for φn1
1 . . . φ

nd
d

where n = (n1, . . . , nd) ∈ Zd
+.

Recall that in the representation A =
⋃

m∈Zd Am , the element 90x ∈ A0 is
identified with the element αn(9nx) ∈ An for x ∈ A, n ∈ Zd

+. Hence, in the
representation K0(A)∼=

⋃
m∈Zd K0(Am), the element K0(90)[x] ∈ K0(A0), where

[x] ∈ K0(A), is identified with φn(K0(9n)[x]) ∈ K0(An).

LEMMA 5.1. If x ∈ B and φi (x) ∈ Bn when 1 ≤ i ≤ d and n ∈ Zd
+, then x ∈ Bn−δi .

PROOF. Let z ∈ Bn . By the definition of Bn and the identities

[90(Si Sl QSl∗Si
∗)] = φi ([90(S

l QSl∗)]),

for l ∈ Zd
+ and Q ∈ q, we have a representation z = φi (y)+ a for some y ∈ Bn−δi

and a ∈ Bm where m = (n1, . . . , ni−1, 0, ni+1, . . . , nd) ∈ Zd . Applying this to
z = φi (x) we obtain φi (x)= φi (y)+ a. Then by Lemma 4.4, x − y = 0, and thus
x = y ∈ Bn−δi . 2

Note that for fixed j in {1, . . . , d} each element x in B can be uniquely
decomposed into x = φ j (a)+ r for a, r ∈ B such that r ∈ Bn for some n =

(n1, . . . , n j−1, 0, n j+1, . . . , nd) ∈ Zd . The existence of a and r is clear by
Lemma 4.3 (and the proof of Lemma 5.1), and the uniqueness of a, r ∈ B follows
from Lemma 5.1. We refer to this decomposition as the φ j -decomposition in B. We
make the φ j -decomposition in K0(AN ) rather than in K0(A0). Elements of the set

Bn (or B(N )n ) for n = (n1, . . . , nd) ∈ Zd
+ are said to have j -degree n j in B (or B(N )).

Note, however, that the j-degree is not a unique number.

LEMMA 5.2. If x ∈ B and fi (x) ∈ Bn when 1 ≤ i ≤ d and n ∈ Zd
+, then x ∈ Bn−δi .
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PROOF. Let x ∈ B and fi (x) ∈ Bn , but suppose that x /∈ Bn−δi . By Lemma 4.3
choose m ∈ Zd

+ such that m ≥ n and x ∈ Bm \ Bm−δi . Since fi (x)= φi (x)− x ∈

Bn ⊆ Bm and x ∈ Bm , we have φi (x) ∈ Bm . By Lemma 5.1, x ∈ Bm−δi , which is a
contradiction. 2

Analogously to the φ j -decomposition we get a unique f j -decomposition in B.
More precisely, for all x ∈ B there exist unique a, r ∈ B such that x = f j (a)+ r
where r has j-degree zero. The existence can be seen as follows. Say x =

[90(Sn QSn∗)] ∈ K0(A0) for n ∈ Zd
+ (n j ≥ 1) and q ∈ Q by Lemma 4.3. Then

[90(S
n QSn∗

)] = f j ([90(S
n−δ j QSn−δ j ∗)])+ [90(S

n−δ j QSn−δ j ∗)].

In the same way we further decompose [90(Sn−δ j QSn−δ j ∗)], and so on, until we end
at x = f j (a)+ r . The uniqueness of a and r follows from Lemma 5.2.

Note that if x ∈ B(N )n for nk = 0, that is, x has k-degree zero in B(N ), and if i 6= k,
then fi (x) ∈ B(N )n+δi

, that is, fi (x) has k-degree zero in B(N ).

LEMMA 5.3. We have f −1
i (Yi−1)⊆ Yi−1 for all i in {1, . . . , d}.

PROOF. Take y ∈ f −1
i (Yi−1), where 1 ≤ i ≤ d. Then there exist x1, . . . , xi−1 ∈

K0(A) such that fi (y)= f1(x1)+ · · · + fi−1(xi−1). We may suppose that
y, x1, . . . , xi−1 ∈ K0(AN ) for some N ∈ Zd . Using the fi -decomposition in B(N ) =

K0(AN ) we may write xk = fi (ak)+ rk for some ak, rk ∈ K0(AN ) such that rk has
i-degree zero in K0(AN ). Hence,

fi (y − f1(a1)− · · · − fi−1(ai−1))= f1(r1)+ · · · + fi−1(ri−1).

The right-hand side of this equality has i-degree zero and thus

y − f1(a1)− · · · − fi−1(ai−1)= 0,

by Lemma 5.2, and we obtain y ∈ Yi−1 as claimed. 2

LEMMA 5.4. We have Yd ∩ B0 = 0.

PROOF. We want to prove the lemma by induction, so assume that k ∈ {1, 2, . . . , d}

and that Yk−1 ∩ B0 = 0. Now let z ∈ Yk ∩ B0. Then z = f1(x1)+ · · · + fk(xk) ∈ B0
for some xi ∈ K0(AN ) and N ≥ 0. Let xi = fk(ai )+ ri be the fk-decomposition of xi

in B(N ) = K0(AN ) for i = 1, . . . , k − 1. Then, since z ∈ B0, for some y ∈ B(N )0 we
have

z = fk

(k−1∑
i=1

fi (ai )+ xk

)
+

k−1∑
i=1

fi (ri )= φN (y) ∈ B0. (5)

Case 1. First we suppose that the kth coordinate Nk of N is zero. Then, since
f1(r1)+ · · · + fk−1(rk−1) and φN (y) have k-degree zero in B(N ), the summand
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fk(. . .) in (5) has k-degree zero in B(N ) and must thus vanish by Lemma 5.2. Hence,
z = f1(r1)+ · · · + fk−1(rk−1) ∈ Yk−1 ∩ B0, and by the induction hypothesis, z = 0.
Case 2. If Nk > 0 then φN (y)= φ

Nk
k (w) for w = φN−Nkδk (y). Now

φ
Nk
k (w) = fk(φ

Nk−1
k (w))+ φ

Nk−1
k (w)

= fk(φ
Nk−1
k (w))+ fk(φ

Nk−2
k (w))+ · · · + fk(w)+ w.

If we substitute this in identity (5) and isolate w then we obtain

z′
= fk(. . .)+ f1(r1)+ · · · + fk−1(rk−1)= w = φN−Nkδk (y) ∈ B(Nkδk)

0 .

By using the argument of Case 1 we obtain z′
= 0. (We remark that by the symmetric

configuration of A we also have Yk−1 ∩ B(L)0 = 0 for all L ∈ Zd . This may be deduced
from Yk−1 ∩ B0 = 0 by using the bijections φi (Lemma 3.1).) Hence, z = φN (y)=

φNkδk (z′)= 0. 2

COROLLARY 5.5. We have K0(A o Zd)∼= B0 and K1(A o Zd)= 0.

PROOF. Since A is the inductively ordered union of finite-dimensional C∗-algebras,
we have K1(A)= 0. Combining Lemmas 3.4 and 5.3, we obtain that K1(A o Zd)

is trivial and K0(A o Zd)= K0(A)/Yd . Now let x ∈ K0(A). Using the fact that
φi (x)≡ x mod Yd for all i = 1, . . . , d, for each x ∈ K0(A) we find some y ∈ B0
such that x ≡ y mod Yd by Lemma 4.3. Hence, the quotient map B0 → K0(A)/Yd
such that x 7→ x + Yd , is a surjection. This yields B0 ∼= B0/(Yd ∩ B0)∼= K0(A)/Yd
by Lemma 5.4. 2

We denote by Ring(M) the subring generated by a subset M of a ring R.

THEOREM 5.6. Suppose that (A, F, I) induces a higher rank Exel–Laca algebra
(Definition 2.1) and satisfies the properties (I) and (II). Let ϕ be the continuous
extension of the embedding π |q : q →OA,F,I.

Then K0(ϕ) is an isomorphism and K1(OA,F,I)= 0. Hence, we have an
isomorphism of abelian groups

K0(OA,F,I)∼= Ring{Qa ∈ A | a ∈A}.

PROOF. Let t : q → A be the continuous embedding mapping x ∈ q ⊆ A to 90(x) ∈

A0. Collecting various results in this paper we obtain the following diagram:

K0(q)
K0(t) // B0

x 7→x+Yd // K0(A)/Yd
[a]+Yd 7→[a] // K0(A o Zd)

K0(OA,F,I) K0(P(A o Zd)P)

K0(τ )

OO

K0(κ)oo

Starting at the top-left corner, the first map K0(t) is an isomorphism by Lemma 4.5.
The second map is an isomorphism by the proof of Corollary 5.5. The third map is an
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isomorphism by the proof of Lemma 3.4. The fourth map K0(τ ) is an isomorphism
by Lemma 3.3. The fifth map K0(κ) is an isomorphism by Proposition 3.2.

This sequence of isomorphisms maps an element [a] ∈ K0(q) to [π(a)] ∈

K0(OA,F,I) for a projection a ∈ MN (q). Hence, K0(ϕ) is an isomorphism.
The isomorphism between K0(q) and Ring{Qa ∈ A | a ∈A} is well known. By
Proposition 3.2, Lemmas 3.3, 3.4, and 5.3, K1(OA,I,F) is zero. 2

If the ‘rank’, that is, card(V ), is arbitrary then we may write OA,F,I as the direct
limit of higher rank Exel–Laca (sub)algebras, where V is restricted to finite subsets.
In this way the last theorem yields the following result.

COROLLARY 5.7. The last theorem holds for any rank.

6. Examples

EXAMPLE 6.1. LetOA be an Exel–Laca algebra [13], where A denotes the transition
matrix. By [14], K0(OA) may be regarded as the quotient R/≡ where R is the ring
R ⊆ A generated by Qa, Pb for all a, b ∈A, now regarded as an abelian group, and
≡ is the equivalence relation Qa ≡ Pa for all a ∈A. It is clear that the quotient map

ϕ : R′
= Ring{Qa ∈ A | a ∈A} → R/≡,

is surjective. Using property (II) it is easy to compute that ϕ is also injective. Hence,
R′ ∼= R/≡. Moreover, the group

K1(OA)∼= ker(I − At )=

{
(xa) ∈

⊕
a∈A

Z
∣∣∣∣ ∑

a∈A
xa(Pa − Qa)= 0

}
,

(by [14]) is zero if property (II) holds. So, the K -theory result of Theorem 5.6 is
consistent with the K -theory result of Exel and Laca, as it should be. For the Cuntz-
algebra O∞ we get K0(O∞)∼= Ring{I } = Z and K1(O∞)= 0.

EXAMPLE 6.2. In this example we consider the rank-two Cuntz–Krieger algebras
defined in [5, Section 5]. These algebras are inspired by one-sided shifts J of finite
type in dimension two. More precisely, let � be a finite set and let s be a function
s :�4

→ {0, 1}. Then let J be the shift space

J = {x ∈�N
2
| s(xn,m, xn,m+1, xn+1,m, xn+1,m+1)= 1

for all but finitely many pairs (n, m) ∈ N2
}.

In other words, J is a one-sided shift of finite type with the modification that
finitely many failures with respect to the ‘test function’ s are allowed. Let A be the
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alphabet v1 t v2 with the partition V given by {v1, v2} and parts v1 = v2 =�N. Let
a = (a1, a2, a3, . . .) ∈ v1 (a j ∈�), x ∈ J and put

y =

(
x
a1a2a3 . . .

)
∈�N

2
.

(y arises by shifting x one step upwards and filling the arising blank line with
a1a2a3 . . . .) Then we define a partial isometry Sa ∈ B(`2(J )) by Sa(δx )= δy if y ∈ J
and Sa(δx )= 0 otherwise. We similarly induce a partial isometry Tb for b ∈ v2 by
shifting x to the right (rather than upwards) and filling the arising gap with b.

Then one can show that the C∗-algebra generated by {Sa | a ∈ v1} ∪ {Tb | b ∈ v2}

in B(`2(J )) is a rank-two Exel–Laca algebra OA,F,I associated to a triple (A, F, I)
satisfying Definition 2.1. The representation π : F/I →OA,F,I such that π(a)= Sa
and π(b)= Tb for all a ∈ v1 and b ∈ v2 is an A00-faithful saturating representation
with dense image (see [5]).

Next we prove property (II). If x ∈ q = Alg{Qa ∈ A | a ∈A} is non-zero then
there exist ai ∈A and εi ∈ {1,⊥} such that the carrier of x is larger than Q =

Qε1
a1 . . . Qεm

am 6= 0 where Q⊥
ai

= I − Qai . There exist bi ∈ vi such that 0 6= Pb1 Pb2 ≤ Q
(by using the saturating representation π as in (2)). However, in fact there exist
infinitely many modifications b′

1 ∈ v1 of b1 such that 0 6= Pb′

1
Pb2 ≤ Q. The reason

is that since we allow finitely many failures in J with respect to the test function s,
we may choose infinitely many modifications b′

1 of b1 by modifying b1 ∈�N at single
entries. We skip the details. Consequently, for any finite subset B ⊆ v1, P =

∑
c∈B Pc

cannot be a unit for Q, and thus it cannot be a unit for x . This proves property (II).
If we fix some z ∈� and suppose that

s

(
x y
z z

)
= 1 and s

(
z x
z y

)
= 1,

for all x, y ∈�, then S(z,z,z,...) and T(z,z,z,...) define commuting isometries as required
in property (I). Hence, we can use Theorem 5.6 to obtain the K -theory of OA,F,I.

For example, consider the full shift J =�N
2
. Then all operators Sa, Tb are

isometries and we obtain K0(OA,F,J)∼= Ring{I } = Z.
Another example is this. Let �=�red t {z} t�green be a disjoint union; the red

letters, the blue letter z, and the green letters. Let

s

(
x11 x12
x21 x22

)
= 1,

if and only if all xi j ∈�red, or if all xi j ∈�green, or if x21 = x22 = z and x11, x12 are
arbitrary, or if x11 = x21 = z and x11, x12 are arbitrary.

Let a = (a1a2 . . .) ∈�N = v1. Note that π(Qa) is the projection onto the Hilbert
space generated by {δx ∈ `2(J ) | x ∈ J, Sa(δx ) 6= 0}. Thus, Qa 6= 0 if and only if there
exists n0 ∈ N such that an ∈�red for all n ≥ n0, or an ∈�green for all n ≥ n0, or an = z
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for all n ≥ n0. We say that a is red, green or blue, respectively. Note that Qa = Qb 6= 0
for a, b ∈ vi for fixed i = 1, 2 if and only if the color of a coincides with the color of
b. Hence, there exist only five different source projections Qx for x ∈A. Namely
an (blue) isometry I , and Qr , Qg, Q R, QG where r ∈ v1, R ∈ v2 are any red letters,
and g ∈ v1, G ∈ v2 are any green letters. Note that Qr 6= Q R and Qg 6= QG , and
that Qx Q y = 0 when x is red and y is green. Hence, by Theorem 5.6 we have an
isomorphism as abelian groups

K0(OA,F,I) ∼= Ring{Qx | x ∈A}

= Z(Qr − Qr Q R)⊕ ZQr Q R ⊕ . . .= Z7.

We emphasize that in this example K0(OA,F,I) is different from

Ring{Qx | x ∈ v1} ⊗ Ring{Q y | y ∈ v2} = Z3
⊗ Z3

= Z9.

On the other hand, we have

K0(C
∗((Sa)a∈v1)⊗ C∗((Tb)b∈v2))= Z9,

by Theorem 5.6. This shows that OA,F,I is different from the tensor product
C∗((Sa)a)⊗ C∗((Tb)b). This is not very surprising since SaTb = 0 in OA,F,I for
certain a and b.

COROLLARY 6.3. The rank-two Cuntz–Krieger algebras associated to shifts of finite
type [5] satisfy Definition 2.1 and property (II). Hence, Theorem 5.6 gives their
K -theory if they also satisfy property (I).
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