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Abstract

Epidemic forecasting provides an opportunity to predict geographic disease spread and counts
when an outbreak occurs and plays a key role in preventing or controlling their adverse
impact. However, conventional prediction models based on complex mathematical modelling
rely on the estimation of model parameters, which yields unreliable and unsustainable results.
Herein, we proposed a simple model for predicting the epidemic transmission dynamics based
on nonlinear regression of the epidemic growth rate and iterative methods, which is applicable
to the progression of the COVID-19 outbreak under the strict control measures of the Chinese
government. Our model yields reliable and accurate results as confirmed by the available data:
we predicted that the total number of infections in mainland China would be 91 253, and the
maximum number of beds required for hospitalised patients would be 62 794. We inferred
that the inflection point (when the growth rate turns from positive to negative) of the epi-
demic across China would be mid-February, and the end of the epidemic would be in late
March. This model is expected to contribute to resource allocation and planning in the health
sector while providing a theoretical basis for governments to respond to future global health
crises or epidemics.

Introduction

In December 2019, the outbreak of COVID-19 that could cause severe respiratory symptoms
and even deaths emerged in Wuhan, Hubei province, China [1, 2]. This new coronavirus was
confirmed to be able to transmit between humans on 20 January 2020, significantly increased
the risk of international spread [3, 4]. To mitigate the spreading of the epidemic, the Chinese
central government progressively implemented the highest-level metropolitan-wide quarantine
control in Wuhan city and 31 provinces since 23–24 January 2020. In the meantime, scientists
are racing to characterise the virus, model epidemics and develop diagnostic reagents and vac-
cines [4–8].

As of 26 February, the spreading of COVID-19 has been reported in 52 countries, and the
number of confirmed cases worldwide has reached 83 389. The progression of the epidemic
has aroused widespread concerns of scientists. The epidemiological community has long
used the basic reproduction number R0 to describe the spread of epidemics. It can be thought
of the expected number of cases directly generated by one case where all individuals are sus-
ceptible to infections in the case of natural transmission of the virus. At present, many groups
have estimated the R0 value of COVID-19 (1.4–6.47, average 2–3) through different models,
but the results differ greatly and are far from reality [8, 9]. On 16 January, Neil Ferguson’s
team at Imperial College predicted that there would be 1723 infections in Wuhan on 12
January, and total infections worldwide would reach 100 000 by 26 January [10]. Wu predicts
the total infections in Wuhan will reach 75 815 on 25 January [9]. Huang and Qiao proposed a
data-driven model to predict the peak of the outbreak [11]. As the Chinese government has
implemented stringent highest-level health intervention, none of these models are suitable
for predicting the development of epidemics under this circumstance. Finding an accurate
and simple predictive dynamic model is the key for predicting the evolution of the epidemic.

Herein, we proposed a simple model based on non-linear regression and iterative methods
to predict the progression of the epidemic under stringent governmental control. Using this
model, we predicted the inflection point and end time of the epidemic, the expected number
of infected patients and the maximum number of beds required for regions including Wuhan,
Hubei province, Guangdong province and mainland China. This model can help the govern-
ment to prepare in advance in the allocation of medical resources and the deployment of med-
ical staff in the event of an epidemic crisis.
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Materials and methods

We selected four representative datasets for our analysis: Wuhan,
Hubei province (excluding Wuhan), Guangdong province and
mainland China (excluding Hubei). Hubei province (excluding
Wuhan), which surrounds Wuhan city, was selected for the
study as it is the centre of COVID-19 outbreak, Wuhan.
Guangdong province was chosen as it has the largest number of
confirmed cases after Hubei province, with two large floating
population and economically developed cities Guangzhou and
Shenzhen. Mainland China (excluding Hubei) reflects the overall
development of epidemics across the country. The data were from
the official website of the National Health Commission of the
People’s Republic of China from 15 January to 18 February 2020.

Detailed descriptions of the method are covered in the rest of
the paper.

Results and discussion

The methods we use are the non-linear regression and iterative
methods commonly used in the study of natural science [12, 13].
Compared with the Susceptible-infected-removed (SIR) and
susceptible-exposed-infectious-recovered (SEIR) models used in
epidemiology, our method is simple, accurate and reliable.

The daily growth rate of confirmed cases is calculated as follows:

T = Nn − Nn−1

Nn−1
(1)

where Nn and Nn−1 are the number of confirmed cases on day n
and n− 1, respectively.

The daily growth rate of confirmed cases is obtained by using
formula (1) and is plotted in Figure 1a, where the hollow markers
are calculated from real data and the solid lines are the fitted
curve. The growth rate T fluctuates during the early stage of the
outbreak and shows a large value because of a lack of governmen-
tal health intervention as well as the small sample size has a
greater impact on T. T stabilises and decreases rapidly after
23–24 January 2020 due to nationwide quarantine policy. This
growth rate curve decays exponentially and is obtained by fitting:

T = ae−bt (2)

Here, a is a constant that represents the growth rate at t = 0, β is an
attenuation coefficient that indicates the efficiency of government
isolation and quarantine and t is the time representing the evolu-
tion of the epidemic. Formula (2) shows the evolution of the epi-
demic under the government’s stringent isolation and quarantine
of patients. The attenuation coefficient β is a parameter that mea-
sures the efficiency of isolation and quarantine.

Note that the Chinese central government implemented
nationwide quarantine policy from 23–24 January 2020. Since
there were delays for the control measures to take effect, except
for Wuhan, we used the data starting from January 26 for
model fitting (Fig. 1a). On the contrary, due to the shortage of
monitoring tools and medical resources, the data of Wuhan dur-
ing the early stage cannot truly reflect its real epidemic situation.

Fig. 1. (a) Growth rate of confirmed cases and (b) accumulated cases for Wuhan, Hubei province, Guangdong province and mainland China. Asterisks denote
Wuhan or Hubei is excluded (*: Wuhan excluded; **: mainland China excluded Hubei province). Red square for Wuhan, blue circle for Hubei, green diamond
for Guangzhou and brown pentagon for mainland China.

2 Chenjing Shang et al.

https://doi.org/10.1017/S0950268821000339 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268821000339


We therefore used data of Wuhan starting from 31 January for
model fitting. Furthermore, the jump in confirmed cases reported
in Wuhan on 12 February is due to a change in the criteria for
counting diagnoses of the virus.

The summary of fitted parameters is displayed in Table 1. The
trends of the four curves are comparable (Fig. 1), which indicates
that under the mandatory quarantine by the Chinese government,
the transmission and evolution of the epidemic are artificially lim-
ited. The values of fitted attenuation coefficient β of the four
curves show an increasing trend (Wuhan: 0.13; Hubei: 0.15;
Guangdong: 0.18 mainland China: 0.18). We speculate that the
faster the growth rate decays, the greater the government’s impact
over the epidemic. Note that the outbreak in Wuhan was not well
controlled at the early phase of the outbreak, which led to the
rapid spread of the outbreak and the rapid increase in the number
of infected patients. Therefore, the attenuation coefficient of the
growth rate is the smallest. The attenuation coefficient for main-
land China (excluding Hubei province) is similar to that of
Guangdong province, indicating that the extent of public health
intervention is comparable. The smaller attenuation coefficient
of Hubei province compared to the rest of China is possibly
due to the challenge of implementing the control measures
because of the overwhelmed medical system in Hubei.

Based on formula (2), we use nonlinear regression and iterative
methods to predict cumulative confirmed cases:

N = N0

∏n

t=1

(1+ ae−bt) (3)

where N and N0 are the number of confirmed cases and the
expected number of cases at t = 0, respectively.

Using formula (3), the cumulative numbers of confirmed cases
over time for Wuhan, Hubei (excluding Wuhan), Guangdong
province and mainland China (excluding Hubei) are predicted.
Figure 1b shows the up-to-date confirmed cases (hollow markers)
and predictions (solid lines) using our model for the four datasets.
The model predictions are in good agreement with the actual
numbers. Based on our model, the predicted total infections in
Wuhan, Hubei (excluding Wuhan), Guangdong province and
mainland China (excluding Hubei) during this outbreak are 56
519, 21 093, 1377 and 13 641, respectively (Table 3). The death
toll can also be predicted in the same way. Furthermore, we
used this model to predict the further development and evolution
of the epidemic. Although the number of confirmed cases is
increasing (Fig. 1b), the daily growth rate of confirmed cases is
decreasing (Fig. 1a). It indicates that the move of the epidemic
goes better. When the confirmed cases reach the peak, the epi-
demic tends to the end. Using this method, the estimated end
time of the epidemic in Wuhan, Hubei (excluding Wuhan),
Guangdong province and mainland China (excluding Hubei)

will be 5 May, 13 April, 15 March and 27 March 2020, respect-
ively. The mean absolute percentage error (MAPE) method was
applied to evaluate the proposed model’s prediction accuracy.
The results are summarised in Table 2. An excellent short-term
(between 02/17/2020 and 03/19/2020) prediction accuracy with
an MAPE of less than 10% was obtained for all four subjects,
except for Hubei province. Between 03/20/2020 and 04/16/2020,
an increased MAPE was seen for all four subjects. The predictions
for mainland China and Guangdong province remain excellent
with an MAPE of less than 10%. The predictions for Wuhan
and Hubei province are both between 10% and 20%.

Forecasting the number of hospitalised patients is conducive to
the accurate preparation of beds and other resource allocation for
the hospital, and provides significant guidance in response to the
outbreak. The number of hospitalised patients, or the number of
required hospital beds, can be obtained by subtracting the number
of confirmed cases by the number of recoveries and deaths as
follows:

M = M1 −M2 −M3 (4)

where M, M1, M2 and M3 are the number of hospitalised patients,
confirmed patients, recoveries and deaths, respectively.
Substituting formula (1) we obtain the growth rate of hospitalised
patients for these four regions and the results are plotted in
Figure 2a. The choices of symbols and colours correspond to
those in Figure 1. This growth rate curve also follows an exponen-
tially decaying trend and is obtained by fitting:

K = K0 + be−gt (5)

where K represents the growth rate of hospitalised patients, the
sum of K0 and b represents the growth rate at t = 0 and γ

Table 1. List of fitted parameters for formula (2)

Parameter Wuhan
Hubeia

province
Guangdong
province Chinab

a 2.503 3.420 3.657 3.553

β 0.126 0.153 0.182 0.179

R2 0.905 0.981 0.929 0.984

aWuhan excluded.
bMainland China excluded Hubei province.

Table 2. Prediction accuracy of the proposed model

Date

EMAPE

Wuhan
(%)

Hubeia

(%)
Guangdong

(%)
Chinab

(%)

02/17/
2020–03/
19/2020

8 16 1 3

03/20/
2020–04/
16/2020

13 19 8 8

aWuhan excluded.
bMainland China excluded Hubei province.

Table 3. List of fitted parameters for formula (5)

Parameter Wuhan
Hubeia

province
Guangdong
province Chinab

K0 −0.050 −0.051 −0.120 −0.071

B 1.811 2.520 1.658 2.024

Γ 0.096 1.231 0.101 0.126

R2 0.838 0.973 0.914 0.989

aWuhan excluded.
bMainland China excluded Hubei province.
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represents the attenuation coefficient of the growth rate. The
details of fitted parameters for formula (5) are provided in
Table 3.

Then, we apply iterative methods to predict the number of
hospitalised patients:

M = M0

∏n

t=1

(1+ K0 + be−gt) (6)

where M0 is the number of hospitalised patients at t = 0. The
results are shown in solid lines in Figure 2b. Our predictions
are in good agreement with existing data. The continuous increase
in the number of hospitalised patients during the early phase
(Fig. 2b) indicates that the number of new infections is greater
than the sum of recoveries and deaths. At this stage, the develop-
ment and spreading of the epidemic continues. When we reach

the maximum value, the number of newly confirmed cases is
equal to the sum of recoveries and deaths. When the number of
patients in the hospital starts to decrease, it means that the num-
ber of newly confirmed patients is less than the sum of recoveries
and deaths. When this curve reaches the maximum and begins to
turn around, we call this point the inflection point. This point can
also be seen in Figure 2a, that is, the point at which the growth
rate changes from positive to negative. The peak value is the max-
imum number of beds required by hospitalised patients (Table 4).
The maximum accumulated hospitalised patients for these four
regions will be 38 888 (Wuhan), 14 849 (Hubei excluding
Wuhan), 1029 (Guangdong) and 9057 (mainland China exclud-
ing Hubei). The outbreak in Wuhan overwhelmed the health sys-
tems. The patients have been forced to turn away due to a lack of
beds and medical supplies. Accurately estimating the number of
beds needed will assist the government in resource allocation
and planning during a public health crisis.

Fig. 2. (a) Daily growth rate and (b) accumulated hospitalised patients for Wuhan, Hubei province, Guangdong province and mainland China. Asterisks denote
Wuhan or Hubei is excluded (*: Wuhan excluded; **: mainland China excluded Hubei province).

Table 4. Summary of predictions using the proposed model

Wuhan Hubeia province Guangdong province Chinab

Inflection point 2020/02/21 2020/02/15 2020/02/10 2020/02/10

Total required beds 38 888 14 849 1029 9057

Total cases 56 519 21 093 1377 13 641

End time 2020/5/5 2020/04/13 2020/03/15 2020/03/27

aWuhan excluded.
bMainland China Hubei province excluded.
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Furthermore, our model’s efficacy was compared with other
studies using other models. For example, Dandekar et al. [14]
showed an SIR model, when estimating the total cases by the
end of February 2020 in Wuhan, China, can lead to an error of
150%. Wang et al. [15] employed an SEIR model, estimated 11
044, 70 258 and 227 989 confirmed cases by the end of
February 2020 in Wuhan, China, using R0 = 1.9, 2.6 and 3.1,
respectively. These estimations came down to an absolute error
of 78%, 43% and 364%, respectively, far beyond our error of
8%. The authors stated that classical estimation models’ accuracy
largely depends on the parameters used, based on previous studies
and various approaches and assumptions, and required a large
dataset. Furthermore, the classical SEIR and SIR models’ para-
meters are assumed to be constant. Therefore, they cannot recover
the stagnation observed in Wuhan’s infected case count due to the
strict government control in China. Moreover, despite the numer-
ous efforts to generate the model for Wuhan, the authors stated
that the dynamics model for the other locations in mainland
China and other places in the world still needs to be developed
with specific parameters to be redefined.

Conclusions

Several models for the prediction of the COVID-19 outbreak
existed, but few could well predict the transmission of the epi-
demics under stringent public health intervention. Based on the
growth rates T and K, we proposed a simple model for studying
and predicting the progression of the epidemics. We evaluated
the role of government control policies based on this model
and predicted the inflection point and end time of the epidemic,
the maximum number of hospitalised patients and the expected
number of infections (Table 3). Our model yields accurate short-
term forecasting of the pandemic’s progression: our predictions
are in excellent agreement with the real data. It should be noted
that the proposed model will not be necessarily accurate for long-
term predictions due to changes in the external environment
(e.g. the update of the government control policies, development
of the treatment methods, etc.). Therefore, model parameters will
need to be timely updated to generate reliable long-term predictions.

In summary, we developed a simple yet effective model using a
small dataset for predicting the evolution of the COVID-19 out-
break in mainland China. The mathematical model is of great
guiding significance to assess the impact of government control
policies in preventing the spread of the disease. This model is
expected to contribute to resource allocation and planning in
the health sector while providing a theoretical foundation for gov-
ernments to respond to future global health crises or epidemics.
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