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Abstract
High-power lasers are vital for particle acceleration, imaging, fusion and materials processing, requiring precise control
and high-energy delivery. Laser plasma accelerators (LPAs) demand laser positional stability at focus to ensure consistent
electron beams in applications such as X-ray free-electron lasers and high-energy colliders. Achieving this stability
is especially challenging for the low-repetition-rate lasers in current LPAs. We present a machine learning method
that predicts and corrects laser pointing instabilities in real-time using a high-frequency pilot beam. By preemptively
adjusting a correction mirror, this approach overcomes traditional feedback limits. Demonstrated on the BELLA petawatt
laser operating at the terawatt level (30 mJ amplification), our method achieved root mean square pointing stabilization
of 0.34 and 0.59 μrad in the x and y directions, reducing jitter by 65% and 47%, respectively. This is the first successful
application of predictive control for shot-to-shot stabilization in low-repetition-rate laser systems, paving the way for
full-energy petawatt lasers and transformative advances across science, industry and security.

Keywords: deterministic control; laser–plasma accelerator; machine learning; petawatt/1 Hz laser; stabilization; terawatt operation

1. Introduction

High-power lasers have seen remarkable advancements,
enabling scientists to explore new and exciting frontiers in
research such as particle acceleration, advanced imaging,
nuclear fusion, medical therapies, materials processing,
astrophysics and defense applications[1]. Among the most
promising applications are laser plasma accelerators (LPAs),
which offer the potential to significantly reduce the cost and
size of accelerators while delivering comparable energy
levels[2]. LPAs have a variety of applications including
novel light sources, X-ray free-electron lasers (XFELs) and
future high-energy colliders. In particular, the stability of
laser parameters is crucial for investigating laser–plasma
interactions, especially when working with tightly focused,
short-pulse laser beams. Beam positional stability is of
paramount importance for the drive laser, as any laser
pointing instability directly translates into instability in the
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generated electron beam[3,4]. This challenge intensifies in
high-energy LPA configurations with pre-formed plasma
waveguides[5], impacting the precision required across a
wide range of LPA applications.

Despite advances in LPA drive laser technology, current
systems do not meet the stringent requirements of future
applications, such as colliders and XFELs, which demand
electron beam transverse positional uncertainty to be a frac-
tion of the beam size[6]. Since the stability of LPA-generated
electron beams is dictated by the stability of the drive
laser[4], laser position instability must be controlled to be
a fraction of the laser beam size at the focal point. Given
that our laser focus is typically 50–60 μm (full width at
half maximum, FWHM)[7], the transverse laser position error
must be limited to a few micrometers. Position error at focus
translates to pointing error at the focusing optic, so the error
is typically reported as an angle referenced to that optic[8,9].
This angle is corrected by tilting a mirror upstream. In our
case, the final optics are too large to reposition quickly,
so a mirror before magnification is used, increasing the
required angular range by the magnification factor. In this
paper, we will refer to the measured beam position error
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data in terms of distance, then translate it to angle and also
position normalized to beam size at the end. Note that we
present the position error or jitter at the target/focus plane in
micrometers, then translate this to pointing angle at the off-
axis parabolic (OAP) mirror by dividing the position error
by the OAP focal length, following a similar definition as in
Refs. [8,10], so numbers are comparable. While this work
does not yet achieve stabilization at the LPA target, this will
be the focus of future work with full-energy operation of the
BELLA PW system.

Perturbations within the system, such as mechanical vibra-
tions of mounted optics, thermal variations within individual
optics and thermal drifts of the overall laser setup, lead
to long-term drifts in the propagating laser field of the
drive laser and its instability. Improved performance has
been demonstrated in laser systems with passive controls,
achieving an outstanding performance value of 1.3 μrad
(root mean square (RMS) value) stability at our BELLA PW
beamline and 1.5 μrad (RMS value) stability over 90 min at
a 200 TW/1 Hz Ti:sapphire laser system[11]. Active feedback
control systems have been applied to stabilize the beam, but
their effectiveness is limited by the pulse repetition rate.
According to the Nyquist–Shannon theorem, the maximum
controllable frequency without aliasing is half the sampling
rate. Practically, the control bandwidth is 10%–20% of the
sampling rate, and the frequency content of fluctuations
can exceed 100 Hz in position and 10 Hz in the angular
domain, posing significant challenges for low-repetition-rate
systems[12].

To date, limited results have been reported regarding
actively stabilized, 100-TW-class, less than or equal to 10 Hz
laser systems, using high-repetition-rate low-power ‘pilot’
laser beams as proxies for the main amplified beam. A
multi-TW/2 Hz system achieved 2.6 μrad (RMS) point-
ing stability using an 80 MHz unamplified/pilot beam for
feedback sampling[8]. At one of our other facilities, the
BELLA hundred terawatt undulator (HTU) experimental
beamline[10], similar stability improvements were achieved
using a 1 kHz pilot beam, significantly reducing the uncer-
tainty in the generated electron beam, particularly the low-
frequency components associated with long-term drift, with
an estimated pointing stability of 3 μm position error[3]. In
addition, an optimized Fourier filter has been developed and
tested on 1 kHz beam corrections[13], and machine learning
(ML) is under development for longitudinal focus stabiliza-
tion[14]. However, challenges persist, especially with the large
optical components required for high-power lasers, which
introduce significant lag because of their inertia, limiting
the control bandwidth. Traditional feedback control corrects
errors based on previous observations, but the inherent lag
prevents full compensation, causing relatively large shot-to-
shot error[15].

In this work, we present an integrated ML-based approach
to predict and mitigate system errors in laser stabilization.

The initial proof-of-concept for using ML in this context
was introduced in Ref. [16], where a neural network was
employed as a time-series forecaster for non-amplified
laser data from the BELLA HTU experimental setup. This
early work demonstrated the potential of ML to address
the bandwidth limitations of existing stabilization systems.
Building on this foundation, we demonstrate here that ML
enables preemptive movement of slow correction mirrors,
effectively compensating for system errors and achieving
beam stabilization on a shot-by-shot basis. Our tests at the
BELLA PW/1 Hz beamline operating at TW/1 Hz achieved
sub-microradiant transverse stabilization, marking the first
successful implementation of this technique in high-power,
low-repetition-rate laser facilities. Our demonstration was
conducted at terawatt-level operation (30 mJ amplification);
the BELLA laser system is capable of petawatt-level
operation, and this work lays the groundwork for future
implementations at full energy. To the best of our knowledge,
this work represents the first demonstration of shot-to-shot
stabilization in such a challenging environment, paving the
way for feedback control systems that overcome traditional
bandwidth constraints.

2. Beamline setup and free run analysis

The experimental setup at the petawatt BELLA laser facility
is illustrated in Figure 1[10]. The BELLA laser can deliver
over 40 J of infrared energy per pulse at 800 nm in about
30 fs, achieving a peak optical power exceeding 1.3 PW at
a repetition rate of 1 Hz. The system starts with a front-
end low-power seed laser operating at 1 kHz. This beam is
then passed through a series of amplifiers powered by 1 Hz
pump lasers, producing an amplified 1 Hz beam along with
an unamplified 1 kHz pilot beam.

In the laser amplification chain, there is a telescope
between each stage to expand the beam size as the energy
increases, maintaining fluence lower than the optics’ damage
threshold. The beam size is 70 mm in diameter after the
amplifiers and before the compressor.

After amplification, the beam is reflected from a
deformable mirror and the ‘correction mirror’, which is
used to make fine adjustments to beam pointing. It is the
last mirror that can be used for correction; this mirror,
actuated with piezoelectric transducers, is controlled to
correct pointing at the target. Its dimensions are 100 mm ×
150 mm, using commercially produced mount (4 inches ×
6 inches) with closed-loop controls inside, driving an S-340
Piezo Tip/Tilt Platform[17].

The beam is then expanded in a telescope before it enters
an adjustable pulse compressor, which allows fine-tuning
of the laser pulse duration. After the telescope, the beam
diameter is 210 mm (8.27 inches), transported with mirrors
of 12–19 inches diameter, which are too heavy to control.
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Figure 1. Schematic of the BELLA PW laser system, including the pilot beam diagnostics, correction mirror and focus optics. The setup enables
high-resolution monitoring and control of the amplified laser beam.

Figure 2. Free run noise analysis of the PW beamline. (a) Centroid position of the pilot beam over 35 h showing long-term drift. (b) Fourier analysis of noise
frequency components in the x and y directions based on a 10-min subset of centroid data from the 1 kHz pilot beam. (c) Temporal evolution of frequency
components over 3 h.

The laser beam is then directed to an OAP mirror, with
focal length of 13.5 m, which focuses it to a spot size of
approximately 50–60 μm FWHM. After the OAP, there is
a ghost-generating mirror 14 inches in diameter and 2 inches
in thickness. The second surface of this ghost-generating
mirror is coated for high reflection, providing a ‘ghost’ beam
with enough intensity for the position sensing cameras. The
ghost beam diagnostics setup, shown in the inset of Figure 1,
includes a 50:50 beamsplitter that creates two copies of the
ghost beam for two measurements.

The reflected ghost beam is directed to two charge-coupled
device (CCD) cameras triggered at 1 Hz and 1 kHz. The
former is used to monitor the position at the focus of the
main amplified pulse and the latter to provide the data for
ML-based stabilization.

We have found that the pilot beam is highly correlated with
the petawatt amplified beam, as both traverse the same opti-
cal paths[3,12]. The 1 kHz pilot beam enables the analysis and
the precise monitoring of high-frequency errors, ensuring
that noise up to 500 Hz is effectively measured for system
diagnostics and performance optimization.

Analyzing system data is essential for control model-
ing, especially for developing data-driven ML solutions.
Figure 2(a) shows the beam position data for both the
x- and y-axes over a 35-h free (unstabilized) run without any
existing feedback that can move the long-term slow drift.
In this figure, each point represents the average centroid
position. The system stability is quantified by the RMS devi-
ation of the centroid positions, providing a clear measure of
position error over time. A slow drift can be observed in the
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average centroid curves for both the x- and y-axes, indicating
gradual changes in laser alignment over time. We include an
inset in Figure 2(a) showing a 10-min segment of the 1 Hz
beam position data in both the x and y directions. This inset
highlights the rapid, short-term shot-to-shot fluctuations that
are superimposed on the slower drift. Here, we focus on
short-term laser position instability, or shot-to-shot jitter, as
illustrated in the inset plot, rather than long-term drift, which
is low frequency and can be mitigated by slow, existing
active feedback systems. The average short-term instability,
calculated as the mean of the 34 data points (one data point
per hour), shows the average instability of σx,free = 10.15 μm
and σy,free = 11.82 μm. It is typical for the x-axis to exhibit
slightly better stability than the y-axis in the BELLA system,
as well as in other high-power lasers[18,19]. This discrepancy
can be attributed to greater vertical (y-axis) vibration of
optical mounts in response to ground vibration.

Figure 2(b) displays a typical spectrum obtained through
Fourier analysis of a 10-min subset of centroid data from
the 1 kHz pilot beam, providing a frequency-domain view of
noise characteristics. The results show that the predominant
frequency components for both the x- and y-axes are in the
tens of hertz range. The horizontal axis (x) exhibits a simpler
frequency profile compared to the vertical axis (y), which
shows a broader range of frequency components between
20 and 60 Hz, along with an additional peak at 120 Hz.
This greater complexity in the y-axis data explains why ML
models with training processes tend to perform better in
predicting the behavior of the x-axis.

Figure 2(c) further illustrates how the frequency spectrum
evolves over a 3-h period, showing the temporal variations
in noise frequency components derived in Figure 2(b). This
short-time Fourier transform analysis highlights transient
changes and periodic noise behavior, helping one to under-
stand fluctuations over time. The data presented here provide
a comprehensive assessment of both the spatial and temporal
noise characteristics, which is crucial for developing control
models, as a foundation for offline training and testing of ML
algorithms.

3. Machine learning control diagram

The main limitation on feedback control loop bandwidth
is primarily due to the inertia of the correction mirror
(100 mm × 150 mm) shown in Figure 1. The mirror assem-
bly includes its own PID (proportional–integral–derivative)
controller, which is operated through an external setpoint.

Our previous work[3] on a similar setup, the HTU, demon-
strated stability improvements using a commercial feedback
controller (ALIGNA-4D provided by TEM Messtechnik) ope-
rating at 1 kHz. Reference [8] also shows the effectiveness of
active stabilization based on the traditional feedback system.

While both Refs. [3] and [8] show long-term and shot-to-
shot oscillation suppression, they highlight the fundamental

bandwidth limitations of PID-based feedback due to
hardware constraints[20]. In particular, Ref. [3] reported that
a large 4-inch correction mirror resulted in a measured
feedback bandwidth of only 20 Hz. We measured the
performance of a commercially available stabilizer, the
Aligna system, at the BELLA HUT facility. The resulting
spectrum clearly demonstrates that the Aligna system
suppresses frequency components primarily in the 10–20 Hz
range. This behavior is consistent with the known bandwidth
limitations of traditional feedback control systems. However,
Figure 2(b) shows that our laser system exhibits significantly
higher frequency components beyond 20 Hz, presenting
a major challenge for implementing traditional feedback
control effectively. This challenge is further exacerbated
by our specific setup, which uses a large 4-inch by 6-
inch correction mirror – making it even more susceptible
to bandwidth limitations – and serves as a key motivation for
the new approach presented in this work.

ML is a widely considered a valuable approach in time-
series forecasting topic, which includes prediction of laser
pointing oscillation. The control system diagram is shown
in Figure 3. In this feedback loop, ML is employed to predict
the behavior of the 1 Hz/PW laser based on information from
the 1 kHz pilot signal captured by the ghost beam diagnostic
camera. This allows the controlled mirror to be repositioned
in advance, effectively compensating for any predicted errors
and enabling shot-to-shot stabilization of the 1 Hz/PW beam.

The standard feedback method using a 1 kHz pilot beam
relies on a simple PID controller, which treats the 1 kHz
beam data as the error signal for correction. However, due
to the slow response of the mirror (20 ms), the error signal
used for correction does not reflect the actual system error
when the mirror reaches the corrected position. This 20 ms
delay (illustrated in the zoomed-in plots in Figure 3) limits
the PID controller to correcting slow drifts, but it makes it
incapable of addressing high-frequency components in the
shot-to-shot jitters. In the frequency domain, the mismatch
between the correction signal and the actual error 20 ms later
is primarily influenced by the disturbance frequency sources
shown in Figure 2. With a control bandwidth limitation
(referenced in Ref. [13]), the PID controller cannot address
high-frequency system errors, unlike our ML approach,
which is not constrained by such bandwidth limitations.

We evaluated several ML models with different neural
network architectures, including long short-term memory
(LSTM) networks, simple recurrent neural networks
(RNNs), and multi-layer perceptrons (MLPs). LSTM
networks are specialized for handling sequential data, such
as time series, by learning long-term dependencies and
effectively capturing patterns over extended periods. Simple
RNNs, while similar, have a more basic architecture and are
typically used for shorter sequences due to their limitations
in retaining long-term memory. MLPs, in contrast, are
traditional feedforward networks consisting of multiple
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Figure 3. Machine learning control diagram: machine learning feedback loop for predictive control of the BELLA PW laser. The model uses pilot beam
data to adjust the correction mirror preemptively, compensating for system noise.

layers of nodes where each layer is fully connected to the
next. Although MLPs are generally used for non-sequential
data, our study found that they performed comparably
to RNNs and LSTM networks on sequential data after
appropriate preprocessing and feature engineering. This
indicates that MLPs, with the right data preparation, can
effectively capture essential patterns in sequential datasets.

The simpler structure of MLPs can be advantageous in
terms of computational efficiency and ease of implemen-
tation, especially when real-time performance is crucial.
The choice of MLP model is driven by its simplicity and
ease of integration into a field-programmable gate array
(FPGA)-based control loop, which is critical for achieving
precise timing in future applications. An important obser-
vation from our study is that proper scaling of the training
data is essential; the training data must reflect the range of
values expected during the testing and correction phases.
Hyperparameters refer to the configuration settings of an
ML model that are not learned from the data during training
but are set before the learning process begins. Examples of
hyperparameters include the number of neurons in a neural
network layer, the learning rate and the number of training
epochs. Tuning these parameters is necessary for optimizing
the model’s performance.

The chosen layout of the MLP model has 1200 neurons in
the input layer (accounting for 600×2 sample points for both
the x- and y-axes) and two hidden layers with 600 neurons,

optimized through hyperparameter tuning using Optuna[21].
This configuration provides a robust and efficient solution for
the control loop, balancing performance and implementation
complexity.

The input to the ML model consists of sequential data from
the 1 kHz pilot beam in both the x and y directions. The
‘input window’ refers to the duration of data used for making
predictions. In our setup, the input window is 600 ms, but
this duration can be adjusted as needed. The ‘delay time’
is the interval between the last sample point in the input
window and the prediction point, which is the arrival time
of the PW pulse. The delay time depends on the response
time of the controller mirror. For our system, the delay time
must be at least 20 ms to ensure the mirror has enough time
to reach a stable position. In our case, for the first corrected
PW beam, with a delay time of 20 ms and an input window
of 600 ms, we collect data from 380 to 980 ms (within a
cycle length of 1000 ms). The data are then used to make
predictions and adjust the mirror position. After 20 ms, the
mirror reaches the desired position, correcting the system
noise just as the 1 Hz PW beam is delivered to the target.

We have conducted a comprehensive study on the effects
of varying the input window and delay time in the simulation
described in Section 4. This analysis helps to determine the
optimal values for these parameters, ensuring the precise
timing and accuracy needed for effective system noise com-
pensation.
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4. Simulation results

We present ML predictions versus the actual measured
values for the focused PW beam position over a 20-min
period, as shown in Figure 4(a). This 20-min timeframe
includes a total of 1200 pulses, which allows for direct
comparison between the experimental recordings and the
predicted values. The ML model was trained using data
from a 100-s pilot beam run, yielding 100,000 data points
in total. To optimize sample collection, we applied a sliding
window technique to generate a sufficient number of training
samples. Specifically, we labeled the centroid positions from
i to i+599 ms as the input, combined the x and y coordinates
into a single array, and labeled the centroid position at
i + 619 ms as the output to predict. Using this labeled data,
the ML model learned the relationship between the input
and output in a supervised learning framework.

Then, for testing, we used data collected from 380 to
980 ms in each pulse cycle as input to predict the centroid
position at the end of the pulse cycle, which occurs every
second. This approach allowed us to evaluate the model’s
ability to predict the centroid position for each 1 Hz PW
pulse. The results showed a strong agreement between the
ML predictions and the actual measured values, demonstrat-
ing the accuracy of the ML model in offline testing.

The remaining error after correction is calculated as the
difference between the predicted and actual values. To evalu-
ate the effectiveness of the ML model, we compared the cen-
troid positions before and after ML correction to determine
the error reduction percentage. This percentage is calculated
as the difference between the free run (uncorrected) and
corrected RMS values, divided by the free run RMS value.

In our case, as shown in Figure 4(b), we achieved an error
reduction of 77.4% in the x direction and 57.5% in the
y direction.

Figure 5 shows the results of a parameter scan. Figure 5(a)
illustrates how the input window (the number of sample
points in the x and y dimensions) affects control perfor-
mance, while Figure 5(b) demonstrates the influence of delay
time caused by the lag in mirror response. The analysis is
based on the PW beamline data shown in Figure 1 and uti-
lizes the control model depicted in Figure 3. From a learning
perspective, increasing the duration of the ‘input window’
provides the ML model with more time-series information,
improving prediction accuracy until the input data contains
sufficient information, at which point accuracy saturates.
Conversely, shorter ‘delay times’ make it easier for the
ML model to predict trends, also enhancing accuracy. The
optimal values for these parameters depend on the specific
system characteristics, as illustrated by the information in
Figure 2. We conducted training and testing across various
datasets collected over different time periods, calculating the
centroid positions before and after ML correction to assess
the percentage reduction in position error.

We evaluated 10 datasets, each representing 1 h of data
(the same as in Figure 2). For each of these 10 h, we
calculated the mean and RMS values for statistical analysis.
The results align with our expectations and reveal several key
observations. (1) Both the x- and y-axes exhibit improved
performance with a longer input window and a shorter
delay time, highlighting the importance of using an adequate
amount of time-sequential data for accurate predictions.
(2) The x-axis outperforms the y-axis in terms of control
precision, likely due to its simpler dynamics, which make

Figure 4. The simulation results show one case of ML model predictions versus measured centroid values for the PW beam, given the dataset of 20 min
(1200 data points) of a 1 Hz beam from Figure 2(a). (b) Statistics of the 1200 data points before and after ML correction show jitter reduction of 77.4% in
the x direction and 57.5% in the y direction, demonstrating the model’s effectiveness in simulated conditions.
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Figure 5. Simulation on a parameter scan with 10 h of data (datasets are the same as in Figure 2): examining the impact of (a) input window and (b) delay
time on control performance. Results using experimental parameters (input window of 600 ms and delay time of 20 ms) indicate the average reduction in
jitter is 75% in the x direction and 62% in the y direction.

it easier to model and predict. (3) Although the delay time
is generally fixed for a specific mirror configuration, there is
potential to fine-tune this parameter using advanced timing
and synchronization systems, which could enable corrections
even before the mirror reaches full stabilization. We plan to
investigate this approach further using FPGA technology in
future studies. (4) For our experiment, the optimal parame-
ters considering both accuracy and calculation latency were
an input window of 600 ms and a delay time of 20 ms,
which resulted in an error reduction of 74.6% for the x-
axis and approximately 61.8%–62.0% for the y-axis. The
consistent performance improvement in the x-axis and the
minor variations in the y-axis indicate a reasonable level of
randomness in the ML training process and underscore the
robustness of our method.

To further compare our ML-based method with the tra-
ditional Aligna system implemented at the BELLA HTU
setup, we have included additional data shown in Figure S2-2
of the Supplementary Material. This figure presents the
centroid distribution from the 1 Hz HTU data, comparing
the experimental results with the Aligna system off and the
Aligna system on, and the simulated ML-based correction.
The simulated ML-based stabilization demonstrates compa-
rable performance to our observations, reducing the standard
deviation from σ = 0.65 pixels to σ = 0.23 pixels – a
reduction of approximately 65%. The improved performance
of the simulated ML-based approach compared to the Aligna
system on (σ = 0.37 pixels) further underscores the motiva-
tion for pursuing this method.

5. Experimental results and discussion

Experimental results, presented in Figure 6(a), show the
effectiveness of our approach over a recording period of
approximately 1 h, consisting of 30 min of free run operation
followed by 30 min of ML correction. During the free run

period, the RMS jitter in the x direction was approximately
13.1 μm, and in the y direction, it was around 14.8 μm. With
ML correction enabled, we observed a drop of the RMS
values to 4.6 μm in the x direction and 7.9 μm in the y
direction. This corresponds to jitter reductions of 64.9% in
the x direction and 46.9% in the y direction.

Figure 6(b) shows the measured results in terms of shot-
to-shot error compared with the beam size, with the focal
spot displayed as a red background. The raw image of the
focal spot is also shown in Figure S3 of the Supplementary
Material. The centroid distribution is plotted on top of this
image as blue dots (free run) and white dots (corrected).
In addition, the plot shows the 3σ ellipse representing the
beam size (red curve), the 3σ ellipse for the free run centroid
distribution (blue curve) and the 3σ ellipse for the corrected
centroid distribution (white curve). The standard deviation
values, labeled as σ , are provided in the plot legend. For the
free run case, the jitter-to-beam-size ratio in the x-direction
is 13.1 μm/25.2 μm (0.52), and in the y-direction, it is
14.8 μm/24.4 μm (0.61). After applying ML correction, the
ratio in the x-direction is reduced to 4.6 μm/25.2 μm (0.18),
and in the y-direction, it becomes 7.9 μm/24.4 μm (0.32).
Although the reduction percentage results are slightly lower
than those predicted by simulations, this discrepancy is likely
due to additional sources of error, such as communication
delays between the central processing unit (CPU) and
hardware, which make precise timing difficult to achieve.

This is the first instance of shot-to-shot pointing error
reduction beyond the bandwidth limitations typical of non-
predictive control. The final errors of 4.6 μm in the x
direction and 7.9 μm in the y direction correspond to angular
deviations at the OAP focusing mirror of 0.34 μrad in the x
direction and 0.59 μrad in the y direction, given the OAP
focal length of 13.5 m.

The laser energy used in Figure 6 is amplified but not
fully, reaching around 30 mJ. This serves as a proof-of-
principle for the entire system closed-loop correction. We
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Figure 6. Experimental validation. (a) Comparison of free run and ML-corrected jitter over 1 h in the time domain. (b) Centroid distribution in the two-
dimensional (2D) x–y plane compared with the focused laser beam spot as background, in which each dot is the centroid of each pulse. The ellipses represent
the σ of each distribution.

plan to apply this correction method in future high-energy
(30 J) LPA experiments, with a timeline integrated into
the beamline schedule. This ML-based approach is also
scalable to setups with additional mirrors. Our future work
will involve implementing pointing stabilization at the LPA
target, utilizing two mirrors for angle corrections.

6. Conclusion

We have successfully demonstrated the first implementation
of ML-based predictive control for shot-to-shot pointing
stabilization in a high-power, low-repetition-rate laser sys-
tem. By leveraging data from the 1 kHz pilot beam, our
approach anticipates system errors and preemptively adjusts
the correction mirror. This method significantly reduces
pointing error in the BELLA PW/1 Hz beamline, achieving
sub-microradian stabilization in both the x and y direc-
tions. Compared to traditional feedback control methods,
our predictive control not only overcomes bandwidth lim-
itations but also provides a robust, scalable solution for
future high-power laser applications requiring precise beam
stability. The achieved RMS values of instability reduc-
tions of approximately 65% in the x direction and up to
approximately 47% in the y direction validate the efficacy
of our ML model in a real-time, operational environment.
This establishes a new approach for laser stabilization in
low-repetition-rate systems, paving the way for enhanced
performance in applications such as LPAs, XFELs and high-
energy colliders.

Supplementary material

The supplementary material for this article can be found at
http://doi.org/10.1017/hpl.2025.41.
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