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New designs for research in delay discounting

John R. Doyle∗ Catherine H. Chen† Krishna Savani‡

Abstract

The two most influential models in delay discounting research have been the exponential (E) and hyperbolic (H)
models. We develop a new methodology to design binary choice questions such that exponential and hyperbolic discount
rates can be purposefully manipulated to make their rate parameters orthogonal (Pearson’s R = 0), negatively correlated
(R = –1), positively correlated (R = +1), or to hold one rate constant while allowing the other to vary. Then we extend the
method to similarly contrast different versions of the hyperboloid model. The arithmetic discounting model (A), which
is based on differences between present and future rewards rather than their ratios, may easily be made orthogonal to
any other pair of models. Our procedure makes it possible to design choice stimuli that precisely vary the relationship
between different discount rates. However, the additional control over the correlation between different discount rate
parameters may require the researcher to either restrict the range that those rate parameters can take, or to expand the
range of times the participant must wait for future rewards.

Keywords: delay discounting, exponential discounting, hyperbolic discounting, arithmetic discounting, model separa-
tion, Excel Solver.

1 Introduction

With few exceptions people prefer to receive a reward
now rather than at a later date; people also prefer to re-
ceive larger rewards than smaller rewards. But when a
choice is offered between a smaller reward now versus
a larger reward later, then these two “rules” of behav-
ior conflict. People must find some way of resolving the
conflict to make their choice. Firms must also choose be-
tween outcomes at different times in the future, or now.
Classical economics, accountancy, and finance all agree
on a single normative method by which this should be
done, which is to value all future gains in terms of their
present value. If a sum of money (P, the present value)
will grow to a future amount (F) following to a risk-free
process of continuously compounded interest, then that
P is said to be the present value of that future payment;
and F is said to be discounted to P. As continuous com-
pounding is an exponential model of growth, the norma-
tive model is known as exponential discounting.

However, people consistently depart from this norma-
tive model in two distinct ways. First, people are not ex-
ponential discounters: they discount more heavily than
exponential in the short term, and/or less heavily than
exponential in the long term. An important implication
of this “decreasing impatience” is that people will make
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inconsistent preference reversals simply due to the pas-
sage of time. Researchers have suggested that the form of
people’s behavioral discounting is better modeled by hy-
perbolic discounting (Mazur, 1987), whose mathematics
reflects the processes of simple interest (Rachlin, 2006).
The second departure is that people are far more likely
to choose present payoffs relative to future payoffs (than
they should). Seen through the lens of the exponential
model, this “impulsivity” in favor of the present reward P
implies that people demand a wildly high level of interest
to get them to choose a future reward F—often an order
of magnitude greater than any bank would offer. There-
fore, the form of people’s discounting is non-exponential,
and the size of their discounting is unreasonable.

It has also been found that the magnitude of P and F,
not just their ratios, may affect people’s choices (Green,
Myerson, & McFadden, 1997; Kirby, Petry, & Bickel,
1999), a finding which is implied by Killeen’s (2009)
additive utility model of discounting, and by arithmetic
discounting (Doyle & Chen, 2010), a special case of
Killeen’s model, in which the underlying behavioral
model is underpinned by the analogy of the excess wages
required for waiting (for F), rather than by analogies of
simple or compound interest.

Using simulation studies, Navarro, Pitt, and Myung
(2004) have shown how psychological models may be
difficult to distinguish from each other, so that deciding
which model better captures people’s decision making
remains equivocal despite the scrutiny of many empiri-
cal studies. Exponential and hyperbolic models of delay
discounting could be taken as one such intrinsically con-
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Table 1: Formulae for exponential, hyperbolic and arith-
metic models of delay discounting.

E1 Continuously compounded
interest

F = P erT

E2 Exponential discounting
model

P = F e-rT

E3 Implied rate of interest r = [log(F/P)] / T
H1 Simple interest F = P(1 + hT)
H2 Hyperbolic discounting model P = F [1 / (1 + hT)]
H3 Implied rate of interest h = (F/P – 1) / T
A1 Excess income F = P + Td
A2 Arithmetic model P = F – Td
A3 Implied rate of pay d = (F – P) / T

fusable pair—after all, how distinguishable can models
of simple interest and compound interest really be? In
Section 3, our analysis of two frequently used research
designs seems to support this view, in that the rate pa-
rameters for three different delay discounting models are
all highly inter-correlated.

Interestingly, Navarro et al. suggest that a good way to
improve the separation between models is to improve the
experimental design, which they achieve in their simula-
tions of information integration models by noting that the
models make different predictions if trials are added in
which only visual or only auditory stimuli are presented.
A similar purposeful approach is evident in Glöckner
and Betsch (2008) who search for decision tasks that are
“diagnostic” between competing models of risky choice.
Similarly, the present article develops the tools by which
separation may be improved between different models
of delay discounting, in that designs can even be con-
structed in which exponential discounting and hyperbolic
discounting make opposite predictions (see Sections 4
and 5). Navarro, Myung, Pitt and Kim (2002) see part
of their research agenda as encouraging researchers to
explore the landscape of their “favorite computational
model of cognition”. Similarly, our tools help reveal fea-
tures of the landscape of delay discounting, showing not
only what is possible, but also some of the compromises
that researchers must make in separating models of delay
discounting.

2 Three discounting models
The mathematics of the three simple discounting mod-
els that we examine first are in Table 1: exponential (E),
hyperbolic (H), and arithmetic (A). Each model is writ-
ten to give three different points of focus: (1) as the un-

derlying financial model, how P grows to F over time T;
(2) as the inverse process, how F is discounted to give
P; and (3) the model-specific rate-parameter implied in
a choice between receiving P now versus receiving F at
time T. For the exponential model, the rate parameter r is
the rate of continuously compounded interest that would
take an investment of $P up to $F in time T; for the hyper-
bolic model, the rate parameter h is the simple interest re-
quired to do the same; for the arithmetic model it is what
rate of pay is needed over a time period T which would
yield an income equaling the difference between F and
P. In plain words, the decision maker (DM) will choose F
only if the rate parameter exceeds an internally held crite-
rion, namely a satisfactory rate of compounded interest,
or simple interest to compensate for the wait for F (the
criterion rate is r0 if E is assumed: h0 if H is assumed);
or likewise an adequate compensatory rate of pay (d0 if A
is assumed). Naïve DMs might be just as likely to think
in terms of rate parameters as in terms of discount fac-
tors in forming their choices between F and P. Indeed,
Rubinstein (2003) has pointed out that discounting to net
present values is a very recent invention in accounting,
and therefore not at all obvious to the naïve DM. Finally,
note that the rate parameters of r and h are monotonically
related.1

3 Current practice

If people are not exponential discounters, what kind of
discounters are they? To answer this and related ques-
tions, it would certainly help if the predictions of the dif-
ferent models could be tested independently, such as by
independently manipulating the r, h, and d rates implied
by a pair of present and future payoffs. If {P, F, T} is a
choice problem from which we calculate {r, h, d}, one
approach is to construct a set of {P, F, T} and hope that
the derived {r, h, d} have the right properties. Our ap-
proach is to reverse this process. We first design a set of
{r, h, d} that have exactly the desired correlational prop-
erties. We then determine what values of {P, F, T} are
consistent with {r, h, d}. For instance, in the worked ex-
ample shown in Section 4, we make d orthogonal to r and
h, which themselves are designed to be negatively corre-
lated: R(r,h) = –1. At the other extreme, in Appendix B r
and h were designed to be perfectly positively correlated:
R(r,h) = +1.

To appreciate how our approach differs from current
practice, we describe two commonly used designs: that
of Rachlin, Raineri, and Cross (1991), and that of Kirby

1Eliminating F/P in E3 and H3, we get: h = (erT-1)/T. Therefore,
as r increases / decreases, so does h. Alternatively, r = log(1+hT)/T.
Therefore, as h increases / decreases, so does r.
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Figure 1: Scatterplot of stimuli used in Kirby et al.
(1999). Rate parameters d and r are for the arithmetic
and exponential models, respectively.
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et al. (1999). In Rachlin et al., a single F = $1000 is used,
combined with seven levels of T (1 month, 6 months, 1, 5,
10, 25, 50 years). At each T, participants have to choose
between successively smaller Ps (in $: 1000, 990, 980,
960, 940, 920, 900, 850, 800, 750, 700, 650, 600, 550,
500, 450, 400, 350, 300, 250, 200, 150, 100, 80, 60, 40,
20, 10, 5, or 1) and the fixed F = $1000. The procedure
is then repeated in ascending order. In a sense, this pro-
cedure lies somewhere between binary choice and guided
matching, but treating each question as a separate choice:
we can see that 7 levels of money are crossed with the 30
levels of P, and thus time and money are orthogonal. In
theory, the maximum number of questions asked is 2 x
7 x 30 (= 420), though if someone states that they prefer
P if P = $850, but F if P = $800, there is no need to go
on asking about values of P less than $800. Nonetheless,
given that intertemporal choice has been used extensively
in measuring impulsivity among many kinds of addicts,
the questionnaire does place a considerable burden on the
participant, who may be poorly disposed to sitting still for
that length of time.

The second design we examine is due to Kirby et al.,
who developed an instrument in which 27 questions were
asked (see also Kirby & Marakovic, 1996, for a similar
21 question instrument). The design of these questions
is apparent from the scatterplot in Figure 1, being sam-
pled at equal intervals of log(r) and approximately equal
intervals of log(d). We have plotted logged rate parame-
ters because the scatterplot of raw d against raw r follows

Table 2: Above, the correlation matrix of rate parameters
is for the stimuli in Rachlin et al.’s (1991) design. Below,
the correlation matrix is for the stimuli in Kirby et al.’s
(1999) design, using logged rate parameters because of
extreme heteroskedasticity in the raw versions of r, h, and
d.

log(r) log(h) log(d)

log(r) *
log(h) 0.95 *
log(d) 0.982 0.877 *

log(r) log(h) log(d)

log(r) *
log(h) 0.9997 *
log(d) 0.98 0.98 *

a classic heteroskedastic fan-shape, with half the (r, d)
points forming an indistinct and uninformative smudge
near the origin.

Despite the fact that Rachlin et al.’s design orthogo-
nalizes2 money and time, Table 2 shows that it does not
thereby orthogonalize the discounting models; nor does
Kirby et al.’s. Of course, it was not those researchers’ in-
tentions to orthogonalize r and h, and their designs were
tailored for their own research purposes. However, if an-
other researcher did want to design a study in which it
was important to control or manipulate the degree of cor-
relation between r and h3 (e.g., for testing whether train-
ing in economics or finance makes people’s choices more
consistent with r and less with h), the literature offers few
clues about how to do so, nor what hidden costs there
may be. The temptation would then be to reach for a
ready-made questionnaire from the literature, such as the
two described. By contrast, the approach described in
this paper shows how the researcher may design binary
choice questionnaires that control the degree of correla-
tion between r, h, and d. It requires only a knowledge of
spreadsheets and basic algebra (logarithms and powers)
to implement.

2When the correlation between variables x and y is zero they are
said to be orthogonal. Hence to orthogonalize x and y is to ensure that
the correlation between them is zero. In statistical inference, orthogo-
nality between competing explanatory variables is generally held to be
a desirable property.

3The correlations R(d, h) between d and h; R(d, r) between d and
r; and R(r, h) between r and h, are computed as follows. Taking each
question in turn, calculate the rate parameters d and h, and r from the
{P, F, T} triplet using equations A3, H3, and E3 in Table 1. Correlate
these rate parameters over the questions.
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Table 3: Starting from a desired set of rate parameters for exponential and hyperbolic models (r, h), corresponding T
values are found, and hence F/P. Then Ps are chosen, which with the known F/P ratios determine the Fs and hence the
ds. An extended version of this table is in the Appendix A.

Choice# r h T F/P P F d

1 0.0050 0.0055 37.54 1.206 54.01 65.13 0.2964
2 0.0045 0.0060 122.27 1.734 181.26 314.31 1.0881
3 0.0040 0.0065 225.86 2.468 101.03 249.35 0.6567
4 0.0035 0.0070 358.98 3.513 62.88 220.89 0.4402

4 More flexible designs

4.1 Finding T and F/P

Suppose we wish to design a tiny four-item questionnaire
in which values of h and r are perfectly negatively cor-
related, as in the left hand columns of Table 3, and d is
orthogonal to both r and h4. We will use the notation
/–1, 0, 0/ to denote the values that the design requires
for the three correlations R(r,h), R(r,d), and R(h,d), re-
spectively. It is crucial to note that, although the paper
uses this design in its examples, it is not this particular
design that is important. A researcher might wish to im-
plement a design where r and h were perfectly positively
correlated instead, or have some idiosyncratic relation-
ship with each other. What is important is that we can
design at all. Nonetheless, designing negatively corre-
lated r and h may not only have its uses, but tacking such
an extreme problem raises some issues that might other-
wise have been neglected. The method shows how to find
values of {P, F, T} that will implement whatever (r, h)
combinations have been chosen.

First, using relationships E3 and H3 in Table 1, we de-
rive:

erT = 1 + hT (= F/P) (1)
We then select a set of {r, h} pairs with the desired

property, in this case perfect negative correlation, and for
each pair in turn we solve for T.

To illustrate with choice 1, r = .0050 and h = .0055
(note that, for T > 0, r < h is a mathematical requirement),
and solving for T, we find:

e.005T = 1 + .0055T (2)
No closed-form solutions exist for such equations.

However, for those with programming skills, a program

4Such a design might be used in a logit / probit analysis to esti-
mate individual binary choice of P or F, with r and d as the indepen-
dent measures—though obviously expanded beyond just four questions.
With r and h making diametrically opposite predictions and d orthogo-
nal to both, it is potentially a highly efficient design. However, we also
need to consider the issue of range truncation in r and h that might work
against statistical efficiency (see Section 5.3). An extended version of
this design is in Appendix A.

Figure 2: Finding an approximate solution to ε = 0 in
equation (4).

0 10 20 30 40 50

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Search space for r=.0050, h=.0055

T

ep
s

can easily be written that finds an iterative solution. For
those who do not, a few lines of Excel provides an excel-
lent alternative. Let:

ε = |e.005T − (1 + .0055T )| (3)
If a trial value for T is in cell A1, and ε is in A2, then

A2 will contain the calculation:
= abs(exp(.005 ·A1)− (1 + .0055 ·A1)) (4)
We can substitute in values of T by trial and error with

the aim of driving ε as close to zero as possible. Alter-
natively, we can let Excel’s Solver do it for us, by mini-
mizing the contents of cell A2 by changing the contents
of cell A1. Since T=0 is always a solution of ε = 0, it
may be necessary to choose initial values of T that are
slightly larger than one anticipates the solution to be in
order to avoid the Solver finding T=0 solutions. Start-
ing the Solver near the solution may also help: easily
achieved by graphing ε using different values of T sub-
stituted into (4), as in Figure 2. Clearly, the solution for ε
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= 0 is when T is a bit below 40 (there is also an uninter-
esting solution at T=0).

Once we know T for choice 1 (the Solver tells us it is
37.54), we can determine F/P (= 1 + hT). For choice 1, it
is just: 1 + (.0055)(37.54) = 1.206.

4.2 Deriving Ps and Fs

4.2.1 Designing for d

The next step is to give P a specific value, which then
fixes F (because F/P is known) and consequently fixes
the arithmetic discounting parameter d too. In Table 1,
the Ts and F/P ratios have first been calculated, then Ps
have been generated to ensure that d has zero correlation
with r, and hence h. Given that the expected value of this
correlation under random values of P is zero, this is not
too difficult, and can be done either by trial and error or
using the Excel Solver (see the example in Section 5.2).
Indeed, a variety of correlational patterns between r, h,
and d may be constructed using the Solver. Using the
notation first mentioned in Section 4.1, the following four
values of P implement the correlational design /–1, +.5,
–.5/: 88.57, 193.86, 87.39, 18.79; and the following four
Ps give/-1, –.5, +.5/: 11.71, 227.80, 146.71, 129.70. It is
also possible to hold d constant (= dfixed). Let α = F / P,
which we have calculated for a particular choice, so that F
= αP. Then substituting for F in equation A3 (Table 1), we
have dfixed = (αP – P) / T; hence P = dfixed T / (α – 1) and
F = αP. Arbitrarily choosing dfixed = 0.5, the following
values of P are calculated for choices 1–4: 91.12, 83.29,
76.93, 71.42. Similarly, it is possible to derive Ps and Fs
consistent with a constant value of (F – P).

4.2.2 Units of measurement

The final step is to give all Ps and Fs some particular
units of measurement, and all Ts a particular unit of time.
These could be dollars, cents, euros, thousands of dol-
lars, or even fractions of dollars; days, weeks, fractions
of months, etc. It is here that the researcher must exer-
cise judgment about factors that lie beyond the mathemat-
ical method itself: for instance, how likely are people to
choose P versus F, to be discussed further in Section 5.3;
or how practical are the Ps, Fs, and Ts, if real rewards
at real delays are to motivate participants. Apart from
the effects of rounding, the resulting 4 choice questions
(rounded to nearest dollar) still maintain the correlational
structure /-1, 0, 0/:

Would you prefer $217 now, or $261 in 80 days’ time?
Would you prefer $727 now, or $1260 in 262 days’

time?
Would you prefer $405 now, or $1000 in 483 days’

time?

Would you prefer $252 now, or $886 in 768 days’ time?
Looking at the r and h values in Table 3, and the

questions we derive from them, if somebody uses hyper-
bolic discounting, then the probability of their choosing
F should increase across choices 1 through 4 (because h
increases across those choices). If instead somebody uses
exponential discounting, the probability of their choosing
F should decrease across choices 1 through 4 (because r
decreases)5. Note also, the set of four questions that we
actually constructed (those in italics) are just one of an
indefinitely large set of alternative possibilities. The scal-
ings we used were 1 money unit = $4.01 for Ps and Fs,
and 1 time unit = 2.14 days for T 6.

It is apparent that the positive colinearity between r
and h that one meets in binary choice questionnaires is
not a necessity. Beyond the mathematical requirement
that r < h for T > 0, r and h can be constructed to have
a variety of relationships with each other over a set of
choice-questions, from positively correlated, to orthogo-
nal, to perfectly negatively correlated, as in this example.
Any of the rate parameters r, h, or d may be held constant
while the other ones vary. It is as simple as: (i) writing
down the desired (r, h) pairs; (ii) then for each pair Excel-
Solving to find T; (iii) calculating F/P for each pair; (iv)
choosing a P for each choice, say, and calculating the cor-
responding Fs (or vice versa).

Finally, given a practical set of Ps and Fs, one guideline
is to choose units of time for T that would lead to approxi-
mately the same numbers of P and F chosen. For instance,
if T is quoted in milliseconds, then presumably every-
body will be willing to wait a few (hundred) milliseconds
to receive the larger F: but if T is quoted in decades, then
presumably everybody will choose P instead (375 years
is a long time to wait for anything). Somewhere between
these extremes there are units of T (be they days, weeks,
fractions of days or years), which will lead to P receiv-
ing about half the choices and F the other half. However,
unless an adequately large range of r and h are sampled,
researchers may still find that some participants choose
just one of P or F for a large majority of the choice pairs.
In this case the even split of P and F choices would be
achieved only at the aggregate level, and never at the in-
dividual level. We return to this issue in Section 5.3.

5From this we can make a count of the number of: (a) hyperbolic
discounters, (b) exponential discounters, (c) people who are off the scale
in that they always choose P, or always choose F, and (d) people who
are not off the scale, but who are not compatible with H or E. Suppose
we find (a) > (b), we cannot necessarily claim that more people discount
hyperbolically than exponentially because if there are many people in
category (c), they might all be exponential discounters (but who are
off the r-scale). Similar arguments apply if (a) < (b). An unequivocal
interpretation is only possible if (c) contains few people.

6These scalings are arbitrary so that other scalings could be used,
for instance: 1 money unit = $25.12, 1 time unit = 7.04 weeks, and so
on.
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Figure 3: Feasible and infeasible regions of (h, r) space,
given choices are limited to T in [7, 30].

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

r

h

T=30 constraint

T=7 constraint
...infeasible region...

...infeasible region...

Changing units of time effectively changes the rate pa-
rameters r, and h which are expressed as proportions (of
increase) per unit of time (e.g. 5% per annum). So it is
not surprising that decreasing the units of time (e.g., from
days to hours) can shift people’s choices from P to F, be-
cause doing so effectively increases 24-fold the r and h in
that choice. More subtle are the effects of changing units
of money, because of the “magnitude effect”—it has been
found that people’s required rate of interest, or subjective
discount rate, decreases with increasing size of rewards
(Green et al., 1997). Changing the units of measure-
ment in the four italicized questions from dollars to cents
should induce a shift towards P: changing the units from
dollars to thousands of dollars should induce a shift to F,
and it seems intuitively plausible that this would happen.
Therefore, someone’s r0 or h0 are not fixed. It follows that
achieving an equal split between P and F can be achieved
not just via manipulating the questionnaire interest rates
by scaling T, but may also be achieved by scaling P and
F, without changing the questionnaire interest rates at all.
Clearly, even when the mathematics of the modeling is
completed, the researcher still has matters of art to con-
front.

5 Extensions and limitations

5.1 Bounding time

These basic design principles may be extended in a num-
ber of different ways. Rachlin et al. (1991) used a time
range of 1 month to 50 years (a max/min ratio of 600);
while Green, Fry, and Myerson (1994) used a time range

of 1 week to 25 years (a max/min ratio of 1300). How-
ever, researchers may wish to examine choice within a
more restricted time range, particularly if real rewards are
to be delivered within a credible time frame. Let us ex-
amine, for instance, T in [7, 30], with a max/min ratio of
just 4.3 (these can be interpreted, for example, as delays
ranging from 7 days to 30 days). To find out what the
feasible region looks like we can plug in the value T=7 in
equation (1) and sketch the curve of h against r (see Fig-
ure 3). Below this line all (r, h) points are infeasible be-
cause they give rise to solutions of equation (1) in which
T < 7. Similarly sketch the curve for T=30, above which
(r, h) points are infeasible, implying as they do that T >
30. Inside the trumpet-like shape are (r, h) points that are
consistent with the time constraints. One is then free to
sample from the within-trumpet region according to the
desired criterion. For instance, points sampled uniformly
from within the circle will be orthogonal; points within
the ellipse will be negatively correlated. Points on a ver-
tical line would hold r constant while varying h; and vice
versa for points on a horizontal line.

It is also possible to work in terms of log(r) and log(h),
rather than r and h themselves. The logged version may
be constructed to be orthogonal, or negatively correlated,
and so on, as follows. First, design them to have the re-
quired relationship by writing them down. Then, calcu-
late the corresponding r and h values by exponentiating.
Once they are in this form, proceed as in Table 3 / Section
4. Other transformations of r and h can be treated in the
same way.

5.2 Hyperboloid models—a worked exam-
ple

The same method works for other models, not just E and
H. Here is an example, worked through in detail using
most of what has been developed so far in this paper.
A general hyperboloid model with subjective time and
money, as examined in Doyle and Chen (2010) is:

hmτ = ((F/P)m – 1) / Tτ (5)
It nests the hyperbolic model when m = τ = 1; it nests

Myerson and Green’s (1995) hyperboloid model when τ
= 1; and it nests Rachlin’s (2006) version of the hyper-
boloid when m = 1. The following form will also be use-
ful:

F/P = (1 + hmτ Tτ )(1/m) (6)
Suppose we wish to generate negatively correlated rate

parameters h1 and h2 for two such models, where hyper-
boloid model H1 has (m, τ ) = (.2, .4), and model H2 has
(m, τ ) = (.9, .7). Suppose also that we wish to confine our
design to have a max/min ratio for T of 100.

The complete method involves three distinct phases.
First, using the method outlined in Section 5.1, we can
generate a plot of (h1, h2) for T = 1, and a second plot
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Figure 4: Feasible region (between the constraint curves)
for hyperboloid design, and (h1, h2) points chosen (filled
circles).
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of (h1, h2) for T = 100, and hence determine the feasible
region from which (h1, h2) pairs may be sampled or de-
signed. The second phase is to determine Ts and F/Ps for
each of these designed (h1, h2) pairs, just as in Section
4.1. The third phase is to determine actual Ps and hence
Fs, to meet some additional criterion such as orthogonal-
izing d, as in Section 4.2. Each of these phases is broken
down into simple steps.

5.2.1 Defining the feasible region for (h1, h2) and de-
signing (h1, h2) pairs

Step 1. Select a range for h1. We use [.017, .023] in
increments of .001

Step 2. Using T=1, calculate F/P ratios at each level of
h1, using equation 6:

F/P = (1 + h110.4)(1 / 0.2)

Step 3. Use equation 5 to determine h2 for each F/P
calculated in Step 2.

h2 = ((F/P)0.9 – 1) / 10.7

Step 4. Plot these set of (h1, h2) pairs as the constraint
for T=1, as in Figure 4.

Step 5. Repeat steps 2 and 3 for each level of h1, but
using T=100:

F/P = (1 + h11000.4)(1 / 0.2)

h2 = ((F/P)0.9 – 1) / 1000.7

Step 6. Plot this new set of (h1, h2) pairs as the con-
straint for T=100.7

7Note, the fact that the constraint for T=1 is steeper than the con-
straint for T=100, whereas it is the other way round in Figure 3, is of
no consequence. Had h2 been plotted as the x-axis, and h1 as the y-
axis, Figures 3 and 4 would have appeared topologically similar in this

Step 7. Choose (h1, h2) pairs from within the feasible
region to suit design requirement. Here we select h1 and
h2 so they will have a correlation of -1, as shown in the
filled circles, which can be calculated by interpolation, or
reading them off graph paper.

5.2.2 Finding T and F/P.

Step 8. Having generated (h1, h2) pairs that are negatively
correlated, we then equate the (F/P)s arising from each
model for each given (h1, h2). To illustrate with choice 1
in Table 4, we want to solve for T, such that:

(1 + .017T0.4)(1 / 0.2) = (1 + .0778T0.7)(1 / 0.9) (= F/P) (7)
This is the analogous optimization problem to that de-

scribed in equation (2) for E and H. In Excel, once again
presuming that T is in cell A1, then A2 will contain the
calculation:

=abs((1+.017*A1ˆ0.4)ˆ(1/0.2)-
(1+.0778*A1ˆ0.7)ˆ(1/0.9)) (8)

This is the equation for ε, and is the exact analog of
equation (4).

Step 9. Once again we use Excel’s Solver to “minimize
the contents of cell A2 by changing the contents of cell
A1”. In so doing it will have solved equation (7) for T.
The solution is T = 1.00. This should be no surprise, be-
cause we already know that (.017, .0788), being the end-
point of our chord across the feasibility region in Figure
4, lies on the T=1 constraint curve.

Step 10. Substituting in either side of (7) gives F/P =
1.088, as shown in Table 4.

Step 11. Repeat steps 8, 9, and 10 for choice 2 (this
time T will turn out to be 1.749) and so on for choices
3–7.

5.2.3 Choosing Ps

To explicitly finish the process off we use the Excel
Solver to generate Ps that will give a correlation of zero
between d and h1, and thus between d and h2. To ring the
changes, we also generate an entirely different set of Ps
that would make (F-P) orthogonal to both h1 and h2. The
following steps assume we are orthogonalizing for d.

Step 12. Start with a randomly chosen set of P, per-
haps using Excel’s function rand(), and calculate Fs, ds,
and (F-P)s as Excel formulae that depend on the P val-
ues. Alternative is to randomly choose Fs, and calculate
Ps from the known F/P ratios8.

respect.

8Even more generally we may generate a required linear combina-
tion of P and F according to a criterion, say αP + γF = X, whether X is
fixed or a random number, as required. We use the known F/P = λ ratio
to solve these simultaneous equations for P and F. The default used in
our calculations has been α = 1, γ = 0. The alternative of choosing F
then calculating P, as mentioned in the text, is α = 0, γ = 1. Any α and
γ are possible to meet a particular purpose. The solution is: P = X / (α
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Table 4: Designing rate parameters h1 and h2 with R(h1, h2) = -1 for two versions of the hyperboloid, where (m, τ )
= (.2, .4) and (.9, .7). The first set of Ps and Fs were constructed so that d is orthogonal to h1 and h2. The second set
ensure that F-P is orthogonal to h1 and h2.

h1 h2 T F/P P F d P F F–P

0.017 0.0788 1.000 1.088 1.000 1.088 0.088 59.177 64.381 5.204
0.018 0.0712 1.749 1.118 2.588 2.892 0.174 45.616 50.986 5.370
0.019 0.0637 3.183 1.160 1.022 1.186 0.052 31.416 36.453 5.037
0.020 0.0561 6.139 1.224 11.142 13.644 0.408 1.000 1.224 0.224
0.021 0.0486 12.923 1.328 10.185 13.530 0.259 1.000 1.328 0.328
0.022 0.0410 31.342 1.519 6.768 10.283 0.112 1.000 1.519 0.519
0.023 0.0334 100.000 1.969 6.210 12.228 0.060 10.327 20.334 10.007

Step 13. Suppose the absolute value of the correlation
between d and h1 is in cell k10, and the seven Ps are in
cells f1:f7, then in Solver jargon: Set target cell: k10
equal to: min by changing cells: f1:f7. Note, it may be
necessary to add additional constraints to ensure that P >
0.

Step 14. For presentational purposes, within each set
of P we have scaled P so that min(P) = 1, with Fs scaled
accordingly. To give appropriate units of measurement
to money, the researcher may rescale Ps, Fs, which then
rescales both d and (F-P) by that scaling factor, though
not h1 or h2 (in equation 5, and assuming a scaling fac-
tor of k, kF/kP = F/P). T was already constructed so that
min(T) = 1, but the researcher may also rescale T. Do-
ing so will rescale h1, h2, d, and (F-P) by the reciprocal
of that scaling factor. As already stated, the rationale for
choosing units of measurement lies beyond the model it-
self.

5.3 Limitations—the range of r and h
By adjusting the units of T, it is possible to obtain {P, F,
T} combinations such that about half of all choices are
to accept P and half are to accept F. However, this only
holds in the aggregate, and not necessarily for any par-
ticular individual. An extreme case would be if half the
participants choose all P, and half choose all F: the other
extreme would be if all participants choose half P and half
F. In the former case we could not tell whether any given
person was an exponential or hyperbolic discounter, be-
cause they are all off the scale. In general, the narrower
the range of r and h the more likely are people to be off the
scale. The range of r and h that researchers use should ex-
tend beyond the range of internal r0 and h0 that the group
of people in the study have9. Suppose also that the re-

+ γλ); F = λX / (α + γλ).
9To give an idea of rates that have been used in past research, [min,

median, max] triplets for d ($ per day) were [.0233, .2436, 2], [.0233,

Figure 5: Trade-offs implicit in three experimental de-
signs (models E and H assumed).
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searcher has limits on the permissible T, either explicitly
or implicitly (e.g., T = 375 years is not acceptable), then
referring to Figure 5, the following issues emerge.

Presume that the median r0 and h0 of a group of people
are located at the intersection of ellipse (A) and ellipse
(B). Then, choosing r and h from ellipse B represents the
kinds of designs that the method outlined in this paper
generates. Through empirical study it is possible to find
the right level of r and h such that 50% of choices will

.04, 3.928], and [0.0053, .0674, 7.714] for the three studies of Li (2008),
Kirby and Marakovic (1996), and Kirby, Petry, and Bickel (1999), re-
spectively. Triplets for h (% per day) for the same three studies in the
same order were: [.0684, .08167, 13.33], [.0684, .08571, 13.33], and
[.0158, .05961, 25]. Similarly, triplets for r (% per day): [.0674, .75,
8.473], [0.0673, .6936, 8.47], and [.0156, .5136, 14.45]. Listing these
ranges does not thereby imply that we endorse their use in other re-
search. It is for background information.
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be to P. Hence ellipse B can be correctly centered to co-
incide with the median of individuals’ internal criteria r0,
h0. However, in B the range of r and h would be small,
meaning that the design may suffer from any given per-
son choosing all either P, or all F. The sample of r and
h represented by ellipse A is also centered at the correct
location but has a larger range of r and h than B, which
means it is less likely to suffer from the all P / all F prob-
lem. However, its drawback is that r and h are positively
correlated. Finally, ellipse C has the same negative corre-
lation between r and h as B, but has a much larger range
than B. But it is not centered over the distribution of peo-
ple’s criterion r0 and h0. Each of A, B, C meets only
two of the three design criteria: (i) r and h are correctly
centered; (ii) r and h span a sufficient range to match the
range of individual r0 and h0; (iii) r and h are not posi-
tively correlated.

To extend the range of r and h in B we could stretch
apart the sides of the trumpet, but this can only be
achieved by increasing the permissible range of T. Al-
ternatively, one can sample from within one or more ad-
ditional ellipses that are parallel to B, but lie up-range or
down-range. This possibility is suggested by the black
ellipse. If someone chooses all F to problems sampled
from B because his/her internal criterion rate parame-
ter(s) is/are below those present in B, the problems found
in the black ellipse may be able to span his/her crite-
rion. However, the more of these parallel regions one
constructs, the greater the overall correlation between r
and h - though still negative within each sub-sample; also,
the formerly slender questionnaire may become quite
bloated. However, if a computer controls the experiment,
it may be possible to first approximately locate someone’s
r0, h0 by using a few problems strata-sampled from the
gray ellipse A, then present a tailored form of B which
spans that person’s r0, h0. Finally, the researcher who
wishes to preserve the range of (r, h) values shown in A,
may still be able to reduce the positive correlation be-
tween them by making A’s ellipse fatter10.

Although these arguments have been presented for E
and H, similar arguments and design issues are valid in
hyperboloid and other model comparisons. As we see,
this paper provides a map for designing binary choice
problems, but it is not a cure-all. The researcher still has
to do the hard yards by making the sometimes difficult
judgments about what and how much to trade-off.

Researchers interested in using the above procedure
might be concerned about obtaining {P, F, T} pairs such
that the amounts and time periods are feasible to imple-

10Of course, these considerations only matter if the researcher actu-
ally wishes to reduce colinearity between r and h. As stated earlier,
the researcher may even want positive colinearity (see Appendix B for
an example). Even so, the method still shows how that goal can be
achieved.

ment with real payoffs and real delays. Instead of gener-
ating specific values of P and F, the above procedure pro-
duces a P/F ratio, which can be easily scaled according to
the monetary units that the researcher can feasibly imple-
ment. Further, while the above procedure does produce
specific values of T, the values generated can be scaled
according to feasibility. For example, if researchers gen-
erated T’s ranging from 1 to 100 for a particular set of
choice options (as in Table 4), one unit of T could be
equated with one day. If an extreme value of T is gener-
ated that is impossible to scale to a reasonable level, then
researchers can adjust the combination of discount rates
that produced the extreme value to make it more reason-
able. Therefore, we believe in most cases, it should be
possible to generate feasible sets of {P, F, T} by mak-
ing minimal alterations to the range of discount rates se-
lected.

6 Conclusions
In sum, we present a method of generating choice stim-
uli that precisely manipulate the relationship between dif-
ferent discount rate parameters. Our methodological in-
novation permits researchers to explore novel questions
that otherwise would be difficult to address. For exam-
ple, researchers can now test whether certain types of ex-
periences or training (e.g., an education in economics or
accounting) makes people more likely to use exponen-
tial discounting and less likely to use hyperbolic or arith-
metic discounting in their intertemporal choices; which
discount rate is best correlated with the quality of peo-
ple’s real life financial decisions (e.g., amount of credit
card debt); and whether addiction or neurological impair-
ment have more detrimental effects for say hyperbolic
discounting than for say arithmetic discounting. The
ability to precisely manipulate different discount rates,
however, comes with certain limitations that researchers
would need to be mindful of.
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Appendix A
The following table is an extended version of Table 3. Two sets of ten P and F have been generated. For each set, the
mean P is 100, and the ds are orthogonal to r and h. Furthermore, the two sets of ds have been generated orthogonal to
each other. The ratio of max/min T is 240, which lies within the ratios and maxima that have been used before in the
literature: for instance, Green et al. (1994) used Ts in the range 1 week through 25 years (ratio = 1300); Rachlin et al.
(1991) used Ts in the range 1 month through 50 years (ratio = 600). If T is measured in units of days, then 9028 days
is just short of 25 years. If T is measured in minutes then 9028 minutes is about six and a quarter days.

Choice# r h T F/P P F d

1 0.0050 0.0055 37.536 1.2064 37.662 45.437 0.2071
2 0.0045 0.0060 122.267 1.7336 217.311 376.730 1.3039
3 0.0040 0.0065 225.863 2.4681 13.044 32.193 0.0848
4 0.0035 0.0070 358.980 3.5129 150.486 528.637 1.0534
5 0.0030 0.0075 539.596 5.0470 151.097 762.583 1.1332
6 0.0025 0.0080 801.043 7.4083 181.759 1346.536 1.4541
7 0.0020 0.0085 1212.785 11.3087 16.707 188.935 0.1420
8 0.0015 0.0090 1945.533 18.5098 118.783 2198.646 1.0690
9 0.0010 0.0095 3546.501 34.6918 72.325 2509.087 0.6871
10 0.0005 0.0100 9027.825 91.2783 40.826 3726.528 0.4083

11 0.0050 0.0055 37.536 1.2064 202.221 243.968 1.1122
12 0.0045 0.0060 122.267 1.7336 149.193 258.641 0.8952
13 0.0040 0.0065 225.863 2.4681 19.251 47.514 0.1251
14 0.0035 0.0070 358.980 3.5129 128.120 450.069 0.8968
15 0.0030 0.0075 539.596 5.0470 78.338 395.371 0.5875
16 0.0025 0.0080 801.043 7.4083 30.748 227.793 0.2460
17 0.0020 0.0085 1212.785 11.3087 116.335 1315.589 0.9888
18 0.0015 0.0090 1945.533 18.5098 168.733 3123.205 1.5186
19 0.0010 0.0095 3546.501 34.6918 11.979 415.571 0.1138
20 0.0005 0.0100 9027.825 91.2783 95.082 8678.952 0.9508
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Appendix B
Design pattern /+1, 0, 0/, in which r and h are perfectly positively correlated, but d is orthogonal to both. As in
Appendix A, mean P = 100. The max/min T ratio is 260, and 2512.862 days is nearly 7 years. Such a design might be
used to investigate the magnitude effect by varying money units: e.g., 1 unit = $0.1; 1 unit = $1; 1 unit = $5, and so
on. Note also, the max/min T ratio for the last 10 choices, which correspond to the range of r used in Appendix A, is
67. Note, the need for a wide range of T can occur in designs for which R(r, h) = +1 as well as in designs for which
R(r, h) = –1.

Choice# r h T F/P P F d

1 0.0100 0.0105 9.680 1.1016 29.339 32.322 0.3081
2 0.0095 0.0100 10.708 1.1071 31.088 34.417 0.3109
3 0.0090 0.0095 11.909 1.1131 77.442 86.203 0.7357
4 0.0085 0.0090 13.323 1.1199 12.806 14.342 0.1153
5 0.0080 0.0085 15.006 1.1276 78.579 88.602 0.6679
6 0.0075 0.0080 17.029 1.1362 13.893 15.785 0.1111
7 0.0070 0.0075 19.491 1.1462 14.365 16.464 0.1077
8 0.0065 0.0070 22.528 1.1577 46.930 54.331 0.3285
9 0.0060 0.0065 26.334 1.1712 14.966 17.528 0.0973
10 0.0055 0.0060 31.195 1.1872 153.830 182.622 0.9230
11 0.0050 0.0055 37.537 1.2065 240.890 290.623 1.3249
12 0.0045 0.0050 46.033 1.2302 91.047 112.003 0.4552
13 0.0040 0.0045 57.779 1.2600 96.408 121.474 0.4338
14 0.0035 0.0040 74.678 1.2987 194.551 252.666 0.7782
15 0.0030 0.0035 100.256 1.3509 130.155 175.825 0.4555
16 0.0025 0.0030 141.680 1.4250 69.031 98.372 0.2071
17 0.0020 0.0025 215.421 1.5386 223.403 343.717 0.5585
18 0.0015 0.0020 366.800 1.7336 175.315 303.926 0.3506
19 0.0010 0.0015 762.689 2.1440 94.240 202.054 0.1414
20 0.0005 0.0010 2512.862 3.5129 211.721 743.747 0.2117
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